
A note on preservation of strong normalisation in

the λ-calculus

José Esṕırito Santo∗

Departamento de Matemática
Universidade do Minho

Portugal
jes@math.uminho.pt

July 26, 2010

Abstract

An auxiliary notion of reduction ρ on the λ-terms preserves strong
normalisation if all strongly normalising terms for β are also strongly
normalising for β∪ρ. We give a sufficient condition for ρ to preserve strong
normalisation. As an example of application, we check easily the sufficient
condition for Regnier’s σ-reduction rules and the “assoc”-reduction rule
inspired by calculi with let-expressions. This gives the simplest proof so
far that the union of all these rules preserves strong normalisation.

1 Introduction

The study of auxiliary notions of reduction in the λ-calculus arises in different
contexts and with diverse motivations (see e.g. [6]). A context where auxiliary
notions of reduction are natural is in the study of translations from, or into, the
λ-calculus. When the λ-calculus is the source of the translation, we may need
to modify the equality generated by β, in order to characterize when two terms
have the same image. This is the origin of the σ-rules of Regnier [10] (for a
translation of the λ-calculus into proof nets), or the A-rules of Sabry-Felleisen
[11] (for a CPS-translation), just to give two examples.

On the other hand, when the λ-calculus is the target of some translation,
we may wish to simulate the reductions of the source calculus. For a number of
related translations [2, 8, 4], based on the simple idea of translating as β-redexes
a number of related constructors (let-expressions, generalised applications, ex-
plicit substitutions), a single set of auxiliary notions of reduction suffices in the
target, in addition to β, for the purposes of simulation: it is the set consisting
of rules named π1 and π2 in [4]. The first rule is nothing but one of the σ-rules,

∗The author is supported by FCT via Centro de Matematica, Universidade do Minho.

1

named σ1 here, and, simultaneously, a particular case of one of the A-rules
of [11] - the rule named βlift. On the other hand, rule π2 (named θ3 and β′

in [6] and [2] resp.) is a mild generalisation of a rule sometimes called assoc
[8, 7]; and the latter, in turn, is another particular case of βlift, and also a mere
translation into the ordinary syntax of the λ-calculus of the “associativity” of
let-expressions, a rule of Moggi’s computational λ-calculus [9].

Whether ρ is σ, or π := π1 ∪ π2, or other auxiliary notion of reduction, it
is often desirable that all the λ-terms strongly normalising for β remain so for
β ∪ ρ. When this happens we say that ρ preserves strong normalisation. For
instance, if the translation f : S → λ sends typable expressions of the system S
to typable λ-terms, and if f sends reduction steps of the source to non-empty βρ-
reduction sequences in the λ-calculus, then preservation of strong normalisation
by ρ entails that all typable expressions of S are strongly normalising.

In this note we prove a sufficient condition for an arbitrary notion of reduc-
tion ρ to preserve strong normalisation. Then, as an example of application, we
check the sufficient condition for σ ∪ π. The sufficient condition is the conjunc-
tion of three restrictions: (i) ρ is “substitutive” and “variable-preserving”, which
is a very mild requirement, trivial to check; (ii) ρ is itself strongly normalising,
which is often known and/or easy; (iii) a certain property holds of weak head
ρ-reduction. The proof that this conjunction of requirements is indeed sufficient
relies on a single technical argument, showing roughly that once (iii) is true, the
property mentioned in (iii) holds of full ρ-reduction. For the particular case of
σ ∪ π, (i) is immediate and (ii) is essentially known; it remains the verification
of (iii), which is straightforward and short.

The rest of this note is organised as follows. Section 2 fixes notation and
terminology. Section 3 proves the sufficient condition. Section 4 applies the
sufficient condition to the notion of reduction σ ∪ π. Section 5 reviews the
literature and concludes.

2 Background

The set of λ-terms is denoted Λ, and ranged over by M,N,P,Q,L,R. −→Q ranges
over (possibly empty) sequences of λ-terms. If, say, −→Q = N1, N2, we denote
by M

−→
Q the λ-term MN1N2. If −→Q is the empty sequence (denoted −) then

M
−→
Q denotes M . FV (M) denotes the of variables with free occurrences in M .

Barendregt’s variable convention is adopted. Substitution is written [N/x]M .
The size of λ-term M , denoted |M |, is defined as follows: |x| = 1; |λx.M | =
1 + |M |; |MN | = 1 + |M |+ |N |.

A notion of reduction, or reduction rule, ρ is a binary relation on Λ. M 7→ρ N
(ρ-reduction at root position) means (M,N) ∈ ρ. For instance, β is the notion
of reduction

(λx.M)N 7→ [N/x]M .

The other notions of reduction considered in this paper are:

2

(π1/σ1) (λx.M)NP 7→ (λx.MP)N (x /∈ FV (P))
(σ2) (λx.λy.M)N 7→ λy.(λx.M)N (y /∈ FV (N))
(π2) M((λx.P)N) 7→ (λx.MP)N (x /∈ FV (M))

We allow two different names for the first rule. Let σ = σ1∪σ2 and π = π1∪π2.
σ is introduced in [10], π is studied in [4] as a set of rules for “delaying” a
“substitution” (λx.)N . A particular case of π2 is

(assoc) (λy.Q)((λx.P)N) 7→ (λx.(λy.Q)P)N (x /∈ FV (Q))

which is a translation of the “associativity” of let-expressions [9]1

let y = (letx = N inP) inQ 7→ letx = N in (let y = P inQ) (x /∈ FV (Q))

Given ρ notion of reduction,→ρ denotes ρ-reduction, that is, the compatible
closure of ρ. →n

ρ (resp. →∗ρ) denotes the n-fold self-composition (resp. the
reflexive-transitive closure) of →ρ. It is an exercise to see that →∗ρ is the same
relation as the reflexive-transitive-compatible closure of ρ. M →whρ N (M weak
head ρ-reduces to N) is defined by: there are L,R,−→Q ∈ Λ such that M = L

−→
Q ,

N = R
−→
Q , and L 7→ρ R. Given another notion of reduction ρ′, we usually write

ρρ′ instead of ρ ∪ ρ′.
A reduction sequence M = M0 →ρ M1 →ρ M2 →ρ · · · (finite or infinite) is

said a ρ-reduction sequence from M . We say that M is strongly normalising for
ρ (abbreviated M is ρ-SN, or M ∈ ρ − SN), if all ρ-reduction sequences from
M are finite. We say that →ρ is strongly normalising (abbreviated →ρ is SN)
if M is ρ-SN, for all M .

Let ||M ||ρ : Λ → ω + 1 be defined by: ||M ||ρ is the length of the longest
ρ-reduction sequence from the term M , if M is β-SN; and ||M ||ρ = ω, otherwise
(ω + 1 is the ordinal {0, 1, 2, · · · , ω})2.

Definition 1 A notion of reduction ρ preserves strong normalisation if it holds
that: M is β-SN iff M is βρ-SN.

Perpetual reduction →B is the binary relation on Λ inductively defined by
1Here is a guide for the name of these rules in the literature:

Regnier [10] Kfouri-Wells [6] Lengrand [7] David [3] This paper
σ(1) θ1 - γ π1/σ1

σ(2) γ - δ σ2

- θ3 - assoc π2

- - assoc - assoc
Notice that this use of the name σ is inconsistent with its use in the explicit substitution
literature, e.g. [4].

2In [4, 5], ||M ||ρ is defined only for ρ-SN terms.

3

N →B N ′

λx.N →B λx.N ′

Ni →B N ′i

xN1 · · ·Ni−1Ni
−→
Q →B xN1 · · ·Ni−1N

′
i
−→
Q

(i)

(λx.M)N−→Q →B ([N/x]M)−→Q
(ii)

N →B N ′

(λx.M)N−→Q →B (λx.M)N ′−→Q
(iii)

Provisos: (i) i ≥ 1 and ∀1 ≤ j < i Nj β-nf. (ii) x ∈ FV (M) or N a β-nf.
(iii) x /∈ FV (M) and N not a β-nf.

It is easy to see that →B is actually a partial function, which we name B,
such that B(M) is undefined iff M is a β-nf. ||M ||B denotes the Barendregt’s
norm of M , that is, the length of the perpetual reduction sequence from M , if
M ∈ β − SN ; or ω, otherwise. →B is important because of two properties: (i)
M is β-SN iff the perpetual reduction from M is finite [1]; (ii) ||M ||β = ||M ||B
[10, 12]. When this norm is meant, we may drop the subscript.

3 Sufficient condition for PSN

We say that:

• ρ is substitutive if L 7→ρ R implies, for all N ∈ Λ, [N/x]L 7→ρ [N/x]R.

• ρ is variable-preserving if M 7→ρ N implies FV (M) = FV (N).

It is routine to show that, for ρ substitutive, if L →ρ R then, for all N ∈ Λ,
[N/x]L →ρ [N/x]R and [L/x]N →∗ρ [R/x]N . On the other hand, it is clear
that, if ρ is variable-preserving, then M →ρ N implies FV (M) = FV (N).

We need the following abbreviation: φ(L,R,−→Q) iff there are M ∈ Λ and
natural numbers m ≥ n ≥ 0 such that L−→Q →m

B M and R
−→
Q →n

B M . If −→Q is
empty, we may write φ(L,R) instead of φ(L,R,−).

The crucial part of our sufficient condition for PSN is the following condition
over ρ:

∀L,R,−→Q ∈ Λ · (L−→Q ∈ β − SN &L 7→ρ R)⇒ φ(L,R,−→Q) . (1)

This condition is equivalent to

(M ∈ β − SN & M →whρ N)⇒ φ(M,N) ,

which obviously entails that weak head ρ-reduction does not increase the norm
|| ||, that is

4

M →whρ N ⇒ ||M || ≥ ||N || .

What is not so obvious is that, if condition (1) holds, then full ρ-reduction does
not increase the norm || ||:

M →ρ N ⇒ ||M || ≥ ||N || .

Theorem 1 (Sufficient condition for PSN) Let ρ be a substitutive, variable-
preserving notion of reduction, satisfying condition (1). Then ρ-reduction does
not increase || ||β; in addition, if →ρ is SN, then ρ preserves strong normalisa-
tion.

Proof: All there is to prove is that ρ satisfies

∀L,R,−→Q ∈ Λ · (L−→Q ∈ β − SN &L→∗ρ R)⇒ φ(L,R,−→Q) . (2)

Indeed, from this it follows that ρ-reduction does not increase || ||β . In addition,
if →ρ is SN and M is β-SN, then we conclude, by induction on (||M ||β , ||M ||ρ),
that all βρ-reduction sequences from M are finite (since ρ-reduction does not
increase || ||β).

So we finish by proving (2). Suppose L−→Q ∈ β−SN and L→∗ρ R. We prove
φ(L,R,−→Q), that is, we want to exhibit M ∈ Λ and natural numbers m ≥ n ≥ 0
such that L−→Q →m

B M and R
−→
Q →n

B M . The proof is by induction on ||L−→Q ||
and sub-induction on L→∗ρ R. Cases according to the last closure rule used in
deriving L→∗ρ R.

First case: L 7→ρ R. φ(L,R,−→Q) follows from (1).
Second case: L = R. φ(L,R,−→Q) is proved by taking M ≡ L

−→
Q ≡ R

−→
Q and

m = n = 0.
Third case: L ≡ L0Q0 →∗ρ R0Q0 ≡ R, with L0 →∗ρ R0. ||L−→Q || = ||L0Q0

−→
Q ||.

By sub-IH, one obtains φ(L0, R0, Q0
−→
Q), which is equivalent to φ(L,R,−→Q).

Fourth case: L ≡ λx.L0 →∗ρ λx.R0 ≡ R, with L0 →∗ρ R0. There are two
sub-cases.

• First subcase: −→Q is empty. ||λx.L0|| = ||L0||. By sub-IH, φ(L0, R0,−),
that is, there are M0 ∈ Λ and m ≥ n ≥ 0 such that L0 →m

B M0 and
R0 →n

B M0. But then λx.L0 →m
B λx.M0 and λx.R0 →n

B λx.M0. So it
suffices to take M = λx.M0.

• Second sub-case: −→Q = Q0
−→
P , say. By variable-preservation, FV (L0) =

FV (R0). Then

(λx.L0)Q0
−→
P →k

B ([Q′0/x]L0)−→P and (λx.R0)Q0
−→
P →k

B ([Q′0/x]R0)−→P (∗)

where k is 1 and Q′0 = Q0 (resp. k is 1 + ||Q0|| and Q′0 is the β-nf of
Q0) if x ∈ FV (L0) (resp. x /∈ FV (L0)). In addition, ||(λx.L0)Q0

−→
P || >

5

||([Q′0/x]L0)−→P ||, and ([Q′0/x]L0)−→P →∗ρ ([Q′0/x]R0)−→P by substitutivity.
By IH, φ(([Q′0/x]L0), ([Q′0/x]R0),−→P) holds. From this fact and (∗) it
follows that φ(λx.L0, λx.R0, Q0

−→
P)

Fifth Case: L ≡ PL0 →∗ρ PR0 ≡ R, with L0 →∗ρ R0. There are two
subcases.

• First subcase: the β-nf of P is xN1 · · ·Nq, with q ≥ 0 and each Ni β-nf.
Then, for some k,

PL0
−→
Q →k

B xN1 · · ·NqL0
−→
Q and PR0

−→
Q →k

B xN1 · · ·NqR0
−→
Q (∗)

Notice that ||PL0
−→
Q || ≥ ||L0||. So, by IH or sub-IH, φ(L0, R0,−) holds,

whence φ(xN1 · · ·NqL0, xN1 · · ·NqR0,
−→
Q). From this fact and (∗) follows

φ(PL0, PR0,
−→
Q).

• Second subcase: the β-nf of P is an abstraction. Then, for some k, x, and
P0,

PL0
−→
Q →k

B (λx.P0)L0
−→
Q and PR0

−→
Q →k

B (λx.P0)R0
−→
Q (∗∗)

Next we face a further, and last, bifurcation.

(i) x /∈ FV (P0). Similarly to the first sub-case, we conclude, from IH or
sub-IH, that φ(L0, R0,−) holds. Then φ((λx.P0)L0, (λx.P0)R0,

−→
Q). From

this fact and (∗∗) follows φ(PL0, PR0,
−→
Q).

(ii) x ∈ FV (P0). From (∗∗) we get

PL0
−→
Q →k+1

B ([L0/x]P0)−→Q and PR0
−→
Q →k+1

B ([R0/x]P0)−→Q (∗ ∗ ∗)

Now ||PL0
−→
Q || > ||([L0/x]P0)−→Q || and ([L0/x]P0)−→Q →∗ρ ([R0/x]P0)−→Q by

substitutivity. So, by IH, φ(([L0/x]P0), ([R0/x]P0),−→Q) holds. From this
fact and (∗ ∗ ∗) follows φ(PL0, PR0,

−→
Q).

Sixth, and last, case: there is P such that L→∗ρ P and P →∗ρ R. By sub-IH,
there are M1 ∈ Λ and natural numbers m1 ≥ n1 ≥ 0 such that L−→Q →m1

B M1 and
P
−→
Q →n1

B M1. So P−→Q is β-SN and ||L−→Q || ≥ ||P−→Q ||. Hence, by IH or sub-IH,
there are M2 ∈ Λ and natural numbers m2 ≥ n2 ≥ 0 such that P−→Q →m2

B M2

and R−→Q →n2
B M2. From P

−→
Q →n1

B M1 and P−→Q →m2
B M2 and the fact that →B

is a function, we see that there are three subcases:

• First subcase: n1 > m2 and M2 is a term in the reduction sequence
P
−→
Q →n1

B M1. Take M = M1, m = m1 and n = n2 + (n1 −m2). Then
m1 ≥ n1 = m2 + (n1 −m2) ≥ n2 + (n1 −m2) = n.

6

• Second subcase: n1 = m2 and M1 = M2. Take M = M1 = M2, m = m1,
and n = n2. Then m = m1 ≥ n1 = m2 ≥ n2 = n.

• Third subcase: n1 < m2 and M1 is a term in the reduction sequence
P
−→
Q →m2

B M2. Take M = M2, m = m1 + (m2 − n1), and n = n2. Then
m = m1 + (m2 − n1) ≥ n1 + (m2 − n1) = m2 ≥ n2 = n. �

4 Example

Here we exemplify the use of Theorem 1 for σ ∪ π.

Proposition 1 (Sufficient condition for σ ∪ π)

1. σ ∪ π is substitutive and variable preserving.

2. →σπ is SN.

3. σ ∪ π satisfies condition (1).

Proof: 1. Immediate.
2. We extend to σπ = σπ2 the proof for π = π1π2 in [4]. The argument

is the same, let us repeat it. Strong normalisation of →σ is in [10]. Define
w(M), the weight of a λ-term M , as follows: w(x) = 0; w(λx.M) = w(M);
w(MN) = |N |+w(M) +w(N). It holds that, if M →σ N , then w(M) = w(N)
and |M | = |N |; and that, if M →π2 N , then w(M) > w(N) and |M | = |N |.
The proofs are by induction on M →σ N and M →π2 N , respectively (the
statements about size are induction loading). Finally, one proves that all σπ2-
reduction sequences from M are finite by induction on (w(M), ||M ||σ).

3. Let us prove the condition for each of σ1, σ2, and π2.
Case σ1: Let Q0 = L

−→
Q = (λx.M)NP−→Q be β-SN and Q1 = R

−→
Q =

(λx.MP)N−→Q . Let k be either ||N ||, if x /∈ FV (M); or 0, otherwise. Then
Qi →k+1

B ([N/x]M)P−→Q , i = 0, 1. So φ(L,R,−→Q).
Case σ2: Let Q0 = L

−→
Q = (λx.λy.M)N−→Q be β-SN and Q1 = R

−→
Q =

(λy.(λx.M)N)−→Q . There are two subcases.
First sub-case: −→Q = −. Let k be either ||N ||, if x /∈ FV (M); or 0, otherwise.

Then Qi →k+1
B (λy.[N/x]M), i = 0, 1. So φ(L,R).

Second sub-case: −→Q = Q
−→
P , say. Let k and l be defined as follows. If

x /∈ FV (M), then k = ||N ||; otherwise, k = 0. If y /∈ FV (M), then l = ||Q||;
otherwise, l = 0. φ(L,R,−→Q) is verified as follows:

Q0 = (λx.λy.M)NQ−→P
→k+1
B (λy.[N/x]M)Q−→P
→l+1
B ([Q/y][N/x]M)−→P
= ([N/x][Q/y]M)−→P ,

where the last equality is by substitution lemma and y /∈ FV (N).

7

Q1 = (λy.(λx.M)N)Q−→P
→l+1
B (λx.[Q/y]M)N−→P

→k+1
B ([N/x][Q/y]M)−→P .

Case π2: Let Q0 = M((λx.P)N)−→Q be β-SN and Q1 = (λx.MP)N−→Q . The
goal is to exhibit M0 and m ≥ n ≥ 0 such that Q0 →m

B M0 and Q1 →n
B M0. Q0

and Q1 have a common reduct, namely M([N/x]P)−→Q (=MP
−→
Q , if x /∈ FV (P)),

a common reduct to which Q1 reduces by perpetual reduction. Since the com-
mon reduct is a reduct of Q0, it is β-SN. So, the perpetual reduction of Q1

terminates and Q1 is β-SN as well. In addition, Q0 and Q1 have the same β-nf.
Let M0 be this β-nf. Take m = ||Q0|| and n = ||Q1||. Hence Q0 →m

B M0

and Q1 →n
B M0. We show m ≥ n. If x /∈ FV (P), then Q0 →k+1

β MP
−→
Q

and Q1 →k+1
B MP

−→
Q , where k = ||N ||; so, ||Q0|| ≥ k + 1 + ||MP

−→
Q || = ||Q1||.

If, on the other hand, x ∈ FV (P), then Q0 →β M([N/x]P)−→Q and Q1 →B

M([N/x]P)−→Q ; so, ||Q0|| ≥ 1 + ||M([N/x]P)−→Q || = ||Q1||. �

Theorem 2 (PSN for σ ∪ π)

1. M →σπ N ⇒ ||M || ≥ ||N ||.

2. M ∈ βσπ − SN ⇔M ∈ β − SN .

Proof: From the previous Proposition and Theorem 1.3�

5 Final remarks

Preservation of strong normalisation was addressed in several papers [2, 8, 4, 7,
3]. The rule π2 was considered in [2], but only the finiteness of developments
for β∪π2 was proved. In [4] preservation of strong normalisation by π is stated,
but the proof of one auxiliary result is incomplete 4. In [8, 7] preservation
of strong normalisation by assoc ⊂ π2 is considered, but only [7] gives a full
proof, by refining the idea of postponing assoc-steps. [3] proves that all λ-terms
typable in the well known intersection type system D are strongly normalising
for β ∪ σ ∪ π, from which preservation of strong normalisation by σ ∪ π follows.

3A side remark on σ-reduction. Regnier [10] observes that

M →σ N ⇒ ||M || ≤ ||N ||

is an immediate consequence of the commutation between σ and β (Corollary 3.5 in [10]),
but obtains the other inequality only after a quite complex argument. The other inequality
is contained in the first statement of this theorem.

4That’s Proposition 6 on page 173, saying that π-reduction does not increase the norm
|| ||β . The author thanks Stéphane Lengrand for pointing this out to him. The present paper,
in particular, closes this gap. A preliminary version of the present paper was made publicly
available in the author’s web page [5]. The author also thanks Ralph Matthes for comments
on [5].

8

In this paper we offer a generic method for proving preservation of strong
normalisation, so that, whenever confronted with a particular reduction rule ρ,
all there is to do is to verify the sufficient condition. It is not discussed in [7, 3]
whether the methods of these papers are extensible to other reduction rules.
What is clear though is that, for the particular case of ρ = σ ∪ π, the effort
of checking the sufficient condition is much smaller than the effort in [3]. The
same remark applies to ρ = assoc and [7].

A notable example of notion of reduction which does not satisfy condition (1)
is η: just observe that φ(λx.yx, y,−) is false. Yet, η preserves strong normalisa-
tion. This follows easily from termination of →η and a result of postponement:
if M →η N →β P , then there is Q such that M →+

β Q →∗η P ; the latter, in
turn, is easily proved by induction on M →η N . Incidentally, we have just seen
that our condition for PSN, albeit sufficient, is not necessary.

References

[1] H.P. Barendregt. The Lambda Calculus. North-Holland, 1984.

[2] G. Barthe, J. Hatcliff, and P. Thiemann. Monadic type systems: Pure type
systems for impure settings (preliminary report). In A. Gordon, A. Pitts,
and C. Talcott, editors, Proc. of Second Workshop on Higher Order Op-
erational Techniques in Semantics (HOOTS’97), volume 10 of Electronic
Notes in Theoretical Computer Science, pages 54–120, 1998.

[3] R. David. A short proof that adding some permutation rules to β preserves
SN (submitted, available from the author’s web page). 2009.

[4] J. Esṕırito Santo. Delayed substitutions. In Franz Baader, editor,
Proc. of 18th International Conference Term Rewriting and Applications
(RTA’07), volume 4533 of Lecture Notes in Computer Science, pages 169–
183. Springer-Verlag, 2007.

[5] J. Esṕırito Santo. Addenda to “Delayed Substitutions”, 2008 (Manuscript
available from the author’s web page).

[6] A. J. Kfouri and J. B. Wells. Addendum to “New Notions of Reduction
and Non-Semantic Proofs of β-Strong Normalization in Typed λ-Calculi”.
Technical Report 95-007, Computer Science Department, Boston Univer-
sity, 1995.

[7] S. Lengrand. Temination of lambda-calculus with the extra call-by-value
rule known as assoc. arXiv:0806.4859v2, 2007.

[8] S. Lindley. Normalisation by Evaluation in the Compilation of Typed Func-
tional Programming Languages. PhD thesis, University of Edinburgh, 2005.

[9] E. Moggi. Computational lambda-calculus and monads. Technical Report
ECS-LFCS-88-86, University of Edinburgh, 1988.

9

[10] L. Regnier. Une équivalence sur les lambda-termes. Theoretical Computer
Science, 126(2):281–292, 1994.

[11] A. Sabry and M. Felleisen. Reasoning about programms in continuation-
passing-style. LISP and Symbolic Computation, 6(3/4):289–360, 1993.

[12] F. van Raamsdonk, P. Severi, M. Sorensen, and H. Xi. Perpectual reduc-
tions in λ-calculus. Information and Computation, 149(2):173–225, 1999.

10

