
A Collaborative Approach for Spam Detection

Pedro Sousa, Artur Machado, Miguel Rocha
Dept. of Informatics

University of Minho
Braga, Portugal

pns@di.uminho.pt, ajpcm1@gmail.com, mrocha@di.uminho.pt

Paulo Cortez
Dept. of Information Systems

University of Minho
Guimares, Portugal

pcortez@dsi.uminho.pt

Miguel Rio
Dept. of Electronic &

Electrical Engineering, UCL
London, UK

m.rio@ee.ucl.ac.uk

Abstract—Electronic mail is nowadays one of the most

important Internet networking services. However, there are

still many challenges that should be faced in order to provide a

better e-mail service quality, such as the growing dissemination

of unsolicited e-mail (spam) over the Internet. This work

aims to foster new research efforts giving ground to the

development of novel collaborative approaches to deal with

spam proliferation. Using the proposed system, which is able

to complement other anti-spam solutions, end-users are allowed

to share and combine spam filters in a flexible way, increasing

the accuracy and resilience levels of anti-spam techniques.

Keywords-Electronic mail; Spam; Filtering; Collaboration

I. INTRODUCTION

Electronic mail (e-mail) is a commonly used service for
user communications in the Internet. With the advent and the
growing popularity of e-mail, unsolicited e-mail (spam) also
emerged very quickly and currently accounts for approxi-
mately 90% of all e-mail messages [1], i.e., over 120 billion
of these messages are sent each day [4]. The cost of sending
these e-mails is very close to zero being easy to reach
a high number of potential consumers [3], since criminal
organizations have access to millions of infected computers
(known as botnets) [2], which might be used for spam
proliferation. In this context, spam consumes resources, time
spent reading unwanted messages, bandwidth, CPU, disk,
being also used to spread malicious content.

Currently, there are two major approaches to fight spam
[5][10]: Collaborative Filtering (CF) and Content-Based
Filtering (CBF). The CF approach is based on sharing
information about spam messages, while CBF uses a Data
Mining (DM) classifier (e.g., Naive Bayes) that learns to
discriminate spam from specific message characteristics
(e.g., common spam words). As an example, the CF based
approach might use information about spam messages that
can be based on blacklists [2] containing IP addresses of
known spam senders or fingerprints extracted from spam
messages [6]. Current research on spam CBF relies mainly
on improving individual classifier performance, by a better
preprocessing [5] or enhancement of the learning algorithm
[7]. The two approaches, CF and CBF, can also be combined
to achieve more reliable methods. For example, a blacklist
is often used at a server level to tag a large number of

spam, while the remaining spam can be detected later by
using a personalized CBF at the client level. Both CBF
and CF techniques have drawbacks. CF often suffers from
sparsity of data (e.g., users may classify few messages) and
the first-rater problem (e.g., an e-mail cannot be classified
unless a user has rated it before). Moreover, people have
personal views of what is spam and CF often discards this
issue [8]. On the other hand, in CBF, poor performances
may be achieved by new users, since CBF requires several
representative training examples. CBF is also vulnerable
to dictionary or focused attacks, where the adversary can
exploit DM models by contaminating the training set (e.g.,
by sending spam with a large amount of normal words) [9].

In this work, we propose and test a novel distributed
collaborative approach able to be used both in a stand-
alone perspective or complementing other anti-spam solu-
tions. The collaborative perspective of the proposed system
has novel characteristics when compared with traditional
CF approaches. Here, the collaborative perspective relies
on sharing the filtering models of the users, i.e., rather
than exchanging information about some spam messages
(e.g., fingerprints), these collaborating entities will share
information about what each local filter has learned. The
aim is to foster mutual relationships, where each user is
interested in improving filtering at a personal level and the
Internet is used to gather collaborators for that purpose.

The remainder of the paper is organized as follows:
Section II discusses some guidelines for the deployment of
a collaborative spam detection system; Section III describes
the developed prototype; Section IV shows the experiments
and the results and, finally, Section V draws the conclusions.

II. DEPLOYMENT GUIDELINES

The concept of using several collaborative spam detection
filters presents some advantages over the use of a single
instance. As simple examples, if the individual local filter
was trained with a reduced set of training cases, or was
influenced by erroneous user classification, it is expected
that a poor classification could be reached for some e-mail
messages. Additionally, as spam techniques are constantly
changing, it is possible that individual filters might be not
sufficiently trained to deal with such volatile scenarios,

resulting in erroneous classification. So, the solution of using
an appropriate set of collaborative filters is advantageous to
deal with unsolicited email, being expectable that it improves
the robustness and resilience levels of anti-spam tools. While
sharing models is less sensitive than exchanging e-mail
messages, there are still privacy issues to be considered. For
instance, if user A has access to the filter of user B, then
A may feed a given token into the model and thus know
with some probability that such token was classified by B
as spam or ham. Furthermore, the collaborative system might
be implemented using distinct communication paradigms: a
centralized server or a Peer-to-Peer (P2P) like application.

Under the first option, users may register into a centralized
and secure service. This could be implemented by large
companies or e-mail providers (e.g., Gmail), where all e-
mails are stored at a given server. When a new e-mail is
received, the system would activate the appropriate filters
from the company or email users and then compute the
final spam probability for the message. A method able to
select appropriate filters for a given email user (also avoiding
the use of possible malicious filters) will be presented and
discussed later. For scalability, user profiles could be defined
(e.g., country, profession) and clustering algorithms could be
used to group users with similar interests. Another variant
would be the definition of social networks, where users
could choose their “friends”. In such case, the collaborative
exchange would only occur using filters from the social net-
work. These systems could, for example, be implemented by
social networking websites (e.g., Facebook). Alternatively,
when the messages are stored locally at the client side,
the server would be responsible for a blind exchange of
the filters. At a given time, users may donate filters to the
server, which will store them without any owner labels,
to preserve privacy. Users may also automatically fetch
anonymous filters from the server, scheduled by the e-mail
client application, when the current user performance decays
or when notified by the server that new filters are available.
This can also be accomplished asynchronously by an explicit
request of the user. To exchange the filters, a standard format
should be adopted, such as the Predictive Model Markup
Language (PMML) [11], which is compatible with a large
number of DM tools. It should be noted that exchanging
filters requires less communication costs and a filter built
from a millions of e-mails can be described by a few
hundreds or thousands of bytes [12].

As an alternative to centralized solutions, the use of P2P-
like distribution schemes can be adopted, where all peers
donate, store and fetch filters among each other. This could
be implemented as a trusted and secure plug-in of an e-mail
client, such as Thunderbird. The filter sharing process among
the peers could work similarly to the explained in the secure
server scheme (i.e., secure transfers and PMML). A selection
of P2P nodes based on “friends” can also be applied, by
selecting to which peers the software can connect, allowing

the social network to take form in the P2P overlay.
In all of the above solutions, it is possible to define

collaborative groups based on user profiles. In such cases,
and even taking into account the use of solutions for
anonymous filter exchange and storage, the degree of privacy
is also dependent on the knowledge that each user has
about who belongs to the collaborative group. Obviously,
the degree of privacy is increased if each individual is
not aware of the group composition. However, for some
specific scenarios, it may also be attractive that the group
composition can be assessed by all the participants in a
given group. In this context, it is important to note that
even in such scenarios it might be very difficult to “guess”
who created each particular model, as in the envisaged
scenarios it is expected that there will be typically a large
number of users that dynamically may join or leave the
group. Furthermore, additional security related issues can
be discussed. The centralized model is vulnerable to DoS
attacks, while P2P systems may be affected by sybil attacks.
To prevent DoS, the server could employ a resilient statefull
packet filter firewall [13]. Under the sybil assault, spammers
could create multiple fake identities in order to populate the
system with contaminated filters. Yet, as it will be shown
in Section III, it is possible to weight the relevance of each
shared filter and, by this way, ignore malicious filters.

III. PROTOTYPE OF A CENTRALIZED ARCHITECTURE

A centralized prototype was implemented using a Thun-
derbird plug-in also allowing that users register and choose
friends (http://fiambre.dsi.uminho.pt/sf). The system is de-
scribed in three modules: i) classification/filtering of mes-
sages; ii) distribution of local filters and iii) user interface.

A. Classification and Filtering of Messages
In this module, for filtering purposes, only textual content

of e-mail messages will be addressed. While different algo-
rithms can be adopted for spam filtering, such as Support
Vector Machines (SVM) [3], we will use the simpler Naive
Bayes (NB), which is widely adopted by anti-spam filtering
tools [5]. However, this module should be able to simul-
taneously use and combine, in an intelligent way, several
filters that were trained and shared by other collaborative
users, instead of using only a local filter. This was imple-
mented as an extension to the Thunderbird e-mail client.
For that purpose, a previously existent extension entitled
Thunderbayes, implementing the Naive Bayes algorithm,
was further extended to accommodate the devised filtering
module. The Thunderbayes extension allows to compare the
characteristics of a given message with a specific training
file, returning a value with the probability of such message
being spam. The training file is mainly composed by words
(or other features) belonging to messages received and
previously classified by the user. Under the Thunderbayes
implementation, the Naive Bayes algorithm runs in a proxy

Figure 1. a) Classification and Filtering of Messages; b) Training Files Distribution Strategy; c) The user interface for the devised spam detection system.

entity, which acts as an intermediary between the user and
the e-mail server. The default behavior of the Thunderbayes
extension was modified to allow the use of multiple filters, in
addition to the local filter of the user. Figure 1 a) illustrates
the process of classification and filtering of e-mail messages
in the devised architecture. In the proposed solution, the user
is still able to perform a manual classification (step 1 of Fig.
1 a)) of e-mail messages as ham or spam and to correct such
classification, whenever needed. Based on this classification,
a local training file is built. This local filter will be used
in conjunction with other external filters provided by other
users. For that purpose, the user will be able to import (step
2 of Fig. 1 a)) other training files that were previously shared
with the collaborative group (process explained in Section
III-B). In the user client, when receiving a given e-mail (e.g.,
using POP as in step 3 of Fig. 1 a)), the proxy analyzes and
classifies the message, according to the results provided by
the corresponding filter training files (step 4 of Fig. 1 a)).
Here, a spam probability should be calculated taking into
account the Naive Bayes algorithm, which depends, in this
case, on the content of several training files. Thus, a spam
probability should be evaluated for each training file and
all combined to achieve the final probability. In the current
prototype, two alternatives solutions are available:

(i) Arithmetic Mean (M1) - the final spam probability is
the arithmetic mean of all the individual probabilities.

(ii) Pearson Coefficient Correlation (M2) - for each
imported training file, an individual weight (coefficient) is
calculated using the Pearson coefficient correlation.

The objective of the M2 strategy is to determine, for a
given user, which filters are more important to be considered
for the evaluation of the final spam probabilities of the mes-
sages. For that purpose, the performance of each imported
filter will be evaluated using the past messages previously
classified by the user as ham or spam. The classification
results from each imported filter will then be compared
with the user’s classification performed before for all the
received messages. Based on such comparison, a Pearson
coefficient correlation value is obtained for each filter. So,
when receiving a new message the probabilities returned by

each filter will be multiplied by the corresponding coefficient
as given by Eq. 1, with Prf (M) being the final spam
probability of message M , n the number of training files
considered, Pri(M) the probability returned by the filter i
and αi the correlation coefficient of filter i.

Prf (M) =
�

n

i=1 αi ∗ Pri(M)�
n

i=1 αi

(1)

The extension will then compute the final spam proba-
bility and such value is returned to the client for the final
decision of considering the message spam or ham (step 5 of
Figure 1 a)). A threshold D ∈ [0, 1] is usually considered
to assist this decision, i.e., if Prf (M) > D then message is
considered as spam. The method M2 has several advantages
if selected to assist the classification criteria, as it is expected
to be a more accurate method to select which appropriated
filters should be considered for the final spam probability,
and be an effective way to deal with contaminated filters
that malicious users may upload to the group.

B. Distribution of Training Files
The repository of the training files might be organized in

distinct ways (e.g., the definition of clusters of training files
according to user profiles, personal interests, professions or
origin) taking also advantage of the growing organization
of Internet users in social networks. Independently of the
solutions that might be adopted to rule the storage of
training filters, a brief technical description of the cen-
tralized distribution module used in the prototype is now
given. Figure 1 b) illustrates the main components of this
architecture module. Two distinct servers are considered: the
repository manager, implemented using the Java language,
and a common file server adopting file transfer protocols
such as FTP or SFTP. The user starts by authenticating
itself in the repository manager informing the manager about
the required operation, e.g., download or upload of training
files (step 1 of Fig. 1 b)). In this communication step, the
XML language was adopted to formulate the request. After
verifying the user authentication credentials, and in the case
of a download request, the repository manager checks in the

database all the training files available to the user. In the case
of an upload, the repository manager generates an available
file name to identify the file to be uploaded. It is important
to note that, to preserve privacy, the selected name should
not contain any information related with the contributing
user. This interaction between the repository manager and
the database is identified as step 2 in Fig. 1 b). After defining
a list of available files to download or for uploaded, the
manager is now able to construct an XML file to be returned
to the user (step 3 of Fig. 1 b)). This file contains a file list
and the identification of the ftp/sftp server for file transfer
purposes, along with the authentication related data. The
client will then connect the file server, starting an interactive
process of file upload and/or download (steps 4 and 5 of Fig.
1 b)). The new collection of filters are then available to be
combined by the previously mentioned methods (M1, M2).

C. User Interface
Figure 1 c) shows the user interface of the prototyped anti-

spam service, which is based on a common Thunderbird
window, with some buttons and fields highlighted with
numbers from 1 to 5. The button 1 and field 5 are already
defined by the ThunderBayes extension, with the first one
being the user button for training purposes, allowing the
user to manually classify the messages. The area identified
by the number 5 shows, in percentage, the spam classifi-
cation result, with the presented value resulting from the
collaborative classification explained before. Buttons 2 to
4 were added to the Thunderbird interface and allow the
operations of downloading (2) or uploading (3) the filter(s)
from/to the repository. Button 4 integrates both operations,
allowing the users to simultaneously upload their local filters
and download the available filters. The name and port of the
repository manager might also be configured by the user.

IV. EXPERIMENTS AND RESULTS

This section shows the improvements results obtained by
the system. The experiments use real spam/ham data to
simulate all the dynamics of the proposed anti-spam system.

A. Ham and Spam Data
For evaluation purposes, there should be real mailboxes

from different users, possibly from a social network, and
collected during the same time period. However, due to
privacy issues, it is very difficult to obtain data with such
characteristics and to make it publicly available. As a
reasonable alternative, we adopt a realistic mixture of real
spam and ham emails, in a strategy similar to what has
been proposed in [15][6]. The ham emails are from the
Enron public repository, which was originally proposed for a
global evaluation of filters, i.e., all Enron user messages were
merged into a single dataset. Our personalized approach is
based on five distinct datasets, whose ham is related with the
cleaned-up form of the five largest Enron mailboxes from the

same time period: kaminski- v (kam), farmer-d (far), beck-
s (bec), lokay-m (lok) and kitchen-l (kit). As these are all
Enron employees, it is reasonable to assume that they would
know each other, i.e., belong to the same social network.

Regarding spam, we adopted the Bruce Guenter spam
collection (http://untroubled.org/spam/) that is based in fake
e-mails published in the Web (spam traps), collected during
the years of 2006 and 2007. We selected messages with
Latin characters, since the ham messages use this character
type and non-Latin spam would be too easy to discriminate.
Moreover, we removed duplicate messages by comparing
MD5 signatures of the body messages. The mixture proce-
dure that we propose is based on the date field (using GMT
time zone) that each message was received. The intention
is to preserve the time order of the messages. This type of
mixture is more realistic when comparing with the random
sampling procedures presented in [15][6]. Given that the
Enron messages are from a different time period, we first
added 6 years to the date field of all Enron emails, before
performing the mixture. Let St denote a spam message
received at time t, Si,f = (Sti , Sti+1 , . . . , Stf) the time
ordered sequence of the Bruce Guenter spam, Hu,i,f and
Su,i,f the sequences of ham/spam messages for user u from
time ti to tf . Given the time period t ∈ (ti, . . . , tf), the
algorithm randomly samples |S�

i,j
| spam messages from Si,j .

Next, the spam set Su,i,j is defined by randomly sampling
emails from S�

i,j
, with a probability of P for each message

selection. The cardinality of S�
i,j

is given by:

|S�
i,j
| =

R·
�L

i=1
|Hu,i,j |

P ·L
(2)

where L denotes the total number of users available at the
time period and R is the overall spam/ham ratio (including
all users and time data). Given that there are different
time periods for each user (Table I), we set four time
sequences (i.e., ti and tj values) to be used by the mixture
algorithm (Figure 2 a)). The mixture algorithm is affected
by two parameters (R and P) that are fixed in this work
to reasonable values. The global spam/ham ratio was set to
R = 1, although the individual ratios can range from 0.6 to
1.5 (see Table I). Furthermore, the spam/ham ratios evolve
through time (see Figure 2 b)). Turning to P , the probability
of spam selection defines the percentage of common spam
messages between users. If two users have similar Web
exposure profiles, then they should receive similar spam.
It is assumed that this scenario occurs with the five Enron
Employees, hence we set P = 0.5. Under this value, any
two users receive around 50% of the same spam, 3 users
have around 25% of spam, and so on. The obtained corpus
is named S-Enron and it is maed publicly available at
http://www3.dsi.uminho.pt/pcortez/S-Enron.

B. Evaluation Procedure
Spam suffers from concept drift, i.e., the amount of spam

received, the ham/spam ratio and even the content itself

Figure 2. a) Chronological view of the S-Enron mailboxes b) Fluctuation of the spam/ham ratio for the far user c) Incremental retraining procedure

Table I
THE S-ENRON DATASETS CHARACTERISTICS

user ham spam time spam

size size period /ham

kam 4363 2827 [12/05,05/07] 0.6
far 3294 2844 [12/05,05/07] 0.9
bec 1965 2763 [01/06,05/07] 1.4
lok 1455 2202 [06/06,05/07] 1.5
kit 789 623 [02/07,05/07] 0.8

evolve through time [16]. Thus, to evaluate the spam filters,
we adopt the realistic incremental retraining evaluation pro-
cedure, which periodically trains and tests filters. This pro-
cedure is more realistic than the simple 50% train/test split
adopted in [6]. Under the retraining evaluation, a mailbox
is divided into batches of K adjacent messages (b1, . . . , bn,
|bn| may be less than K) [15]. For i ∈ {1, . . . , n− 1}, the
filter is trained with Du = b1 ∪ . . . ∪ bi and tested with
the emails from bi+1 (Figure 2 c)). Figure 2 b) plots an
example the evolution of the far mailbox spam/ham ratio
over distinct batches, with K = 100 and for C the time
period of Figure 2 a). Typically, a spam filter outputs a
probability ∈ [0, 1]. The corresponding predicted class is
given by spam if Prf (M) > D, where D ∈ [0.0, 1.0] is
a decision threshold defined by the user. For a given D
and test set, it is possible to compute the true (TPR) and
false (FPR) positive rates (with TPR = TP/(TP + FN)
and FPR = FP/(TN + FP), where TP , FP , TN and
FN denote the number of true positives, false positives,
true negatives and false negatives). The receiver operating
characteristic (ROC) curve measures the performance of a
two class classifier across the range of all threshold (D)
values, showing FPR (x-axis) versus TPR (y-axis) [17].
The overall accuracy is measured by the area under the curve
(AUC=

� 1
0 ROCdD). The ideal classifier will have an AUC

of 1.0, while a random one would present an AUC of 0.5. As
the cost of losing ham (FP) is much higher than receiving
spam (FN), D is often set to favor ROC points in the low
false-positive region. Therefore, we use also the metric TPR
at a specific FPR = r (denoted here as TPR@FPR = r),
where r is a value close to 0.0 [7]. Under the incremental
retraining procedure, one ROC will be computed for each

bi+1 batch and the overall averaged results are be presented.

C. Results

This section presents the experiment results obtained
when considering five users of the Enron collection. The
results of the two collaborative methods (M1 and M2
available in the prototype) are compared with the default
behavior of the classifier using a single local filter (Ind).

Figure 3, presenting the averaged results of the ROC
curves for the users, clearly shows an improvement in the
accuracy of the spam classifiers. In most of the cases, there
is a significant gain in the spam classification accuracy,
since higher true positive rates (TPR) are obtained for
distinct values of false positive rates (FPR). A more detailed
analysis of the data plotted in Figure 3 is given in Table
II presenting, for each user and method, the AUC and
TPR@FPR=0.01 values. As explained, for spam detection
purposes this second metric considers a specific low value
for the false positive rate achieved by the classifier. As
observed in Table II, and for the majority of the users,
there is a significant improvement in this metric, clearly
showing the good performance of the devised solution. The
user lok was the unique exception, with no improvements
regarding the TPR@FPR=0.01 analysis, even though the
gains observed in AUC values. The averaged AUC and
TPR@FPR=0.01 values presented in Table II (the last line)
clearly show the advantages of using the proposed solution,
as substantial improvements are observed in both metrics.
Even more noticeable is the difference of the values for
metric TPR@FPR=0.01 as, on average, a value of 34.5 is
obtained for the local filter vs 69.0 and 69.1 for the collab-
orative approach using M1 and M2 methods, respectively.
As observed, both M1 and M2 methods achieved similar
spam detection levels. As mentioned before, this is explained
by the dataset that was used, where the users belong to the
same organization and, probably, share common interests.
Moreover, they were assumed as having similar levels of
exposure to spam reception. However, for scenarios with
a higher heterogeneity level of user profiles or with the
existence of malicious filters, the use of the method M2
will be crucial to assure a correct selection of the filters.

Figure 3. ROC curves of the e-mail users considered in the experiments

Table II
SUMMARY OF THE RESULTS- ROC CURVES AND TPR@FPR

AUC TPR@FPR=0.01

user Ind. M1 M2 Ind. M1 M2

kam 62.1 94.5 94.5 1.5 67.8 67.9

far 93.5 92.2 92.9 19.9 66.5 66.8

bec 91.5 92.1 92.2 54.2 66.3 66.7

lok 91.4 93.8 93.7 78.0 72.7 73.1
kit 74.6 94.5 94.3 18.9 71.7 71.1
Average 82.6 93.4 93.5 34.5 69.0 69.1

V. CONCLUSION

This paper proposes a novel anti-spam approach, where
users with related interests have the opportunity to col-
laborate in order to improve spam detection performances
achieved by current techniques adopted in the Internet. To
better assess the viability of the proposed system, a dataset
consisting of a realistic mixture of spam and ham messages
was used to simulate the dynamics of the proposed solution.
As described, the proposed system, even resorting to a small
number of users, clearly outperformed the local filtering
approach and is expected to improve the robustness and
resilience levels of anti-spam mechanisms.

ACKNOWLEDGMENT

Research supported by FCT grant PTDC/EIA/64541/2006

REFERENCES

[1] Messaging Anti-Abuse Working Group. Email Metrics Pro-
gram: The Network Operators’ Perspective. Report #10 - third
and fourth quarter 2008, S. Francisco CA, USA, March 2009.

[2] A. Ramachandran and N. Feamster. Understanding the
Network-Level Behavior of Spammers. In Proc. of SIG-
COMM’06, pp. 291- 302, 2006.

[3] V. Cheng and C. Li, Personalized Spam Filtering with Semisu-
pervised Classifier Ensemble, in IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, 2006.

[4] C. Kanich et al., Spamalytics: An Empirical Analysis of Spam
Marketing Conversion, in Computer and Communications
Security Conference (CCS08). ACM, pp. 27-31, 2008.

[5] J. Mendez, I. Cid, D. Glez-Pena, M. Rocha, and F. Fdez-
Riverola, A Comparative Impact Study of Attribute Selection
Techniques on Naive Bayes Spam Filters, in 8th Industrial
Conference on Data Mining, LNAI 5077, pp. 213-227, 2008.

[6] Z. Zhong et al., ALPACAS:A Largescale Privacy-Aware Col-
laborative Antispam System, Proc. INFOCOM, pp. 556-564,
2008.

[7] M. Chang, W. Yih, and C. Meek, Partitioned Logistic Regres-
sion for Spam Filtering, in 14th ACM SIGKDD Int. Conf. on
Knowledge discovery and data mining, pp. 97-105, 2008.

[8] A. Gray and M. Haahr, Personalised, Collaborative Spam
Filtering, in 1st Conf. on E-Mail and Anti-Spam CEAS, 2004.

[9] B. Nelson et al. , Exploiting Machine Learning to Subvert
Your Spam Filter, in 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats. ACM Press, pp. 1-9, 2008.

[10] E. Blanzieri and A. Bryl. A survey of learning-based tech-
niques of email spam filtering. Artificial Intelligence Review,
29(1):63-92, 2008.

[11] R. Grossman, M. Hornick, and G. Meyer, Data Mining
Standards Initiatives, Communications of ACM, vol. 45, no.
8, pp. 5961, 2002.

[12] A. Garg, R. Battiti, and R. Cascella, May I borrow your
filter? Exchanging filters to combat spam in a community,
in 20th Int. Conf. on Advanced Information Networking and
Applications, Vol. 2, pp.489-493, 2006.

[13] H. Kim et al., Preventing session table explosion in packet
inspection computers, IEEE Trans. on Computers, pp. 238-
240, 2005.

[14] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman, Sybil-
guard: Defending against sybil attacks via social networks,
IEEE/ACM Trans. on Networking (TON), vol. 16, no. 3, pp.
576-589, 2008.

[15] V. Metsis, I. Androutsopoulos, and G. Paliouras, Spam Filter-
ing with Naive Bayes Which Naive Bayes?, in Third Conf.
on Email and Anti-Spam (CEAS), pp. 125134, 2006.

[16] T. Fawcett, ”In vivo spam filtering: A challenge problem for
KDD, SIGKDD Explorations, vol. 5, no. 2, pp. 140148, 2003.

[17] T. Fawcett, An introduction to ROC analysis, Pattern recog-
nition letters, vol. 27, no. 8, pp. 861874, 2006.

