Viagem ao futuro do sector têxtil europeu

estação
Desfiles Portugal Fashion
Puerta de Europa: Moda Nupcial

tendências
Outono/Inverno
2009/10

Especial MODA BRASIL
Capital Fashion Week | Retrato de um sector | Marcas e criadores
n.º 45

Verão 2008

opinião 2
notícias 4
actualidade
O Futuro do Sector Têxtil e de Vestuário Europeu 8
Especial Moda Brasil 18
Pilar de Apoio à Indústria de Confecção 36
Os Pontos de Costura – Parte 2 38
tendências
Interfilière 2009/10 44
Carlin International 2009/10
estação 48
Desfiles:
Portugal Fashion, Puerta de Europa
feiras 52
calendario de feiras 64

Peças da capa gentilmente cedidas por Beatriz Sendin (ver página 6).
Os pontos de costura: as classes 100 e 200 (parte 2)

Por Helder Carvalho, Ana Elisa Machado
Universidade do Minho

Um dos processos centrais da indústria de confecção é a montagem de produtos têxteis através da costura, sendo uma das bases fundamentais para a compreensão deste processo o conhecimento dos diversos tipos de pontos, da sua formação, características e aplicações. Nesta série de artigos pretende-se fazer uma apresentação dos pontos de costura mais utilizados na indústria, evidenciando-se para cada um deles as características e aplicações particulares. Nesta edição analisam-se as classes 100 e 200 dos pontos de costura. Série completa: 1. Classificação e Características Gerais; 2. Classes 100 e 200; 3. Classes 300 e 400; 4. Classes 500 e 600.

1. Classe 100 – pontos de cadeia simples

1.1. Definição
Os tipos de pontos desta classe são formados com uma ou várias linhas de agulha. A principal característica desta classe é o facto de o ponto ser formado pelo entrelaçamento da linha com ela própria.

1.2. Características gerais
Fácil desmanchar do ponto – Os pontos da classe 100 caracterizam-se pelo entrelaçamento de laçadas de uma linha com ela própria. Este facto implica que estes pontos são facilmente desmancháveis, pelo que as suas aplicações a costuras de união são limitadas.

Elasticidade – Como todos os pontos de cadeia, os pontos da classe 100 possuem um bom grau de elasticidade.

Resistência – A resistência é baixa, tanto na tracção, como na resistência ao uso. Os pontos desta classe têm as linhas bastante expostas e desmancham facilmente.

Eficiência do fecho – O fecho de folhas é ineficiente, devido à estrutura do ponto (entrelaçamento na face do tecido e não no meio das camadas de material) e devido às baixas tensões de linha normalmente utilizadas. Este facto não é importante nas aplicações normais dos pontos desta classe.

Solicitação das linhas de coser – A produção do ponto de cadeia simples não produz grandes esforços sobre as linhas. As tensões utilizadas são baixas e durante o processo de costura cada secção da linha passa somente 25 a 30 vezes pelos elementos que guiam a linha.

Complexidade das máquinas – As máquinas que produzem o ponto de cadeia simples são pouco complexas mecani-
camente, sendo em geral económicas, rápidas e fáceis.

Aplicações – Os pontos desta classe utilizam-se em costuras temporárias (p.ex. alinhavos ou fecho de sacos), em que o fácil desmanchar aparece como vantagem, pois permite desfaçê-la facilmente quando necessário.

Duas aplicações particulares são a sua utilização para produção de ponto invisível em bainhas de roupa exterior de senhora e homem (calças, saias) e nas máquinas de pregar botões mais simples e económicas.

1.3. Ponto tipo 101
Este tipo de ponto de costura é formado pela linha de agulha, que passa por uma laçada anteriormente formada. O esquema deste ponto é apresentado na figura 1.
1.3.1. Processo de formação

A formação do ponto de cadeia simples pode ser observada nas figuras 2 e 3, em que se exemplifica este processo quando é utilizada uma laçadeira oscilante ou quando se utiliza uma laçadeira rotativa.

Em ambos os casos, a formação de ponto consiste no seguinte processo:

- A agulha penetra no tecido, fazendo assim a linha atravessar o tecido para a face inferior;
- Chegado ao ponto mais baixo da sua trajectória (ponto morto inferior), a agulha inicia o seu movimento ascendente. Como a linha está presa pelo tecido, forma uma laçada;
- A laçadeira inferior penetra na laçada;
- O tecido é arrastado, e a agulha entretanto atingiu o seu ponto mais alto (ponto morto superior), iniciando o seu movimento descendente, penetrando no tecido;
- A agulha penetra na laçada formada anteriormente, segura pela laçadeira;
- A agulha inicia movimento ascendente e forma nova laçada.

1.3.2. Características e aplicações

O ponto tipo 101 apresenta todas as características anteriormente referidas. Aplica-se em todo o tipo de costuras providas (alinhavos). Outra aplicação amplamente conhecida é em máquinas de pregar botões de gama baixa.

1.3.3. Consumo de linhas

Para calcular o consumo de linha de um determinado tipo de ponto, devem ser consideradas, caso a caso, as dimensões relevantes na costura produzida, observando-se para tal a estrutura do ponto.

Deve realçar-se o facto de este cálculo ser sempre aproximado, pois variações nas tensões de linha, no título das linhas ou no tipo e afinação do sistema de arraste da máquina podem criar diferenças relativamente ao cálculo teórico. Este é, no entanto bastante aproximado do valor realmente verificado. Existem também diversas tabelas com valores indicativos de consumos de linha para os tipos de ponto mais comuns.

Para exemplificar o processo de cálculo do consumo de linha, observe-se na figura 3 a estrutura do ponto 101 com as dimensões relevantes assinaladas. Tendo em conta a delimitação de um ponto de costura, observando os segmentos de linha percorridos pelas linhas individuais, a partir do esquema do ponto ou a partir de uma costura real, facilmente se conclui que a quantidade de linha consumida para um ponto é dada por:

\[L_p = 2 \cdot esp + 3 \cdot cp \] \hspace{1cm} (1)

em que:

- \(L_p \): Comprimento de linha consumido num ponto de costura (mm);
- \(esp \): Espaço entre os pontos;
- \(cp \): Comprimento de linha percorrido pela agulha.
Espessura do material cosido [mm];
comprimento de ponto [mm].

Para se obter a quantidade de linha consumida num metro de costura, deverá multiplicar-se o consumo por ponto de costura, \(L_p \), pelo número de pontos num metro de costura, \(N_p \):

\[
L_m = L_p \cdot N_p
\] \[2\]

em que:

\(L_m \): comprimento de linha consumido num metro de costura;
\(N_p \): número de pontos por metro.

e em que:

\[
N_p = \frac{1}{C_p}
\] \[3\]

1.4. Ponto tipo 102

Este tipo de ponto é idêntico ao ponto 101, diferindo no facto de possuir duas linhas de agulhas, sendo a laçada do linha 1 trancada pela laçada da linha 2.

1.5. Ponto tipo 103

Este tipo de ponto é formado por uma linha de agulha. O princípio de formação deste tipo de ponto mantém-se. Este tipo de ponto é um dos pontos denominados como ponto invisível, pois permite efectuarem-se certas costuras em que o ponto é parcial ou totalmente invisível.

1.6. Ponto tipo 107

Este tipo de ponto é formado por uma linha de agulha, e é a versão em 'zigue-zague' do ponto 101.

1.6.1. Características e aplicações

As características são semelhantes às do ponto 101, pelo que continua a ser pouco seguro. Utiliza-se para certas costuras ornamentais, casas de botões e em máquinas de pregar botões.

1.6.2. Consumo de linhas

A partir do consumo de linha calculado para o ponto 101, basta obter o 'novo' comprimento de ponto resultante do zigue-zague (Figura 7).

Definindo:

\(C_p \): comprimento do ponto (avanço do tecido)
\(C_{ef} \): comprimento efectivo do ponto, considerando o movimento diagonal
\(L_{zz} \): largura do zigue-zague

então, sendo:

\[
C_{ef} = \sqrt{C_p^2 + L_{zz}^2}
\] \[4\]
O consumo por metro de costura é dado por:

\[L_m = (2 \cdot esp + 3 \cdot c_{ef}) \cdot N_p \] \[(5) \]

em que:

- \(L_m \): Comprimento de linha consumido num metro de costura [mm];
- \(esp \): Espessura do material cosido [mm];
- \(c_{ef} \): Comprimento efectivo de ponto, segundo (4) [mm];
- \(N_p \): Número de metros de ponto, segundo (3).

2. Classe 200 – pontos manuais

2.1. Definição
Os tipos de pontos de costura desta classe caracterizam-se principalmente por originalmente efectuados à mão. Utilizam uma ou várias linhas que se fixam a si próprios e percorrem ambas as faces do material, cosido, entrando e saindo em ambas as faces. A maioria destes pontos utiliza uma só linha.

2.2. Características e aplicações gerais
Os pontos da classe 200 têm uma característica única: toda a reserva de linha utilizada atravessa todos os pontos de costura.

Esta propriedade distingue os pontos desta classe de todos os restantes, em que se fornece, em cada ponto, apenas a quantidade de linha suficiente para o formar (apesar de haver algum excesso para formação de laças). É também esta propriedade que o torna difícil de imitar com máquinas, embora haja alguns casos em que máquinas são capazes de produzir pontos desta classe. Em geral, estes pontos são utilizados em costura manual, para acabamentos ou alinhavos, por exemplo em em alta-costura ou pequenas séries. Apresentam-se de seguida alguns exemplos.

2.3. Ponto tipo 201
Este tipo de ponto é formado por duas linhas de agulhas, que atravessam o tecido no mesmo local de penetração em direcções opostas, percorrem um determinada extensão e voltam a perfurar o tecido em direcções opostas.

2.4. Ponto tipo 202
Este tipo de ponto é formado por uma única linha de agulha, que penetra o material e percorre uma extensão aproximada de dois pontos, retrocedendo depois um ponto.

2.5. Ponto tipo 205
Este tipo de ponto é formado por uma única linha de agulha, que penetra o material e percorre uma extensão aproximada de três pontos e retrocede um ponto.
2.6. Ponto tipo 209
Este tipo de ponto é formado por uma linha de agulha, que penetra no material e percorre uma determinada extensão, voltando a trespassar o material no sentido oposto. Ponto muito utilizado em alinhavos.

2.7. Ponto tipo 210
Este tipo de ponto é formado por uma linha de agulha que penetra no material, passa pelo bordo enrolado e penetra no material no ponto seguinte. Utiliza-se frequentemente para acabar e proteger a orla do tecido.

2.8. Ponto tipo 220
Este tipo de ponto é formado por uma linha de agulha, que sai do material e passa perto da orla cortada, avançando por baixo do mesmo, perpendicularmente ao eixo da casa, saindo do material e passando por uma laçada da linha do ponto formado anteriormente. A linha é puxada, o que provoca o arrastamento da laçada para a orla cortada, onde se forma um nó. É um ponto muito utilizado para acabar o bordo em casas para botões.

3. Referências

4. Agradecimentos
Os autores agradecem à empresa PFAFF Industriemaschinen GmbH e Pegasus Sewing Machine Mfg Company a autorização para reproduzir algumas das figuras apresentadas neste artigo.