CONGRUENCES ON ORTHODOX SEMIGROUPS WITH
ASSOCIATE SUBGROUPS

by T. S. BLYTH, EMILIA GIRALDES «.d M. PAULA O. MARQUES-SMITH

If §'is a regular semigroup then an inverse transversal of § is an inverse subsemigroup
T with the property that [T NV (x)|=1 for every x e § where V(x) denotes the set of
inverses of x € §. In a previous publication [1] we considered the similar concept of a
subsemigroup 7 of § such that [T NA(x)|=1 for every x € § where A(x)={y e §;xyx =
x} denotes the set of associates (or pre-inverses) of x € §, and showed that such a
subsemigroup T is necessarily a maximal subgroup H, for some idempotent a e S,
Throughout what follows, we shall assume that S is orthodox and « is a middle unit (in the
sense that xey =xy for all x,y € §). Under these assumptions, we obtained in [1] a
structure theorem which generalises that given in [3] for uniquely unit orthodox
semigroups. Adopting the notation of [1], we let TN A(x) = {x*} and write the subgroup
T as H,={x*:x e S}, which we call an associate subgroup of S. For every x € § we
therefore have x*a = x* = ax* and x*x** = o =x**x* As shown in (1, Theorems 4, 5]
we also have (xy)* =y*x* for all x,y € S, and e¢* = a for every idempotent e.

Our objective here is to consider congruences on such a semigroup. Since the
building bricks in the structure theorem [1] are the subgroup H, and the sub-bands o E,
Ea of the band E of idempotents of §, these three subsemigroups will play an important
role in what follows.

As we shall see, the study of congruences is intimately related to certain residuated
mappings that arise naturally. We recall that if A, B are ordered sets then a mapping
f:A— B is said to be residuated if the pre-image of every principal down-set of B is a
principal down-set of A. For the general properties of residuated mappings we refer the
reader to [2]. For our purposes here we require the fact that f: 4 — B is residuated if and
only if it is isclone and there is a (necessarily unique) isotone mapping f~:B — A4 such
that fTof 2id, and fof " <idy.

Since, in the semigroups under consideration, the unary operation x=—sx* Iis
significant, it is reasonable to expect that an important role will be played by the
semigroup congruences ¢ such that

(x,y)e 9> (x*y*¥) e,

i.e. the congruences on the algebra (S,., *) which we shall refer to as *-congruences. We
shall denote by Con § the complete lattice of (semigroup) congruences on . It is easily
seen that the set of *-congruences forms a complete sublattice of Con §; we denote this by
Con* §.

DeriniTiON, Let A, m, u be congruences on aF, H,, Ea respectively. We shall call the
triple (A, m, u) weighted if there exists @ € Con § such that

(a) Oy, =m,

(b) /\‘QEQ = #‘a}za = ®|0Ec\-'
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Also, for e € Ea we have
(ea)* = a*e* = qa = «, (ea)*ea = aea € aEa, ea(ea)* = ea.
These equalities, together with (b), show that
(ea, fa) e W(A, 7, p) & (e, fa) e p

and that therefore W(A, 77, u)| g, = p. Similarly, W(A, 7, u)|ag = A.
It follows from these observations that

WW(A, o u)=(A, w0 (1)

Moreover, using the identity x = xx*x**x*x and the fact that #|,_is a group congruence,
we have that

(I,}') € lpl‘)UJr(ﬂ)? (X*xv _V*_‘r’) € ﬁ|a£a (X*ay*) € 19 H.» (XX*ﬁyy*) € 13’|Ea

= (x, y) = (xx*x**cte, yy*y**p#y) € 9,

and therefore
Yy (d)c . (2)

Since both W and W™ are isotone, it follows from (1) and (2) that W is injective and
residuated, with residual W™,

By Theorem 1 we have that ImW < Con*S. Conversely, if @ e Con*S then
(x,¥)e ¥ gives (x*x,y*y) e @, (x*,y*) e ¥, (xx*, yy*) e 9 whence (x,y)e W (9),
Thus 4 cWW"(#) and it follows from (2) that & =WW*(H) e ImW. Consequently,
ImW=Con*S. Now since W is isotone and injective it induces an isotone bijection
W WT(S)— ImW. It follows from the above that the restriction of ¥* to Con* S is
isotone and is the inverse of W,. Consequently, WT (§)=ImW. It follows from these
observations that WT(S) is isomorphic to the lattice Con* S.

CoroLLARY 1. The relation = defined on Con S by

135@@15{“5=¢‘Ia5, D

H, = @|H,s ﬁlfﬂ: ‘PIEa
is a dual closure equivalence. The smallest element in the =-class of & is W' (9).

Proof. Observe that, since W is residuated, WW™ is a dual closure: and, since
Yoyt =gt

=S¥ (1) =V ()WY (3)=TV¥ (p)
CoroLLarY 2. There is a lattice isomorphism Con* § = (Con §)/=.
CoroLLary 3. If (A, m, ), (A", 7', ') e WT(S) then
WA mu) N, 7', u ) =PANXN,zNx',pNp');
WA, u) v, o' u Y= WAV, ava, uvu').

Proof. This follows immediately from the fact that (A, 7, u)—>W(A, 7, u) is a lattice
isomorphism from WT(S) to Con* S,
We now consider the extension of congruences on aE, H,, Ea to *-congruences on
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Similarly, u € Con Ea will be called special if, for all e, feEa,

(e,.flepu=(Vxel) (xex™, xfx*) e p. ~
In what follows, given A € Con aF we shall be interested in the relation A defined on
S by

(a,b)e A& (Ve e R)  (a*ea,b*eb) c A;
and dually, for u € Con Ea, the relation 7 defined on § by
(a,b)e i (Ve e E) (aea*, beb*) e u.
Note that A is a left congruence on §; for if (a,b) € A then, since x*ex € E for every

x eS8, we have (a*x*exa,b*x*exb) e A, so that (xa,xb)e A Similarly, @ is a right
congruence,

Tueorem 5. For A € Con aF the following statements are equivalent:

(1) A is special, :

(2) A = 3|op for some & e Con S.

Proof. (1)=(2). Suppose that A is special. Then we have A e ConS. For, if
(a,b)e A then, since A is special and a*ea e aE, for every xeS we have
(x*a*eax, x*b*ebx) € A, so that (ax, bx) e A, whence A is a right congruence. As observed
above, A is a left congruence.

If now f, g € aE are such that (f, g) € A then since f* = g* = a we have (cef, aeg) €
A for every e e E. Taking e=a we obtain (f,g) e A. Conversely, if (f,g) e A then
(aef, aeg) € A gives (f*ef, g*eg) € A whence (f,g) e A. Hence Alag = A, 50 (2) holds with
¥ = A

(2)= (1). If & € Con § then for e, f € aF we have

(e.f) € Far>(e,f) e ¥ (Vx e §) (x*ex,x*fx) e &
Since x*ex e aF, it follows that #|,. is special.

CoroLLARY 1. For every special congruence A on oE there is a biggest *-congruence
on S such that 8|,z = A, namely § = WW*(X).

Proof. By Theorem 2, WW™(X) e Con* S with WW' (A)|,r = A,z =A. If now ¢ e
Con* § is such that |,z = A then

(a,b) e L= (Ve e E) (a*ea, b*eb) e {J&E= A= (a,b) e A,

50 { = A and consequently { = WW* () = WW*(A).

CoroLLaRrY 2. The following statements concerning A € Con aE are equivalent:

(1) A is special;

(2) there is a weighted triple whose first component is A.

Proof. (1)= (2). If (1) holds then the weighted triple associated with WW*()) has
first component A.

(2)=(1). If there is a weighted triple of the form (A, —, —) then by Theorem 2 we
have

(A, —, )=V, -, )

whence A = W(A, —, —)JRE and so A is special.



CONGRUENCES ON ORTHODOX SEMIGROUPS ‘

If (a*, b*) e m then we have (a**, b**) e & whence (a*, b*) e ® and (a**, b**) € O, from
which it follows that

(Ve e E) (a*ea**, b*eb**) € O|,g0 = Al ara

and therefore (a**, b**) € A _
Since A = )\|Q£ and since, as seen above, u < /\|En it follows that

(a,b) € P> (a*a, b*b) € A, (a**, b**) € A, (aa*, bb*) € X
S(a,b)e i
so P < A and therefore P = WW*(P) = WW™(A). Arguing similarly with x«, we obtain
P WW Q) NWYW (1)
from which the result follows. '

CorovLarY 2. The biggest weighted triple of the form (A, —, ) has middle component
jTA._u. =A H, = .‘I

H,*

Given A e SpCon aF and 1 = SpCon Ea, let T, , be the set of weighted triples with
first component A and third component w. As in the proof of Theorem 7, let
o= /\lHa = [

H,*

THeoreM 8. T, is a sublattice of WT(S), isomorphic to the interval [w,1,,] of
Con H,,.

Proof. Clearly, T,, is a sublattice of WTI(S). If now (A,%,u)eT,, then by
Corollary 2 of Theorem 7 we have ¢ €, ,. Consider the mapping {:7, ,— [w, T, ]
given by (A, ¥, n)=17. Clearly, { is an injective N-morphism. It suffices, therefore, to
prove that { is surjective; equivalently, that if & = [w, m, ] then (A, &, ) is a weighted
triple. Now, by Theorem 3, § is represented by the weighted triple

(tars ¥ LEa),s
whereas WW ™ (A) is represented by the weighted triple
(A, T s X|£a),
and WW* (&) is represented by the weighted triple
(] ks Toapes ).

It follows by Theorem 2 that the *-congruence & NWW*(A) N WW (i) is represented by
the intersection of these three triples which, since A < ;IL,E and p S )\|Em is (A, O, p).

CoroLLARY. For every (A, 9, n) e WT(S) we have
WA, &, u)=3 NWP(A) NPT ().
Given ¢ € Con «F consider now the relation A, defined on aF by

(a,b)e A, o (aa, ba) e ¢
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and therefore A, v, =A, ... Similarly we have u, Np, =p, -, and u, vu, =
Moy, 1T follows by Theorem 10 that if ¢, ¢, € Con aEa are special then so also are
¢ M@, and ¢ v . Hence the set of special congruences on aEw forms a lattice which
we shall denote by SpCon aEa.

Note now that if A € SpCon aE then Al,., € SpCon aEa. In fact,

(a.b) e A= (aa,ba) e A
> (VxeS) (x*gox,x*bax)e A
> (Vx €8) (x*axa,x*bxa) € Al
and
(a.bye A (VxreS) (x**ax*,x**bx*) € Alwra = t]uta
=2 (Vx e 8) (xax* xbx¥®) = (xx*x**ax* xx*x*™hx*) e u

2>(Vx e §) (axax*, axbx*) e pore = Aluka-

This observation. together with Theorems 9 and 10, gives immediately the following
result.

Theorem 11. The mapping A,p:SpCon a £ — SpCon aEa given by A ()= 0|...
is surjective and residuated, with residual A, g given by A g(¢) = A

Note also that if &% € Con § then ﬂ\ﬂﬁn is special. In fact, by Theorem 5, 9|, is
special and therefore, by the above observation, so is {J‘|[,££,. We can therefore use
Theorems 6 and 11, and their duals to obtain the following result.

Tueorem 12, The mapping I':Con* § — SpCon aFa given by () =1 is

surfecrive and residuated ., with residual T given by
() = WAy Ty 5 B

Proof. Consider the diagram

aFa

Con*S —=t» SpCon aF

‘pmJ JJ‘,[

SpCon Ea¢ ——— SpCon aFa

Afn

which is commutative since, by definition, A,;®,, =T =A;,®z.. That I is surjective
follows from Theorems 6 and 11. By [2, Theorem 2.8] we have on the one hand, for every
¢ € SpCon afa,

[ (¢) = Poglap(@) = PirlA,) = WW' (A,) = W(F ar A Agla), (1)
and, on the other,
]—H (5’3) = "I’f;‘uAEu(SD) = (I)!t.u()u'«,c) = lply*('u__‘;) — qJ(.“—-;InL’» —f‘t_.;:‘}l(n ‘ﬁ;;fu )' (2)

Since A e = A, and Tylea = g, it follows from (1), (2) that Az, =TI, and &ylee = A,

so that T7(¢) = W(A,, 7, .., 4,) as asserted.
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If #,9" € ConS§ then it is clear that (9N 8)|.pe= F|ar N '|ap If now (a,b) e
(9 v 3')| .z then there exist z,,. .., z, such that

Aa=7,=5H=...=7,=b
where each = signifies either & or &' It follows that
a=aa=an=ai=...=qaz,=ab=>b

and therefore (a,b) € 9oV ®'|,r. Hence we have that (v &)|ar S FHapv 9'las
whence we have equality since the reverse inclusion is trivial. It now follows from the
Corollary to Theorem 13 that ConY § is a sublattice of Con* §.

Observe that if W(A, ¢, u)e Con*S and ¢ = Ai,,ga = i|.ee then it follows from
Theorem 14 that W(A,, &, u.) € Con{ § and the mapping W(A, &, u)—W(A,, &, 1) is a
closure on Con* §.

Although a description of the lattice Con* S appears to be very difficult, we can
describe the sublattice Conf{ §. For this purpose, we denote by Con H,, |*|SpCon aEa the
set

{(3, ¢) e Con H, xSpCon aEa; d =, , }.
Tneorem 15. Conf § = Con H,, |%|SpCon eEa.

Proof. For every ¢ € SpCon eEa we have, by Theorem 12 and the fact that A, .
are unitary,

o el =R . Wit e CODTS
It follows by Theorem 8 that for (3, ¢) € Con H, |X| SpCon aEa we have
W(A,, 3, u,) e Cont S.

We can therefore define a mapping {:Con H, |X|SpCon eEa— Conf S by the
prescription

g({)s ‘P) = ly(,\m i, #ac)‘

Suppose now that W(A, &, u) € Con} S. If ¢ = Al za = it]ars then since A and u are
unitary we have A = A, and p = p,; for example, by Theorem 13,

(a,b) e A, & (aa,ba)e ¢=Al & (a,b) e A

Since d¢cm,,=nx, , we therefore have (3,¢)e ConH,|x|SpConaEa.
Consequently we can define a mapping 7:ConfS— Con H, |X|SpCon eFa by the
prescription

(A, &, 1) = (9, ¢).
Now each of ¢, i is isotone; and we have
n8(3, @) = WA, &, 1) = (¥, o)
PR, 3, ) =000, @)= O, m,) = (A, B p).

Thus 1. { are mutually inverse isomorphisms.



