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ABSTRACT 

Two series of novel push-pull heterocyclic azo dyes have been synthesized and characterized. The two series of 

compounds were based on different combinations of -conjugated bridges (bithiophene and thienylpyrrole) which also 

act simultaneously as donor groups, together with diazo(benzo)thiazolyl as acceptor moieties. Their thermal stability and 

electrochemical behavior were characterized, while hyper-Rayleigh scattering (HRS) was employed to evaluate their 

second-order nonlinear optical properties. The results of these studies have been critically analyzed together with several 

thienylpyrrole azo dyes reported earlier from our laboratories in which the thienylpyrrole system was used as the donor 

group functionalized with aryl and (benzo)thiazolyldiazene as acceptor moiety. The measured molecular first 

hyperpolarizabilities and the observed linear optical and redox behavior showed strong variations in function of the 

heterocyclic spacers used (bithiophene or thienylpyrrole) and were also sensitive to the acceptor strength of the 

diazenehetero(aryl) moiety.  
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1. INTRODUCTION 

Heterocyclic azo dyes are a versatile class of colored compounds that have attracted the interest of many research groups 

as they have many industrial applications in the fields of textiles, papers, leather, laser materials xerography, laser 

printing, materials for organic solar cells and chemosensors. In addition, other heterocyclic azo dyes have found recent 

uses as organic second order nonlinear optical materials (NLO) suitable for applications such as harmonic generation and 

optical switching.
1-2

 Previous theoretical
1
 and experimental studies

2 
have stimulated a strong intense interest in our 

research group to engage in the synthesis and characterization of novel heterocyclic azo dyes bearing thiophene, pyrrole 

and (benzo)thiazole heterocycles. The optical and electronic characterization of several novel chromophores previously 

synthesized by us confirmed that they possess the essential characteristics necessary for use as efficient solvatochromic 

probes, nonlinear optical and photochromic materials,
3-4

 supporting the main conclusions of the  theoretical studies 

carried out by Åstrand et al.
1
 In view of these facts and following our recent studies of the synthesis and characterization 

of heterocyclic azo dyes for optical applications, we considered it worthwhile to synthesize bithiophene and 

thienylpyrrole derivatives functionalized with thiazolyl and benzothiazolyldiazene moieties and evaluate their 

electrochemical, thermal and optical (linear and nonlinear) properties. 

 

2. EXPERIMENTAL TECHNIQUE OF HYPER-RAYLEIGH SCATTERING 

2.1 Measurement 

Hyper-Rayleigh scattering was used to measure the first hyperpolarizability  of response of the molecules studied. The 

experimental set-up for hyper-Rayleigh measurements is similar to the one presented by Clays et al.
5-6

 Particular care 

was taken to avoid common pitfalls with this method that can lead to erroneous values for the hyperpolarizability.  The 

incident laser beam came from a Q-switched Nd:YAG laser operating at a 10 Hz repetition rate with approximately 10 

mJ of energy per pulse and a pulse duration (FWHM) close to 12 ns at the fundamental wavelength of 1064 nm. The 



incident power could be varied using a combination of a half wave-plate and Glan polarizer. The incident beam was 

weakly focused (beam diameter ~0.5 mm) into the solution contained in a 5 cm long cuvette. With this cuvette length we 

are able to aperture only the central region and thereby avoid detecting second harmonic signal from the cell windows. 

The hyper- Rayleigh signal was collected at right angles to the incident beam and collimated using a high numerical 

aperture lens (0.8 N.A.). To detect only light emitted near 532nm the signal  passed first through an infrared blocking 

filter then through a narrow band interference filter centred at the second harmonic wavelength before being detected by 

a photomultiplier (Hamamatsu model H9305-04). The current pulse from the photomultiplier was
 
integrated using a 

Stanford Research Systems gated box-car integrator (model SR250) with a 25 ns gate centred on the temporal position of 

the incident laser pulse. The hyper-Rayleigh signal was normalized at each pulse using the second harmonic signal from 

a 1 mm quartz plate to compensate for fluctuations in the temporal profile of the laser pulses due to longitudinal mode 

beating.
 
 Dioxane was used as a solvent, and the  values were calibrated using a reference solution of p-nitroaniline 

(pNA)
7-8

 also dissolved in dioxane at a concentration of 1 x 10
-2

 mol dm
-3

 (external reference method). The 

hyperpolarizability of pNA dissolved in dioxane is known from EFISH measurements carried out at the same 

fundamental wavelength.
 
The concentrations of the solutions under study were chosen so that the corresponding hyper-

Rayleigh signals fell well within the dynamic range of both the photomultiplier and the box-car integrator. All solutions 

were filtered (0.2 m porosity) to avoid spurious signals from suspended impurities.  

 

2.2 Calculations 

The small hyper Rayleigh signal that arises from dioxane was taken into account according to the equation 1  
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where the factor G is an instrumental factor that takes into account the detection efficiency (including geometrical factors 

and linear absorption or scattering of the second harmonic light on its way to the detector) and local field corrections. We 

took especial care to avoid reporting artificially high hyperpolarizibilities due to a possible contamination of the hyper 

Rayleigh signal by molecular fluorescence near 532 nm. Measurements were carried out using two different interference 

filters with different transmission pass bands centred near the second harmonic at 532 nm. The transmission band of the 

narrower filter (CVI model F1.5-532-4) was 1.66 nm (full width at half maximum) with a transmission of 47.6% at the 

second harmonic, while the corresponding values for the wider filter (CVI model F03-532-4) were 3.31 nm, with a 

transmission of 63.5% at the second harmonic. The transmission of each filter at the second harmonic wavelength was 

carefully determined using a crystalline quartz sample. We assume that any possible fluorescence emitted from the 

solutions is essentially constant over the transmission of both interference filters. Then by comparing the signals 

obtained with the two different filters we can determine the relative contributions of the hyper-Rayleigh and possible 

fluorescence signals. The relevant equations (2 and 3) are: 
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Here 2

NBS is the hyper-Rayleigh scattering contribution to the signal, i.e. the signal that would have been measured using 

the “narrow” band filter if there were no fluorescence present. The fluorescence contribution to the signal measured 

using the narrow band interference filter is F

NBS . The signals NBS  and WBS  are the actual signals measured (after 

correction for the solvent contribution) using the “narrow” (CVI model F1.5-532-4) and “wide” (CVI model F03-532-4) 

band interference filters. The transmissions NBT  and WBT  are respectively the transmission of the “narrow” and “wide” 

band interference filters at the second harmonic wavelength (47.6% and 63.5%), NBA  and WBA  represent the area under 

the respective filter’s transmission curve. The respective transmission curves were obtained using a dual-beam 

spectrophotometer with slits adjusted to give 0.1 nm resolution. We obtained values of 1.29 nm and 2.18 nm for NBA
 

and WBA  respectively. These values allow us to confidently characterize the first molecular hyperpolarizabilities even 

when the multi-photon induced fluorescence leads to a contamination of the measured signal by as much as 60%. After 

determining the amount of signal due solely to hyper-Rayleigh scattering by applying the above procedure the 

hyperpolarizability of each compound was estimated using the following expression,  
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Here Nchom and NpNA are respectively the molar densities of the chromophore and p-nitroaniline solutions. In using this 

expression we assume, as is typical, that the hyperpolarizability tensor is dominated by a single longitudinal element. 

This is the case for the reference molecule, pNA with a value of βzzz = 16.9 x 10
-30 

esu as measured using the EFISH 

technique.
5-6 

 

3. RESULTS 

3.1 Synthesis 

Two series of bithiophene 1-2 and thienylpyrrole 4c and 5a azo dyes were synthesized in fair to good yields (9-61%) 

through azo coupling reaction of (benzo)thiazolyldiazonium salts with bithiophene
9
 and thienylpyrrole

10
 precursors, in 

acetonitrile/acetic acid at 0 ºC (Fig. 1, Table 1). The novel heterocyclic azo dyes consists of several push-pull 

chromophores based on thiophene and pyrrole heterocycles as -spacers and simultaneously as electron donor groups 

functionalized with thiazolyl- or benzothiazolyldiazene moieties as acceptor groups. The new azo dyes were 

characterized through the usual spectroscopic techniques. The details of the synthesis and the full characterization of 

compounds 1-2, 4c and 5a will be described elsewhere. The results of the studies concerning the thermal, redox and 

optical properties of the new azo dyes 1-2, 4c and 5a will be critically analyzed together with three other related 

compounds 3a and 4a-b reported earlier from our laboratories
3d

 in which the thienylpyrrole system was used as the 

donor group and phenyl (3a) or thiazolyldiazene (4a-b) moieties were used as acceptor moieties. 
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Figure 1. Chemical structures of the push-pull chromophores investigated: 1a-c, 2a, 3a, 4a-c and 5a. 

 

Table 1. Yields, IR and Td data for compounds 1a-c, 2a, 4c and 5a. 

a The IR spectra were obtained in liquid film (CHCl3); 
b Decomposition temperature (Td) measured at a heating rate of 20 ºC min–1 

under a nitrogen atmosphere, obtained by thermogravimetric analysis (TGA). 

Pyrrole R1 R2 
Yield

 

(%) 


a 

(cm
-1

) 

Td
b
 

(
o
C) 

1a H H 23 - 200 

1b EtO H 11 2980 (N=N) 231 

1c H CHO 15 1667 (C=O)
 

2925 (N=N)
 

231
 

2a H - 9 - 283 

4c 4-MeOPh CHO 61 2933(N=N) 

1662 (C=O) 
200 

5a n-Propyl - 47 2919(N=N) 239 



 

3.2 Redox properties 

The electrochemical properties of compounds 1-2, 4c and 5a were analyzed by cyclic voltammetry in DMF solution in 

the presence of tetrabutylammonium tretrafluoroborate (0.10 mol L
−1

) as supporting electrolyte and the results are listed 

in the Table 2. All cyclic voltammetric measurements were recorded at room temperature with a conventional three 

electrode configuration consisting of a vitreous carbon disc working electrode, a platinum wire counter electrode, and a 

silver-wire pseudo-reference electrode.
15a 

 Cyclic voltametry of compounds 1-2, 4c and 5a show an irreversible oxidation 

process associated with the generation of the cation radical. The data of oxidation potentials show that the extent of the 

interaction between the electron donating and accepting termini is dependent on the substituent group on the bithiophene 

and thienylpyrrole spacers and on the  thiazole acceptor moiety. Comparing the effect of the electron-donating 

thienylpyrrole spacer with bithiophene system in the oxidation potentials for compounds 1-2 and 4 it can be seen that the 

electron density in bithienyl-diazenes is lower than that of the thienylpyrrolyl-diazenes, e.g. 1a displays an oxidation at 

Epa = 0.80 V while 4a displays an oxidation at Epa = 0.59 V. The results also showed that, the energy of HOMO orbital is 

strongly influenced by the electronic nature of the groups substituted in the thiazole acceptor moiety. Therefore, 

compounds 1c and 4c functionalized with the formyl acceptor group display oxidations at more positive potentials, 

compared with similar compounds in which R2 = H, as a consequence of the destabilizing effect of the acceptor group on 

the -conjugated systems. All azo dyes bearing a thiazole or benzothiazole acceptor group exhibited two monoelectrolic 

reductions, on the other hand, compound 3a
3d

 with phenyldiazene group exhibit only one reduction process. The one-

electron stoichiometry for these reduction processes is ascertained by comparing the current heights with know one-

electron redox processes under identical conditions.
11 

The bithienyl azo dyes show a first process reversible and the 

second process partially reversible. In the case of thienylpyrrole azo dyes the second redox process is irreversible. 

Compounds 1 and 2 showed reversible reduction peaks, with onset potentials between -1.23 and -0.86 V, which were 

assigned to the reduction of the thiazolyldiazene moiety. This indicates that the substitution on the bithiophene system 

with groups of different electronic character have low influence on the reductions potentials, (e.g 
1
Epc 1a = -1.23 and 

1
Epc 

1b = -1.26 V). On the other hand the reduction potential values are significantly influenced by the substituent on the 

thiazole moiety, (e.g 
1
Epc 1a = -1.23 and 

1
Epc 1c = -0.86 V). The replacement of the bithiophene by the thienylpyrrole 

spacer shifts the value of the reduction potential of compounds 4a-c
3d

 to more negative values (see for example the 

comparison between 1a, 
1
Epc = -1.23 V and 4a

3d
, 

1
Epc = -1.51 V; or between 1c; 

1
Epc = -0.86 V and 4c; 

1
Epc = -0.98 V). 

Therefore, the difference between the reduction potential values obtained for the first process of 4a and 4c is 530 mV 

showing a high anodic shift due to the functionalization of the thiazole ring by a stronger acceptor group. Moreover, the 

reduction potential of the second process of the reduction reflects also the effect of the electronic nature of the group 

substituted on the thiazole heterocycle. The substitution of a thiazole heterocycle (4a) by a benzothiazole acceptor group 

on the diazene system (5a) results in a decrease of the reduction potential for compound 4a compared to 5a. The 

electrochemical band gaps of compounds 1-5 were estimated from the difference between the onset potentials for 

oxidation and reduction and were in the range 1.74-2.51 eV.
12-14

 

 

Table 2. Electrochemical data for compounds 1-5. 

Compound 

Reduction
a
 Oxidation

a
  

Band gap
c
 

(eV) 
-

1
Epc (V) ΔE

b
 (mV) -

2
Epc (V) ΔE

b
 (mV) Epa (V) 

1a 1.23 63 2.04 90 0.80 2.03 

1b 1.26 62 2.07 93 0.59 1.85 

1c 0.86 63 1.61 60 0.98 1.84 

2a 1.08 54 1.93 85 0.93 2.01 

4c 0.98 65 1.69 __ 0.76 1.74 

5a 1.36 67 2.08 __ 0.70 2.06 

aMeasurements made in dry DMF containing 1.0 mM in each compounds and 0.10 M [NBu4][BF4] as base electrolyte at a carbon 

working electrode with a scan rate of 0.1 Vs-1. Epc and Epa correspond to the cathodic and anodic peak potentials, respectively; bΔE = 

|Ered - Eox|; 
cEHOMO = -(4.39 + Eox) (eV) and ELUMO = -(Ered + 4.39) (eV). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFY-4Y889SR-1&_user=2459786&_coverDate=08%2F31%2F2010&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000057396&_version=1&_urlVersion=0&_userid=2459786&md5=b7ac295f283bdb8696e64477f80e88d6&searchtype=a#tbl1


 

The data showed that several factors have influence on the electronic nature of the -conjugated systems leading to the 

decrease of the band gaps: the type of the electron-donating spacer (bithiophene or thienylpyrrole) and electron-acceptor 

(thiazole or benzotihiazole) moiety; the strength of the donor group linked to the electron-donating moiety; the strength 

of the acceptor group linked to thiazole heterocycle.  

 

3.3 Linear and nonlinear optical properties of the chromophores 

The studied chromophores showed good solubility in common polar and non-polar organic solvents such as dioxane and 

DMF. The extinction coefficients (ε) in dioxane and wavelength maxima max of compounds 1a-c, 2a, 4c and 5a in 

dioxane were obtained using a Shimadzu UV/2501PC spectrophotometer and are summarized in Table 3.
 
The electronic 

absorption spectra of the chromophores in dioxane solutions (10
-4

 M) showed an intense lowest energy charge-transfer 

(CT) absorption band in the UV-visible region. The position of this band is strongly influenced by the structure of the 

compounds, for example by the type of -conjugated bridge (bithiophene or thienylpyrrole), by the substitution pattern in 

the donor and the acceptor moieties and also by the electronic nature of the acceptor moiety. The absorption maxima 

(max) of azo dyes 1a-c, 2a, 4c and 5a, in dioxane are located at the range of 477 to 539 nm. As observed earlier for other 

bithiophene and thienylpyrrole azo dyes, a bathochromic shift in the UV-Vis. spectra is observed when stronger donor 

and/or acceptor groups are linked to bithiophene or thienylpyrrole heterocyclic systems.
3-4,15-16  
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Figure 2.(a) Comparative absorption spectra of 1a, 1c and 2a in dioxane at room temperature. (b) Comparative absorption spectra of 

3a, 4a and 5a in dioxane at room temperature. 

 

As a result the substitution of a H by the formyl group leads to a red shift of 38 nm from 477 nm (1a)  to 515 nm (1c). 

Within the series 1a, 2a and 1c the CT bands moves to lower energy as the electron accepting ability of the acceptor 

moiety increases, in the order thiazole < benzothiazole < CHO-thiazole (Fig. 2a). A similar effect was observed for the 

thienylpyrrole derivatives 3a, 4a and 5a. Therefore, substitution of an arylazo system (e.g. 3a
3d

) for a thiazolyl azo 

moiety (e.g. 4a) leads to a red shift of 66 nm from 420 nm (e.g. 3a) to 486 nm for thiazole azo dye 4a.
3d

 On the other 

hand, substitution of an aryldiazene system by a benzothiazolyl-diazene moiety leads also to a red shift of 80 nm from 

420 nm (e.g. 3a) to 500 nm due to the increase acceptor ability of the benzothiazole heterocycle compared to phenyl ring 

and also as a result of a more extensive electron delocalization in 5a (Fig. 2b). Previous studies have demonstrated that 

donor-acceptor substituted bithiophene and thienylpyrrole push-pull chromophores exhibit a positive solvatochromism.
3-

4,15-16 
In this case a good to large positive solvatochromism was observed moving from diethyl ether to DMSO solutions 

for bithiophene azo dyes 1a-c (max = 1079-1619 cm
-1

) and for thienylpyrrole diazenes 4c and 5a (max = 1028-1099 

cm
-1

). 

We have used the hyper-Rayleigh scattering (HRS) method
5-6 

to measure the first hyperpolarizability  of compounds 

1a-c, 2a, 4a and 5a using the 1064 nm fundamental wavelength of a laser beam as described above. Dioxane was used as 

the solvent, and the   values were measured against a reference solution of p-nitroaniline (pNA)
7-8

 in order to obtain 

quantitative values, while particular care was taken to properly account for possible fluorescence of the dyes (see 

experimental section for more details). The static hyperpolarisability 0 values were calculated using a very simple two-

level model neglecting damping. They are therefore only indicative and should be treated with caution (Table 3). 

 



Table 3. Linear and nonlinear optical properties of chromophores 1a-c, 2a, 3a, 4a-c and 5a.a
 

Compounds R1 R2 


max
 

(nm) 

ε
max

 

(M
-1

cm
-1

) 

b
 

(10
-30

esu) 

0
c
 

(10
-30

esu) 

1a H H 477 30,240 172 27±3 

1b EtO H 513 28,980 307 16±1 

1c H CHO 515 30,610 286 14±1 

2a H - 493 27,990 207 23±2 

4c 4-MeOPh CHO 539 30,610 610
d
 12±1 

5a n-Propyl - 500 35,400 590 54 

pNA - - 352 - 16.9
7-8

 8.5 

a Experimental first hyperpolarizabilities  and spectroscopic data measured in dioxane solutions; b All compounds are transparent at 

the 1064 nm fundamental wavelength; c Data corrected for resonance enhancement at 532 nm using the two-level model with 0 =  

[1-(max/1064)2][1-(max/532)2]; damping factors not included 1064 nm.17-19d Value obtained by making measurements at various 

concentrations and extrapolating to infinite dilution in order to correct for the absorption of the generated second harmonic light as it 

propagates through the solution to the detection system. 

 

Bithiophene and thienylpyrrole azo dyes 1a-c, 2a, 4a and 5a exhibit good molecular nonlinearities as their  values are 

10-36 times higher that of the well known pNA molecule for an incident laser wavelength of 1064 nm. From Table 3 it is 

apparent as well that the increase of the donor strength of the substituent on 5´-position of the bithiophene system (dyes 

1a-b) also resulted in a significant resonant enhancement, with enhanced  values accompanied by a red-shifted 

absorption maxima (e.g. 1a, R = H,  λmax 477 nm,  = 172x10
-30

 esu;  1b, R = EtO,  λmax 513 nm,  = 307x10
-30 

esu. 

Noteworthy also the effect of the electronic nature of the group that substitutes the thiazole ring at 5-position. It was 

observed that, the increase of the acceptor strength of the CHO group (1c) compared to H (1a), results both in red-shifted 

absorption maxima and a resonance enhanced  value for bithiophene azo dye 1c ( = 286x10
-30 

esu). A similar effect 

was observed for thienylpyrrole azo dyes 4b and 4c. Therefore compound 4c having a stronger acceptor moiety exhibits 

a higher β value (610x10
-30 

esu) for incident light at 1064 nm as compared to the unsubstituted derivative 4b
3d

 (156x10
-30 

esu). Due to the deficiency of electron density on the ring C atoms, the thiazole heterocycle acts as electron-withdrawing 

group and also as an auxiliary acceptor leading to an increase in molecular hyperpolarizability. Comparison of the  

values for thienylpyrrole azo dye 4c with bithiophene azo dye 1c showed also that the substitution of a bithiophene 

spacer by a thienylpyrrole heterocyclic bridge enhances the first order hyperpolarizability from 286x10
-30

 to 610x10
-30

 

esu at 1064 nm probably due to the stronger auxiliary donor effect of the pyrrole heterocycle compared to the thiophene 

ring.
11,15

  These results are in agreement with the redox properties described above. Benzothiazole azo dye 5a exhibits a 

larger  value (590x10
-30

) compared to the corresponding thiazole chromophore 4a
3d

 (  = 164x10
-30

) probably due a 

greater electronic delocalization. Therefore, in the probable resonance structures, the distance between the charges in 5a 

being longer compared to 4a, the electric moment of the first diazene must be greater, increasing the value of the 

molecular hyperpolarizability. A similar behavior was observed for benzothiazole azo dye 2a when compared to their 

thiazole counterpart 1a. 

 

3.4 Thermal stability 

For optoelectronic applications, the thermal stability of organic materials is critical for device stability. Therefore, the 

thermal properties of the chromophores 1a-c, 2a, 4c and 5a were investigated by thermogravimetric analysis under a 

nitrogen atmosphere, measured at a heating rate of 20 ºC min
–1 

( Table 1). All the chromophores are thermally stable 

with decomposition temperatures varying from 200 to 283 ºC. For the bithienyl-diazenes 1a-c the electronic nature of the 

group substituted on the 5-position of the thiazole ring does seem to have some impact on the thermal stability of the 

compounds. The 5-formyl-thiazolyldiazene 1c, is the most stable dye showing the highest decomposition temperature. 

Benzothiazole azo dye 2a exhibits also an improved stability by ca 83 ºC compared to the corresponding thiazole 



derivative 1a. This property would benefit the practical applications of these chromophores when incorporated into 

actual optical devices.  

4. SUMMARY 

In this work we report the synthesis, the redox properties and complete physical characterization of novel donor-acceptor 

chromophores based on pyrrole and thiophene heterocycles. By varying the heterocyclic spacer (bithiophene or 

thienylpyrrole), the electronic nature of the donor and acceptor groups linked to the bithiophene and thiazole moieties 

respectively, the thermal and the electrochemical properties as well as the optical (linear and nonlinear) properties of 

push-pull -conjugated systems can be tuned. More interesting redox properties and best first order hyperpolarizabilities 

were observed for thienylpyrrole azo dyes 4c and 5a and bithiophene azo dyes 1b-c, functionalized with a donor ethoxy 

group in 5´-position of the bithiophene spacer and formyl acceptor group substituted in the 5 position of the thiazole 

heterocycle. Due to their good first order hyperpolarizability and redox properties together with their good thermal 

stability these compounds are attractive novel heterocyclic NLO-chromophores. 

 

 ACKNOWLEDGEMENTS 

Thanks are due to the Fundação para a Ciência e Tecnologia (Portugal) and FEDER for financial support through the 

Centro de Química and Centro de Física-Universidade do Minho, Project PTDC/QUI/66251/2006 (FCOMP-01-0124-

FEDER-007429), Project PTDC/CTM/105597/2008 with funding from COMPETE/FEDER and a research grant to M. 

C. R. Castro (UMINHO/BI/142/2009). The NMR spectrometer Bruker Avance III 400 is part of the National NMR 

Network and was purchased within the framework of the National Program for Scientific Re-equipment, contract 

REDE/1517/RMN/2005 with funds from POCI 2010 (FEDER) and FCT. 

 

REFERENCES 

[1] Åstrand, P. O., Sommer-Larsen, P., Hvilsted, S., Ramanujam, P. S., Bak, K. L. and Sauer, S. P. A., “Five-

membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest 

singlet excitation energies,” Chem. Phys. Lett., 325, 115-119 (2000). 

[2] Towns, A. D., “Developments in azo disperse dyes derived from heterocyclic diazo components,” Dyes 

Pigments, 42, 3-28 (1999). 

(b) Yesodha, S. K., Pillai, C. K. S. and Tsutsumi, N., “Stable polymeric materials for nonlinear optics: a review 

based on azobenzene systems,” Prog. Polym. Sci., 29, 45-74 (2004). 

[3] (a) Raposo, M. M. M., Sousa, A. M. R. C., Fonseca, A. M. C. and Kirsch, G., “Thienylpyrrole azo dyes: 

synthesis, solvatochromic and electrochemical properties,” Tetrahedron, 61, 8249-8256 (2005). 

(b) Raposo, M. M. M., Sousa, A. M. R. C., Fonseca, A. M. C. and Kirsch, G., “Donor-acceptor substituted 

thienylpyrrole azo dyes: synthesis, solvatochromic and electrochemical properties,” Mater. Sci. Forum, 514-

516, 103-107 (2006). 

(c) Coelho, P. J., Carvalho, L. M., Fonseca, A. M. C. and Raposo, M. M. M., “Photochromic properties of 

thienylpyrrole azo dyes in solution," Tetrahedron Lett., 47, 3711-3714 (2006). 

(d) Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. and 

Coelho, P. J., “Novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic 

and nonlinear optical (NLO) materials,” Dyes Pigments, 91, 62-73 (2011). 

[4] (a) Raposo, M. M. M., Ferreira, A. M. F. P., Belsley, M. and Moura, J. C. V. P., Tetrahedron, "5´-Alkoxy-2,2´-

bithiophene azo dyes: a novel promising series of NLO chromophores," Tetrahedron, 64, 5878-5884 (2008). 

(b) Raposo, M. M. M., Ferreira, A. M. F. P., Belsley, M., Matos-Gomes, E. and Moura, J. C. V. P., "5-Arylazo-

2,2´-bithiophenes: a novel promising serie of NLO chromophores," Mater. Sci. Forum, 587-588, 268-272 

(2008). 

(c) Raposo, M. M. M., Ferreira, A. M. F. P., Amaro, M., Belsley, M. and Moura, J. C. V. P., "Synthesis and 

characterization of the thermal and the solvatochromic properties of heterocyclic azo dyes derived from 5-N,N-

dialkylamino-2,2´-bithiophene couplers," Dyes Pigments, 83, 59-65 (2009). 

http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=31&SID=U1CcH5ohi3gdHHeL1G8&page=1&doc=1&colname=WOS
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=31&SID=U1CcH5ohi3gdHHeL1G8&page=1&doc=1&colname=WOS
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=31&SID=U1CcH5ohi3gdHHeL1G8&page=1&doc=1&colname=WOS
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=30&SID=U1CcH5ohi3gdHHeL1G8&page=2&doc=12&colname=WOS
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=U1CcH5ohi3gdHHeL1G8&page=1&doc=1&colname=WOS
http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=U1CcH5ohi3gdHHeL1G8&page=1&doc=1&colname=WOS


(d) Coelho, P. J., Carvalho, L. M., Moura, J. C. V. P. and Raposo, M. M. M.,"Novel photochromic 2,2´-

bithiophene azo dyes", Dyes Pigments, 82, 130-133 (2009). 

[5] Clays, K. and Persoons, A., “Hiper-Rayleigh scattering in solution,” Rev. Sci. Instrum., 63, 3285-3289 (1992). 

[6] Clays, K. and Persoons, A., “Hiper-Rayleigh scattering in solution,” Phys. Rev. Lett., 66, 2980-2983 (1991). 

[7] Teng, C. C. and Garito, A. F., “Dispersion of the nonlinear 2nd-order optical susceptibility of organic-systems,” 

Phys. Rev. B, 28, 6766-6773 (1983). 

[8] Stahelin, M., Burland, D. M. and Rice, J. E., “Solvent dependence of the 2nd-order hiperpolarizability in para-

nitroaniline,” Chem. Phys. Lett., 191, 245-250 (1992). 

[9] Raposo, M. M. M. and Kirsch, G.,"A combination of Friedel-Crafts and Lawesson reactions to 5-substituted-

2,2´-bithiophenes,” Heterocycles, 55(8), 1487-1498 (2001). 

[10] (a) Raposo, M. M. M., Sampaio, A. M. B. A. and Kirsch, G., "Arylamino-thieno-oxobutanamides under 

Lawesson´s conditions: competition between thienylpyrrole and bithiophene formation," Synthesis, 2, 199-210 

2005. 

(b) Raposo, M. M. M., Sousa, A. M. R. C., Fonseca, A. M. C. and Kirsch, G., "Synthesis of formyl-

thienylpyrroles: versatile building blocks for NLO materials," Tetrahedron, 62(15), 3493-3501 (2006). 

[11] Raposo, M. M. M. Sousa, A. M. R. C., Kirsch, G., Cardoso, P., Belsley, M., Matos-Gomes, E. and Fonseca, A. 

M. C., “Synthesis and characterization of dicyanovinyl-substituted thienylpyrroles as new NLO-chromophores,” 

Org. Lett., 8, 3681-3684 (2006)
. 

[12] Yuan, M.-C., Chiu, M.-Y., Chiang, C.-M. and Wei K.-H., “Synthesis and characterization of pyrido[3,4-

b]pyrazine-based low-bandgap copolymers for bulk heterojunction solar cells,” Macromolecules, 43, 6270-6277 

(2010). 

[13] Liang, Y., Feng, D., Wu, Y., Tsai, S.-T., Li, G., Ray, C. and Yu, L., “Highly efficient solar cell polymers 

developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc., 131, 7792-7799 (2009). 

[14] Janietz, S., Bradley, D. D. C., Grell, M., Giebeler, C., Inbaselatan, M. and Woo, E. P., “Electrochemical 

determination of the ionization potential and electron affinity of poly(9,9-dioctylfluorene),” Appl. Phys. Lett. 

73(17), 2453-2455 (1998). 

[15] (a) Raposo, M. M. M., Sousa, A. M. R. C., Kirsch, G., Ferreira, F., Belsley, M., Matos Gomes, E. and Fonseca, 

A. M. C., “Synthesis of tricyanovinyl-substituted thienylpyrroles and characterization of the solvatochromic, 

electrochemical and non-linear optical properties,” Tetrahedron, 61, 11991-11998 (2005). 

(b) Raposo, M. M. M., Sousa, A. M. R. C., Fonseca, A. M. C. and Kirsch, G., “Push-pull tricyanovinyl-

substituted thienylpyrroles: synthesis, solvatochromic and electrochemical properties,” Mater. Sci. Forum, 514-

516, 98-102 (2006). 

(c) Batista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M. and Raposo, M. M. M., “Synthesis and 

characterization of new thienylpyrrolyl-benzothiazoles as efficient and thermally stable nonlinear optical 

chromophores,” Tetrahedron, 63(20), 4258-4265 (2007). 

(d) Batista, R. M. F., Costa, S. P. G., Belsley, M. and Raposo, M. M. M., “Synthesis and second-order nonlinear 

optical properties of new chromophores containing benzimidazole, thiophene and pyrrole heterocycles,” 

Tetrahedron, 63(29), 9842-9848 (2007). 

[16] (a) Raposo, M. M. M., Fonseca, A. M. C. and Kirsch, G., "Synthesis of donor-acceptor substituted 

oligothiophenes by Stille coupling", Tetrahedron, 60, 4071-4078 (2004). 

(b) Batista, R. M. F., Costa, S. P. G., Lodeiro, C., Belsley, M. and Raposo, M. M.M., "Synthesis and 

characterization of novel (oligo)thienyl-imidazo-phenanthrolines as versatile -conjugated heterocyclic systems 

for several optical applications," Tetrahedron, 64(39), 9230-9238 (2008). 

(c) Herbivo, C., Comel, A., Kirsch, G., Fonseca, A. M. C., Belsley, M. and Raposo, M. M. M., "Synthesis and 

characterization of novel efficient and thermally stable 2-aryl-5-dicyanovinylthiophenes and 5-aryl-5´-

dicyanovinyl-2,2´-bithiophenes as potentially promising nonlinear optical (NLO) materials," Dyes Pigments, 

82(3), 217-226 (2010). 

[17] Oudar, J. L., “Optical nonlinearities of conjugated molecules – stilbene derivatives and highly polar aromatic 

compounds,” J. Chem. Phys., 67, 446-457 (1977). 

[18] Oudar, J. L. and Chemla D. S., “Hiperpolarizabilities of nitroanilines and their relations to excited-state dipole-

moment,” J. Chem. Phys., 66, 2664-2668 (1977). 

[19] Zyss, J. and Oudar, J. L., “Relations between microscopic and macroscopic lowes-order optical nonlinearities 

of molecular-crystals with one-dimensional or two-dimensional units,” Phys. Rev. A, 26, 2016-1027 (1982). 


