
Instant Global Illumination on the GPU using
OptiX

Ricardo Marques and Lúıs Paulo Santos

Universidade do Minho, Braga, Portugal,
ricjmarques@gmail.com, psantos@di.uminho.pt

Abstract. OptiX, a programmable ray tracing engine, has been recently
made available by NVidia, relieving rendering researchers from the id-
iosyncrasies of efficient ray tracing programming and allowing them to
concentrate on higher level algorithms, such as interactive global illu-
mination. This paper evaluates the performance of the Instant Global
Illumination algorithm on OptiX as well as the impact of three differ-
ent optimization techniques: imperfect visibility, downsampling and in-
terleaved sampling. Results show that interactive frame rates are indeed
achievable, although the combination of all optimization techniques leads
to the appearance of artifacts that compromise image quality. Sugges-
tions are presented on possible ways to overcome these limitations.

Keywords: instant global illumination, ray tracing, graphics processors

1 Introduction

Interactive ray tracing became possible along the last decade on both CPU
and GPU based platforms. However, this has been achieved through extensive
optimization of code and data structures, thus developing such a ray tracer
is a complex and time consuming task. In September 2009 Nvidia launched
a programmable ray tracing engine for their GPUs, OptiX [1], which allows
researchers to concentrate on higher level algorithms while still being able to
trace rays efficiently.

The goal of this paper is to assess the performance of an interactive global
illumination (GI) algorithm on OptiX. This algorithm, referred to as Instant
Global Illumination [2], computes indirect diffuse interreflections by generating
a particle based approximation of this illumination component, resulting in a
three-dimensional distribution of secondary virtual point light (VPL) sources.
The algorithm in its original form is barely interactive due to the high number
of VPLs. Optimizations have been proposed under the form of imperfect visibility
[3], downsampling the indirect diffuse evaluation rate [4] and interleaving VPL
sampling patterns [5]. This paper assesses the performance achieved with these
three optimizations on a last generation NV 480 GTX GPU using OptiX and
proposes a few hypothesis for further performance gains.

The next section presents related work and details on the optimization tech-
niques. Section 3 briefly introduces OptiX, while the used algorithm is detailed

2

in section 4. Results are analyzed in section 5. The paper concludes with some
suggestions for future work.

2 Related Work

2.1 Interactive Ray Tracing and Global Illumination

Interactive Whitted-style [6] ray tracing (iRT) became possible along the first
decade of the XXIst century, for both static and dynamic scenes, through clever
exploitation of advances in available computing power and careful optimization
of both code and used data structures [7, 8]. The performance of such ray tracers
arises mainly from fine tuning data structures such that the memory hierarchy
performs to its maximum and by exploiting ray coherence: rays are grouped into
packets or frusta and SIMD instructions are used to trace them through the
scene. Ray coherence exploitation has been shown to be effective for primary
and shadow rays. Whether it can be used to speedup tracing of secondary rays
is still unclear, since these often do not share the same origin and exhibit less
directional coherence [9].

Ray tracing is an embarrassingly parallel algorithm which naturally leads
to the exploitation of parallel systems. Most the above cited approaches exploit
parallelism at several levels: SIMD, multicore and clusters of distributed memory
machines. With the computation power and core count of GPUs increasing at
a higher rate than those of CPUs, ray tracing solutions that harness the GPUs
processing capabilities begun to emerge [10, 11]. However, even with the appear-
ance of flexible, C-like, GPU programming languages such as CUDA [12], effi-
cient programming of these devices is still not straightforward due to their SIMT
(Single Instruction Multiple Threads) computing model. NVIDIA has recently
made available a GPU ray tracing engine, OptiX [1], which relieves researchers
from the idiosyncrasies of efficient ray tracing programming and allows them to
concentrate on higher level algorithms, such as global illumination.

While Whitted style ray tracing requires tracing a reasonable number of
mostly coherent rays (specular rays may exhibit less coherence, specially over
curved surfaces), GI entails simulating a huge number of incoherent light paths,
thus making it hard to maintain interactive frame rates. GI light transport phe-
nomena include diffuse interreflections, caustics and participating media. Indi-
rect diffuse interreflections, the focus of this paper, are typically simulated using
Monte Carlo path tracing [13], photon mapping [14], irradiance caching [15] or
instant radiosity [16]. The later is frequently used for interactive rendering [2,
17]: it generates a particle approximation of the indirect diffuse radiant scene
by performing quasi-random walks on a quasi-Monte Carlo integration frame-
work. Photons are traced from the light sources into the scene and Virtual Point
Light sources (VPLs) are placed at the intersections of the quasi-random photon
paths with diffuse geometry. The image is then rendered by sampling the VPLs
as point light sources. This algorithm exhibits ray coherence similar to direct
lighting and is thus expected to perform similarly on vectorial processors such
as the GPUs.

3

2.2 Accelerating Indirect Diffuse

The quality of the indirect diffuse estimate is dependent on the number of VPLs
and the quality of their distribution throughout the scene. Unfortunately, ren-
dering time is linearly proportional to the number of VPLs, which requires clever
strategies to speedup indirect diffuse calculations.These strategies are based on
two key observations: indirect diffuse lighting is mostly a low frequency signal
that varies smoothly over the scene and accurate visibility is not required for
indirect illumination.

Accurate visibility is traditionally used in light transport at the cost of tracing
rays against the detailed scene description. However, indirect diffuse illumina-
tion varies smoothly across the scene, thus accurate visibility is perceptually
unnecessary in this case, since visibility errors are masked by the low frequency
nature of the signal [18]. This insight has been either performing accurate visi-
bility queries only on the neighborhood of the shading point [19] or by testing
visibility against a crude representation of the scene [3].

Instant radiosity, on its original form, requires evaluating VPLs visibility at
each shading point. The number of shading points is thus linearly correlated
with the number of pixels. By taking advantage of the low frequency nature of
indirect diffuse reflections, the estimate can be computed at a lower image res-
olution and then upsampled to the target resolution [4]. Despite being mostly
smooth, high frequencies are still present on the indirect diffuse signal, mostly
due to geometric discontinuities. Upsampling must thus be done using some dis-
continuity preserving filter, such as the joint bilateral filter, which uses geometric
information obtained at full resolution when computing direct illumination.

Sampling the whole set of VPLs for each pixel is expensive and might compro-
mise performance. Interleaved sampling [5] has thus been proposed to accelerate
instant radiosity resulting on the so-called Instant Global Illumination algorithm
[2]. The set of VPLs is divided onto m ∗ n subsets and for each pixel within a
m ∗ n tile of pixels only one of the subsets is sampled, spawning a much lower
number of VPL shadow rays. Results are then integrated over each tile by using
the discontinuity buffer.

3 OptiX

NVIDIA’s OptiX engine is a programmable ray tracing pipeline for NVIDIA
GPUs using the CUDA-C programming language [1, 20]. OptiX abstracts the
execution to single rays, simplifying the application programmer’s role, while
internally exploits the GPU architectural characteristics through deferred shad-
ing and built-in scheduling and load balancing. OptiX is tightly coupled with
graphics APIs to allow combinations of raster and ray tracing approaches. The
ray tracing pipeline is programmable through programmer supplied programs
(CUDA kernels) that handle the various ray tracing events, such as intersections
for procedurally accurate surface types, cameras for new composition potential,
shading and scene graph traversal. OptiX includes support for parallelism across

4

multiple GPUs and building and traversal of acceleration structures (BVH and
KD trees).

OptiX runs on most CUDA enabled GPUs although it is only fully functional
and supported on the latest architectures (GT200 and GF100). Currently, that
are two main drawbacks associated with OptiX: acceleration structure traversal
is not programmable, which precludes their utilization on tasks other than ray
traversal, and the CUDA context upon which OptiX runs is not visible to the
programmer, prohibiting explicit access to shared and constant memory, which
prevents the utilization of most common CUDA optimization techniques.

The availability of a programmable, high performance, ray tracing engine
relieves application developers from the idiosyncrasies of efficient ray tracing
programming, allowing them to concentrate on higher level algorithms such as
global illumination. However, applications using OptiX must still be carefully
designed and optimised if high performance is to be achieved.

4 The Algorithm

The algorithm proposed on this paper simulates direct illumination, specular
reflections and indirect diffuse interreflections using the Instant Global Illumi-
nation approach [2]. Figure 1 illustrates the fundamental stages of the proposed
pipeline; the upper arrow depicts the temporal order of the different stages, while
the arrows connecting the boxes illustrate data dependencies.

Fig. 1. Rendering pipeline for the canonical version of the algorithm

Particles are shot from the light sources following a quasi-random Halton
sequence. VPLs are then created at each intersection of the particles path with
geometric primitives whose material has a diffuse component. The number of
bounces along each path is a user supplied parameter. The OptiX context launched
to shoot the VPLs consists on as many threads as the number of paths, each
thread processing a whole path. The quasi-random numbers used to build the
particle paths are generated on the CPU and passed to the GPU as OptiX
buffers.

Direct plus specular illumination entails shooting one primary ray per pixel,
spawning a Whitted-style tree of rays. Only point light sources are supported.
Indirect diffuse is only separated from direct plus specular at the primary ray hit
point. Hit points further down the rays’ tree, resulting from tracing specular rays,

5

have their indirect diffuse component calculated within the direct plus specular
stage of the pipeline. This approach was selected to exploit OptiX recursion
capabilities. Explicit separation of components could be implemented by storing
the hitpoints on a buffer, but this would increase access to global memory thus
increasing rendering time (shared memory can not be explicitly accessed from
within the OptiX context).

Indirect diffuse radiance, Lindirect(x), is evaluated by shooting, at each shad-
ing point x, one ray towards each VPL to assess its visibility:

Lindirect(x) =

N∑
k=1

ρ(x)Le,kV (x, yk)G(x, yk) (1)

where N is the number of VPLs, V (., .) is the visibility function between two
points, Le,k is the emitted radiance for the k-th VPL, yk is the position of the
k-th VPL, ρ is the diffuse reflectance coefficient and G is the bounded geometry
term, defined as

G(x, yk) =
cosθxcosθyk
‖x− yk‖2

f(0.8mind, 1.2mind, ‖x− yk‖)

where θx and θyk are the angles between the normal at x, respectively yk, and
the direction x → yk, mind is the bounding distance (to avoid singularities in
G) and f is the smoothing function:

f(n) =

1 if x > b

3
(
x−a
b−a

)2
− 2

(
x−a
b−a

)3
if a ≤ x ≤ b

0 otherwise

Equation 1 is quite expensive to compute since visibility has to be evaluated
for all the VPLs and shading points. This motivates the acceleration strategies
proposed on the next subsections.

4.1 Imperfect Visibility

It has been shown that due to the low frequency nature of the indirect diffuse
illumination accurate visibility is not perceptually important [18]. Within our
instant radiosity inspired approach this means that assessing the term V (., .) on
equation 1 can be relaxed in an attempt to reduce rendering times. To validate
this hypothesis VPL shadow rays are tested against the triangles bounding boxes
rather than testing them for intersection against the triangles themselves.

The application supplied intersection program (or kernel) used by OptiX is
associated with the geometric primitive type and does not depend on the ray
type. In practice, this means that it is not possible to have OptiX call a given
intersection program for all ray types and then another program, that would test
the ray against the triangle bounding box rather than the triangle itself, for VPL
shadow ray types. In order to use a different intersection algorithm there are two

6

alternatives: either a conditional statement is included on the general intersection
program or the scene graph is duplicated within the OptiX context and the
new intersection program is associated with the second scene graph. The former
has the disadvantage of implying evaluating the conditional statement for all
intersection tests and, worst, can lead to execution divergence due to the GPU’s
SIMT computation paradigm. The latter has the disadvantage of consuming
more memory (although only the bounding box coordinates are stored, not the
respective triangle vertices) and requires building a second acceleration structure
- on dynamic scenes this might compromise interactivity. Since dynamic scenes
are currently not supported, the second approach was selected and a second
scene graph is built with the triangles’ bounding boxes rather than the triangles
themselves.

4.2 Downsampling

Typically, indirect diffuse illumination is computed for all shading points. Image
resolution, however, continues to grow every year with advances in available com-
puting power, storage space and display capabilities. Since rendering complexity
is linear in time with the number of pixels, computing indirect illumination at
such high resolution prevents interactivity. The fact that the indirect diffuse
component is mostly a low frequency signal can be exploited by rendering it at
a lower resolution and then upsampling to the target final resolution [4].

Fig. 2. Rendering pipeline for indirect upsampling - the direct stage contributes with
full resolution normal and ρ maps for filtering and composition

The indirect diffuse signal, however, still has high frequencies, mostly due
to geometric discontinuities. Upsampling can not be performed by convolving
the signal with some low-pass kernel, since sharp edges would be unacceptably
blurred. Since a high resolution pass is still required to compute direct plus
specular illumination, this can be used to gather geometric information about
each pixel in the target image (see figure 2). This information, the normal at
the intersection point, can be used during upsampling to properly weight the
contribution of each neighbor to the final value. The reasoning is that pixels
in the neighborhood which have similar orientations to the center pixel will
contribute more to its final result. We use the joint bilater filter to perform this

7

task: a spatial filter is applied to the low resolution image I and a range filter
is applied to the full resolution image Ĩ. Let p̃ and q̃ denote the coordinates of
two pixels in Ĩ, and p and q denote the corresponding coordinates in the low
resolution solution I. The upsampled solution S̃ is

S̃p̃ =
1

kp̃

∑
q∈Ω

Iqf(|p− q|)(N p̃ ·N q̃) (2)

where f is the spatial Gaussian kernel centered over p, Ω is the spatial support of
f and kp̃ is a normalizing constant. The range filter is the cosine of the normals
at p̃ and q̃.

The indirect diffuse stage computes incident indirect radiance, rather than
reflected, such that the upsampling filter does not blur details due to local ma-
terial properties (e.g., mapped textures). Multiplication by the diffuse reflection
coefficient, ρ, is done just before composition.

The indirect diffuse stage computes indirect illumination only for the shading
points determined by the primary rays. Thus, upsampling is only applied to
these points. Shading points further down the tree of rays have their indirect
illumination calculated by the direct stage, which operates at full resolution.

4.3 Interleaved Sampling

In order to further reduce the number of VPLs visibility queries interleaved
sampling is applied [2, 5]. The VPLs are divided into 9 subsets and within each
pixel of a 3 ∗ 3 tile a different subset is used to compute indirect illumination.
The contributions of the different VPL subsets are then integrated using the
discontinuity buffer. The difference of depths and the dot product of the normals
of a pixel are compared to those of each of its 8 neighbors. If both these values
are below some given thresholds, then geometry is considered locally continuous
and incident irradiance from that neighbor is added to the center pixel. The final
indirect incident value is evaluated by dividing by the number of neighbors that
contributed (including the center pixel itself).

Fig. 3. Rendering pipeline for upsampling and interleaving - the direct stage con-
tributes with full resolution normal, depth and ρ maps for filtering and composition

8

5 Results

5.1 Experimental Setup

All experiments and measurements were performed using OptiX 2 Beta 5 and
Visual Studio 2008 on a dual core Intel Xeon 3.20 Ghz machine with 2 GB of
memory and the new Nvidia 480 GTX GPU with 4 GB of RAM. Two scenes
were used: the Conference room (190K triangles, 4 point light sources) and Office
(21K triangles, 2 point light sources). Images were rendered at a resolution of
800x600 pixels, no anti-aliasing, using OptiX built-in BVH as the acceleration
structure. Time measurements were performed with 30, 90 and 180 VPLs. Where
appropriate the downsampling window was 4x4 and interleaving was 3x3.

5.2 Results Analysis

(a) Conference (b) Office

Fig. 4. fps and time percentage spent on each illumination component

Figure 4 shows that evaluation of the indirect diffuse component dominates
rendering time and that this aggravates with the number of VPLs. This is not
obvious for the conference scene (figure 4(a)) because it contains many specular
objects, whose indirect illumination is evaluated within the direct plus specular
stage, rather than the indirect stage; for the office scene the dependance on the
number of VPLs is quite obvious. Thus, according to Amdahl’s law the indirect
diffuse component is the one that is worth optimizing.

Figure 5 shows the frame rate and relative execution time for each of the
rendering and filtering kernels (see also figures 6 and 7).

Imperfect visibility achieves a speedup between 1.5 and 2.0 without any per-
ceptually significant impact on the rendered image. This technique accelerates all
indirect diffuse calculations, including those triggered by secondary rays - it has
thus a most significant impact on the conference scene. The current implemen-
tation requires building two acceleration data structures, which can adversely

9

(a) Conference (b) Office

Fig. 5. fps and time percentage spent on each illumination component for the 4 different
approaches and 180 VPLs

affect performance on dynamic contexts; an alternative implementation must be
considered for such applications, such as including a conditional statement on
the intersection program. Note that the VPLs shooting time is residual com-
pared to the total rendering time, thus, other than the requirement of building
a second data structure, all approaches are suitable for interactive rendering of
dynamic scenes, by reshooting the VPLs at all frames.

Downsampling 16 times provides a speedup of approximately 5 times without
significantly impacting on the quality of the rendered images. Artifacts due to
incorrect geometric continuity assumptions are however visible along edges. See
for example the junction of the two halves of the table top in figure 6(c). The
indirect diffuse rendering time is so drastically reduced that it is no longer the
bottleneck: direct plus specular rendering now takes more than 50% of the total
rendering time and is the real candidate for optimization. A caveat is required
regarding the last sentence: indirect diffuse calculations triggered by secondary
rays are included in the direct plus specular stage and are not optimized by
either downsampling or interleaving. In scenes with reflective materials, such as
the conference room, this contributes to increase this stage relative weight on
the total rendering time.

Interleaving VPLs sampling over a 3x3 window further accelerates indirect
diffuse evaluation. Its impact is most noticeable with the office scene, once again
due to specular materials present in the conference room. However, artifacts
are now perceivable, most noticeably when the indirect component has a strong
contribution, such as on the Conference ceiling and under the desk in the Office
scene (figures 6(d) and 7(d)). These artifacts are due to the repetition of the reg-
ular interleaved sampling pattern over the image plane and are further enhanced
by the upsampling step. Minimization of such artifacts might be possible by re-
ducing the interleaving window size (e.g., 2x2), using an irregular interleaving
pattern [21] or by combining the discontinuity and bilateral filters into a single
filtering step. The gains obtained with interleaving are not enough to compen-
sate for the added artifacts; furthermore, the direct plus specular component
together with secondary indirect diffuse calculations now dominate rendering

10

times, thus optimizing these, even though a solution is not obvious, is probably
more important than applying interleaved sampling.

(a) Fundamental algorithm (0.26 fps) (b) Imperfect Visibility (0.56 fps)

(c) 4 x 4 downsampling (2.25 fps) (d) 3 x 3 interleaved (2.79 fps)

Fig. 6. Images for the conference scene - 180 VPLs

6 Conclusions

This paper discusses an implementation of Instant Global Illumination over Op-
tiX and then evaluates three acceleration techniques: imperfect visibility, down-
sampling and interleaved sampling. Results show that these techniques combined
allow for interactive rendering of relatively complex scenes (e.g., conference room,
190 K triangles, 180 VPLs), achieving up to 2.8 fps.

Imperfect visibility is straightforward to put in practice, although our cur-
rent implementation requires two different acceleration structures, which might
hinder interactivity within dynamic scenes contexts. Downsampling results in
the most impressive performance gains; artifacts are, however, slightly perceived
throughout the image. Reducing the downsampling rate, e.g. 3x3, will reduce

11

(a) Fundamental algorithm (0.64 fps) (b) Imperfect Visibility (0.96 fps)

(c) 4 x 4 downsampling (5.36 fps) (d) 3 x 3 interleaved (7.63 fps)

Fig. 7. Images for the office scene - 180 VPLs

such artifacts at some performance cost. Interleaved sampling further contributes
to reduce rendering times, but in combination with the upsampling bilateral fil-
ter artifacts become too obvious due to the regular interleaved sampling pattern.
These two last techniques only operate on indirect diffuse calculations triggered
by primary rays; those associated with specular secondary rays are neither down-
sampled nor interleaved since there is not a sampling grid that can be used for
filtering. Improving such secondary irradiance calculations would significantly
enhance performance in scenes with reflective materials and will be addressed
as future work. We propose to adopt the instant caching approach [22], which
interpolates over scene space thus accelerating all indirect diffuse calculations.

Future work will include removing the dependency on a secondary acceler-
ation structure (thus improving the case for dynamic scenes), using irregular
interleaved patterns and combining the discontinuity buffer and the bilateral fil-
ter in a single pass. Also combining rasterization with ray tracing might result
in significant performance gains: the VPLs visibility can probably be evaluated
using parabolic shadow maps, which would drastically reduce the number of
spawned shadow rays. Since OptiX and OpenGL interoperability is assured by
NVidia this should be straightforward to implement and evaluate. Finally, Op-

12

tiX does not allow explicit access to CUDA shared memory, which results on
implementation penalties, particularly on operations such as filtering. However,
data can be passed between CUDA contexts and OptiX contexts through GL
buffers; we intend to use this feature to optimize the discontinuity and bilateral
filters, which might allow for the utilization of more sophisticated discontinuity
detection techniques.

Acknowledgements This work was partially funded by PT-FCT grant PTDC/
EIA/ 65965/ 2006 (IGIDE project: Interactive Global Illumination within Dy-
namic Environments)

References

1. Steven Parker. Efficient ray tracing on nvidia gpus. SIGGRAPH ASIA 2009
Presentation, December 2009.

2. Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp
Slusallek. Interactive global illumination using fast ray tracing. In EGRW ’02:
Proceedings of the 13th Eurographics workshop on Rendering, pages 15–24, Aire-
la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

3. T. Ritschel, T. Grosch, M. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imper-
fect shadow maps for efficient computation of indirect illumination. ACM Trans-
actions on Graphics (Proceedings SIGGRAPH Asia 2008), 27(5):128:1–128:8, De-
cember 2008.

4. Johannes Kopf, Michael Cohen, Dani Lischinski, and Matt Uyttendaele. Joint
bilateral upsampling. ACM Transactions on Graphics, 26(3), 2007.

5. Alexander Keller and Wolfgang Heidrich. Interleaved sampling. In Proceedings of
the 12th Eurographics Workshop on Rendering Techniques, pages 269–276, London,
UK, 2001. Springer-Verlag.

6. Turner Whitted. An improved illumination model for shaded display. Communi-
cantions of the ACM, 23(6):343–349, 1980.

7. Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive
rendering with coherent raytracing. In Computer Graphics Forum/Proceedings of
EUROGRAPHICS, volume 20, pages 153–164, 2001.

8. Ingo Wald, William R. Mark, Johannes Günther, Solomon Boulos, Thiago Ize,
Warren Hunt, Steven G. Parker, and Peter Shirley. State of the art in ray tracing
animated scenes. In Dieter Schmalstieg and Jǐŕı Bittner, editors, STAR Proceedings
of Eurographics 2007, pages 89–116. The Eurographics Association, September
2007.

9. S. Boulos, D. Edwards, J. Lacewell, J. Kniss, J. Kautz, I. Wald, and P. Shirley.
Packet-based whitted and distribution ray tracing. In Graphics Interface, pages
177–184, 2007.

10. Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on gpus.
In HPG ’09: Proceedings of the Conference on High Performance Graphics 2009,
pages 145–149, New York, NY, USA, 2009. ACM.

11. Min Shih, Yung-Feng Chiu, Ying-Chieh Chen, and Chun-Fa Chang. Algorithms and
Architectures for Parallel Processing, volume 5574 of Lecture Notes in Computer
Science, chapter Real Time Ray Tracing with CUDA, pages 327–337. Springer
Berlin / Heidelberg, 2009.

13

12. David Kirk and Wen mei Hwu. Programming Massively Parallel Processors: a
Hands-on Approach. Korgan Kaufmann, 2010.

13. James T. Kajiya. The rendering equation. In SIGGRAPH ’86: Proceedings of the
13th annual conference on Computer graphics and interactive techniques, pages
143–150, New York, NY, USA, 1986. ACM.

14. Henrik Wann Jensen. Global illumination using photon maps. In X. Pueyo and
P. Schröder, editors, Rendering Techniques, pages 21–30. Springer-Verlag, 1996.

15. G. Ward, F. Rubinstein, and R. Clear. A ray tracing solution for diffuse inter-
reflection. Computer Graphics, 22(3), 1988.

16. Alexander Keller. Instant radiosity. In SIGGRAPH ’97: Proceedings of the 24th
annual conference on Computer graphics and interactive techniques, pages 49–56,
New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

17. Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao. An efficient gpu-
based approach for interactive global illumination. ACM Trans. Graph., 28(3):1–8,
2009.

18. I. Yu, A. Cox, M. Kim, T. Ritschel, T. Grosch, C. Dachsbacher, and J. Kautz.
Perceptual influence of approximate visibility in indirect illumination. In ACM
Transactions on Applied Perception (Presented at APGV 2009), volume 6, pages
24:1–24:14, 2009.

19. Okan Arikan, David Forsyth, and James O’Brien. Fast and detailed approximate
global illumination with irradiance decomposition. ACM Transactions on Graphics
(ACM SIGGRAPH 2005), pages 1108–1114, 2005.

20. Holger Ludvigsen and Anne Cathrine Elster. Real-time ray tracing using nvidia
optix. In Eurographics 2010 short papers, 2010.

21. Solomon Boulos, Dave Edwards, Dylan Lacewell, Joe Kniss, Jan Kautz, Peter
Shirley, and Ingo Wald. Interactive distribution ray tracing. Technical Report
UUSCI-2006-022, SVCI Institute, University of Utah, 2006.

22. K. Debattista, P. Dubla, F. Banterle, L.P. Santos, and A. Chalmers. Instant caching
for interactive global illumination. Computer Graphics Forum, 28(8):2216–2228,
2009.

