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Abstract. The methodology presented in this work combines the theoretical framework developed for the dynamics of
coupled rigid elements with the characteristics of rocking motion, in order to reproduce the behaviour of blocky masonry
structures under seismic actions. As an application, a closed kinematic chain structure is analysed for the case of

harmonic forcing.
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1 INTRODUCTION

For masonry structures under seismic actions, the theory
of coupled rocking rotations (CRR) for multiple bodies
can be applied if some basic hypotheses are satisfied [1],
namely:

1 The bodies are not deformable;

2 There is no relative sliding between two adjacent
contact surfaces;

3 The main sources for dissipation of energy occur at
the impact processes between the rigid parts.

The first two requirements are equivalent to those that
Limit Analysis establishes for the case of masonry cons-
truction [2, 3], while the third adds the damping charac-
teristics of rocking motion.

Although these hypotheses are not realistic for near-
source ground motions (where sliding mechanisms are
present and friction plays an essential role for energy
loss), historical buildings under seismic hazard can be as-
sessed at the light of CRR in low-seismicity regions and,

in general, at those situations in which the displacements
are considered small.

Regarding to the third requirement above, it may seem
that rocking motion seldom occurs for a small displace-
ment regime. All the work done until now about the
Rocking Motion (RM) is referred to single block rota-
tions (or two blocks at the most) as if the whole strue-
ture was rocking. Nevertheless, RM does not need this
limit situation to appear. In rigour, if there is no sliding,
RM is present at every crack and impact mechanisms
appear as the only way for the blocky masonry system
to dissipate energy.

In [4], the theory of n-body coupled rigid body rota-
tions was presented. There, the basic dynamical func-
tions and displacements were elaborated. Concepts such
as dynamic chains, generalized matrices or symmetry re-
duction were introduced and succeeded in both simpli-
fying and highlighting the main features of the process.
A computer subroutine based in Maple environment was
built specifically for this problem. Finally, a FORTRANY0
code was written in order to integrate the resulting dif-
ferential equations.
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Regarding RM, a compact mathematical form for the
impact interaction present in rocking motion was found
[5]. This result was incorporated to the theory and CRR
was built from the results obtained in |4, 6]. Perhaps, the
power of CRR consists in its independence from the con-
tinuum mechanics based algorithms. As a consequence,
it can be considered as a feasible alternative to the exis-
ting procedures based on continuum considerations (as
FEM or BEM). Eigenfrequencies (based on the energy
approach performed by Housner [7]), stability, resonance
regions and other relevant mechanical consequences can
be obtained by using CRR.

Within the scope of CRR, a great number of practical ap-
plications can be included. Examples that CRR can deal
with are four-hinged masonry arches, a closed kinema-
tical chain structure representing Greek temples, mono-
lithic columns, water or nuclear tanks and offshore equip-
ment. From small number of blocks involved, treated
analytically, to an arbitrary number of them, in the do-
main of statistical mechanics, the theory can hold an
adequate basis. In each case, additional hypotheses and
results can strengthen the hypotheses.

2 ADOPTED METHODOLOGY

After the geometry of the problem is given (say through
a CAD scheme), the plastic hinges are determined via a
Limit Analysis program directly [8] (an alternative is to
determine the zones of lowest tensile strength by a DEM,
FEM or BEM routines). This information is given to
the Maple program (Mathematica or any other symbolic
environment would be equivalent). Then, the partition of
the continuum into rigid domains according to the data
is performed. At this stage, a first number of degrees of
freedom (DOF(1)) is established, being built a potential
dynamic chain.

Constrains are introduced by imposing holonomic geo-
metrie conditions to the hinges. The initial DOF(1) are
reduced to DOF(2). In addition, arguments based on
symmetry reduce even more the DOF(2). The result
of this process is DOF(3). Finally, a FORTRAN routine
integrates the differential equations by using an ODE in-
tegrator. Fourth-order Runge-Kutta, Gear or Variable
step size integrators are more or less convenient depen-
ding on the final type of differential equations obtained.
A basic scheme of the proposed algorithm is shown in
figure 1.

The Maple program with the final number DOF(3) helps
on performing algebraic manipulations in order to reduce
the problem to its differential equations of motion. The
main parameters of the motion are found in this process,
as schematically shown in figure 2.
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Figure 1: Proposed methodology.
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Figure 2: Reduction of degrees of freedom.

3 THEORY OF MULTIPLE-BODY
COUPLED ROCKING ROTATIONS

3.1 Dynamical Functions

In [4], a novel formulation has been presented regarding
compact expressions for the three dimensional displace-
ments, kinetic and potential functions for an arbitrary
number of blocks coupled as functions of their relative
angles. There, also the concept of dynamic chain has
been introduced, as the compatible subset of the set of
the potential axes of rotation that is chosen for a given
movement. The expressions found are again provided
here for completeness.

The expressions for the generalized three-dimensional
displacements are given by
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As discussed in [4], this expression allows computing the
position of any point of the n-body as function of the
movement performed by the dynamic chain. Here, a re-
presents a row-matrix of vectors which connect two con-
secutive hinges, x is the row-matrix for the position of an
arbitrary point of the last body of the chain measured
from a system of reference fixed at one of its hinges,
and I' is the matrix of the rotation operators involved
expressed in the canonical basis {e}, see also figure 3.
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Figure 3: Three-coupled body rotations.

The expression for the kinetic energy is given by
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where; M™ and V,, are the mass and volume of body n
1

respectively, and the 4 matrices are inner products of the

general I'. For a detailed explanation, see [4].

The expression for the potential energy is given by

n—1

ml—uz f ‘rcotrN (3)

T

N
U=gy M"

n=1 G=1

For some special cases, the initial three-dimensional con-
figuration can be reduced to a planar problem. This hap-
pens when the force acts through a plane, or when the
geometry of the structure exhibits a high symmetry. As
a consequence, the rotation matrices can be substantially
reduced and the expressions take an easier handling. In
addition to the symmetry arguments other forms of sim-
plification can be considered if some basic assumptions
about the possible displacements are made. In particu-
lar, if the last hinge to occur in the system of masonry
blocks is assumed to remain fixed during the motion,
there are two additional equations to be incorporated to
the system. For selected structures, this reduction pro-
cess leads to Single-Degree-of-Freedom systems (SDOT').
Under the hypotheses above, the Lagrangian for the n-
bodies takes the form as function of the generalized co-
ordinates of angle and velocity, given by
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Here, v™, €™, ™ and x" are geometric parameters associ-
ated to the body. This expression can be applied for the
three examples analyzed in this work and, in particular,
for the closed kinematical chain structure.

4 FORMULATION FOR ROCKING
MOTION ANALYSIS

When a rigid body changes instantaneously its center of
rotation from one point to another, the resulting motion
is usually described in terms of differential equations for
certain domains of the dynamical variables involved. For
simple planar motions, the sign of the angular variables
considered can define these domains and the differential
equations for the motion become piecewise. The impact
marks the transition from rocking around one edge to
rocking around the other, and, therefore, the transition
from one governing equation to another. In addition, the
sudden changes of velocity at the critical point (as shown
in figure 4) can be associated with an impulsive force.
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Figure 4: Rocking motion behaviour.
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The traditional formulation of impact mechanisms intro-
duces a restitution coefficient and resets the initial con-
ditions every time of impact, according to a reduction
in velocity proportional to this coefficient. The main
drawback of the traditional process is the difficulty in
its generalization to a higher number of blocks. In fact
there is no effective form for damping in the differential
equation.

4.1 Implementation of Dirac-Delta Forces

In [6] a Dirac-delta type interaction was introduced qua-
litatively. In [5], it was improved and successfully com-
pared with the traditional approach and experimental
data (see figure 5). Its implementation explained the be-
haviour observed in a single rocking block and allowed
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to propose a more compact formulation. The expression
for the interaction found was

Fs = Cln(r)é |é‘ 5(0) (5)
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Figure 5: Comparison of Dirac-delta force with experi-
mental data.

4.2 Configuration of Energetic Levels

A useful conclusion was derived in [5] regarding the ener-
getic distribution of the free rocking motion. The dia-
grams illustrated in figure 6 offer a useful way for visu-
alizing the physics of the problem and can be used for
obtaining quantities with practical relevance, namely the
rate of energy loss per impact.

5 APPLICATIONS TO SYSTEMS REDUCI-
BLE TO ONE DEGREE OF FREEDOM

Within the possibilities of CRR, some simple cases are
analysed in this work. All of them belong to the class
of systems that can be reduced to SDOF. In [4], it was
shown that the mechanical behaviour of all of the present
cases could be understood by means of the single block
rocking dynamics. In particular a generalization of the
Housner-Hogan equations was found |7, 9] and used for
the case of the closed kinematic chain structures of figu-
res 7 to 9.

6 APPLICATION

For the case of kinematic chains with one degree-of-fre-
edom, the theory of coupled rocking rotations was ap-
plied to a simple model representing one-storey masonry
buildings during earthquakes. The frequency as func-
tion of the forcing amplitude and a representative height
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Figure 6: Energetic levels of the Rocking Motion.

Figure 7: One single block rotations.

is found as, see [4]
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In the above expression, 6, is the maximum tilt angle
(that is, the amplitude of movement) while x and = are
two parameters that depend solely on the geometry of
the block. Manipulation of equation 6 allows plotting
the Housner-frequency versus amplitude and height, as
shown in figure 10.

Although this is just a first result, the methodology pre-
sented here opens new paths for theoretical research and
computation. For instance, systematic Poincar Surface
of Section Study revealed patterns with stability islands
and chaos for different values of initial conditions and
characteristic parameters.

7 CONCLUSIONS
It is likely that on of the best possibilities to handle the
difficulties related to the safety and conservation of his-




Figure 8: Closed kinematic chain structure.

Figure 9: Four-hinged arch.

torical constructions is the usage of structural component
models, namely lumped approaches, which are at best a
crude approximation of the structure. The simplicity
of the geometric model allows increased complexity on
the loading side and in the non-linear dynamic response.
Such an approach can be used to determine overall dy-
namic structural response to actual earthquake ground
motion input but rely heavily on the correct definition of
component hysteresis, which has to include material non-
linearity and also effects resulting from the true geometry
of the structure.

The present paper addresses the aforementioned approa-
ch, aiming at representing the damping and dynamic be-
haviour of masonry structures by the impact of a single
degree-of-freedom block in rocking motion. The problem
exhibits a hard singularity at a particular point where
the differentiation of the dynamic functions is not well
defined. Although this motion may seems very simple,
the process hides both a great richness in dynamic be-
haviour and a wide range of practical relevance. Here,
a first step has been made, regarding the proposal of
a compact formulation, the formulation of a generalised

Frequency

Figure 10: Generalized Housner Frequency.

displacements formwork and the representation of actual
structures by a single degree-of-freedom system.
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