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a b s t r a c t

The aim of this study was to evaluate the possibility of preparing starch-based porous matrixes using
supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaf-
folds of a polymeric blend of starch and poly(l-lactic acid) for tissue engineering purposes.Immersion
precipitation experiments were carried out at different operational conditions and highly porous and
interconnected scaffolds were obtained. Two organic solvents, dichloromethane and chloroform were
tested, and from the results obtained chloroform was the more favourable for the process. The effect of
polymer solution concentration (5 up to 20 wt%), temperature (35 up to 55 ◦C) and pressure (100 up to
200 bar) in the SPLA (50:50 wt%) membrane morphology, porosity and interconnectivity was evaluated.
All the conditions tested were in the region of total miscibility between the organic solvent and car-
Natural polymers

Scaffolds
Tissue engineering

bon dioxide. Additionally, a blend with a different starch-poly(l-lactic acid) ratio (30:70 wt%) was tested.
Bicontinuous structures were formed indicating that the L–L demixing process that governs the phase
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inversion is the spinodal

. Introduction

Ideal scaffolds should be biocompatible, biodegradable and pro-
ote cellular interactions and tissue development and possess

roper mechanical and physical properties [1]. A wide variety of
aterials have been used for the preparation of scaffolds, from
etals to ceramics and polymers. Special attention should be paid

o polymers as they present the most versatile class of materi-
ls. Although synthetic biodegradable polymers have been widely
sed for tissue engineering, natural polymers have unique, intrin-
ic properties that make them appealing to be used as scaffolds [2].
atural polymers are in general non-toxic, even in large concentra-

ions, mucoadhesive, biocompatible, and biodegradable [2,3,4].
Starch-based polymers have been studied in our group for a

ide range of bone-related therapy applications, ranging from tis-
ue engineering scaffolds [5,6,7,8,9], to bone cements [10,11] and

rug delivery systems [12,13]. Its natural origin, together with its
echanical properties and biocompatibility support the potential

f starch-based materials in the biomedical field [14].
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One of the most important stages of tissue engineering is the
design and processing of a porous 3D structure, with high porosity,
high interconnectivity between the porous and uniform distribu-
tion. A variety of processing techniques have been developed and
include solvent casting and particles leaching, compression mould-
ing and particle leaching, thermally induced phase separation,
gas-foaming processes, among others [15]. The main disadvantages
of these methods are the use of organic solvents and the high
temperatures required. The presence of residual organic solvents
is being rigorously controlled by international safety regulations,
thus it is necessary to warrant the complete removal and absence
of these substances. Supercritical fluid technology appears to be,
therefore an interesting alternative to the traditional processing
methods [16,17].

Carbon dioxide is the most commonly used supercritical fluid
as it has mild critical parameters, it is environmentally benign,
non-toxic, nonflammable, noncorrosive, ready available and inex-
pensive. Its elimination and the recovery of final products are easier
(no residue is left and a dry solid product is easily obtained, just
by controlling the pressure), leading to processes with less energy
consumption [18].
Different techniques have been proposed for the preparation of
scaffolds for tissue engineering, namely gas foaming or phase inver-
sion [19]. Gas foaming takes advantage of the plasticizing properties
of carbon dioxide. In this technique, the polymer is exposed to car-
bon dioxide, which plasticizes it by reducing the glass transition

http://www.sciencedirect.com/science/journal/08968446
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The experiments were designed in order to determine the best
operational conditions for the production of SPLA scaffolds to be
used for tissue engineering purposes. In each set of experiments
one of the variables was modified so that, the effect of the different
variables in the particle size could be evaluated.

Table 1
Summary of the experiments performed.

Polymer Experiment Solvent Concentration
(wt%)

P (bar) T (◦C)

SPLA
50:50

1 Chloroform 10 100 45
2 Dichloromethane 10 100 45
3 Chloroform 5a 100 45
4 Chloroform 15 100 45
5 Chloroform 20 100 45
6 Chloroform 10 100 35
7 Chloroform 10 100 55
8 Chloroform 10 150 45
ig. 1. Schematic diagram of the high pressure phase-inversion apparatus (P, pres-
ure transducer; TIC, temperature controller; FM, flowmeter; BPR, back pressure
egulator).

emperature or melting point. On venting the CO2 by depressur-
zation, thermodynamic instability causes supersaturation of the
arbon dioxide dissolved in the polymer matrix and hence, nucle-
tion of cells occurs [20]. This technique is limited by the high
lass transitions of the crystalline polymers and is therefore more
ommonly to amorphous polymers.

The immersion precipitation technique, also known as phase-
nversion method, involves casting of a polymer solution onto an
nert support followed by immersion of the support with the cast
lm into a bath filled with a non-solvent for the polymer. The con-
act between the solvent and the non-solvent causes the solution to
e phase-separated. If the non-solvent used is a supercritical fluid
his adds several advantages to the process. One of the most impor-
ant advantages of the use of carbon dioxide is the fact that simply
y tuning the process conditions, i.e. pressure and temperature one
an tailor the final structure of the product. Additionally, when car-
on dioxide is used as a non-solvent a subsequent drying step is
voided and the porous structure obtained is a dry product free of
ny residual solvent.

The use of carbon dioxide as a non-solvent for phase separa-
ion has been successfully reported in the literature for example
or PLLA [21,22], PMMA [23], Nylon 6 [24], PS [25], cellulose acetate
26,27], polysulfone [28–30] and polycarbonate/PEG [31]. However,
t has never been reported the processing of natural-based poly-

ers using this technique. In this work the possibility of processing
natural-based polymer is evaluated. Process variables, such as

olymer concentration, temperature and pressure have a strong
nfluence in the porosity of the scaffolds obtained and were for that
eason extensively studied.

. Experimental procedure

.1. Materials

Commercial blends of starch and poly-l-lactic acid (SPLA
0:50 and 30:70 wt%) were obtained from Novamont, Italy.
ichloromethane, DCM (CAS 78-09-2, 99.9% purity) and chloro-

orm (CAS 67-68-5, 99.9% purity) were purchased from Vaz Pereira.
arbon dioxide (99.998 mol%) was supplied by Air Liquide. All
hemicals were used with no further purification.

.2. Supercritical assisted phase-inversion process
The phase-inversion experiments were carried out in an appa-
atus, similar to the one schematically presented in Fig. 1.

In each experiment a small amount (ca. 2 ml) of the polymer
olution is loaded in a stainless steel cap with 2 cm diameter, which
s placed inside the high pressure vessel. The vessel is heated in by
al Fluids 49 (2009) 279–285

means of an electric thin band heater (OGDEN) connected to a tem-
perature controller, that maintains temperature within ±1 ◦C (TC).
Carbon dioxide is pumped into the vessel using high pressure piston
pump (P-200A Thar Technologies) until the operational pressure is
attained. The pressure inside the vessel is measured with a pres-
sure transducer (P). The system was closed for 45 min to allow the
occurrence of phase separation. Afterwards the system is flushed
for another 45 min, with a stream of carbon dioxide at very low flow
rate (5 g/min), in order to ensure complete drying of the scaffolds.
The flow is regulated by a flow meter (FM—Siemens, SITRANS FC
MASS FLO MASS2100). The outflow is regulated by a back pressure
valve (Go, Inc., USA).

2.3. Scaffold characterization

2.3.1. Scanning Electron Microscopy—SEM
Samples of the scaffolds prepared were observed by a Leica Cam-

bridge S360 Scanning Electron Microscope (SEM). The films were
fixed by mutual conductive adhesive tape on aluminium stubs and
covered with gold palladium using a sputter coater.

2.3.2. Micro-computed tomography
The inner structure, porosity and interconnectivity were eval-

uated by micro-computerized tomography using a Scanco 20
equipment (Scanco Medicals, Switzerland) with penetrative X-rays
of 40 keV. The X-ray scans were acquired in high-resolution mode
(39.39 �m). CT Analyser® (SkyScan, Belgium) was used to visualize
the 2D X-ray sections images of the scaffolds.

2.3.3. Mechanical properties
Compressive mechanical properties of the scaffolds prepared

were measured using an INSTRON 4301 (Instron Int. Ltd., High
Wycombe, UK). The compressive modulus is defined as the initial
linear modulus on the stress/strain curves. The data presented is
the result of the average of at least five measurements.

3. Results and discussion

In this study the possibility of preparing SPLA scaffolds with
potential application in tissue engineering using supercritical fluid
technology is evaluated. The final morphology of the scaffolds
obtained varies greatly with the properties of the materials and
the process conditions. A summary of the experiments performed
is listed in Table 1.
9 Chloroform 10 200 45

SPLA
30:70

10 Chloroform 10 100 45
11 Chloroform 10 100 55

a Polymer concentration too low to obtain a membrane.
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a rapid and large expansion of the solution by the non-solvent
induces the precipitation of the polymer in the form of fine par-
ticles, as if a Gas Anti-Solvent process was performed. Besides this
fact, at low concentrations the percentage of polymer present is not
sufficient to form the solid continuous structure. On the contrary,
Fig. 2. SEM images of the matrixes prepared from (

The supercritical assisted phase-inversion process relies on two
echanisms that take place at the same time, namely the diffusion

f carbon dioxide into the polymer solution and the extraction of
he organic solvent by the supercritical fluid. The high solubility
etween the organic solvent and the anti-solvent will favour the
rocess, as this means a higher affinity of the solvent to the carbon
ioxide, which will cause the phase separation and the precipita-
ion of the polymer with a porous structure. Therefore, the selection
f a proper combination of the organic solvent and the antisolvent
or a particular polymer is essential for the success of the process.
o determine the best organic solvent for the process two solutions
f 10 wt% SPLA in chloroform and dichloromethane were prepared.
he SEM images of the matrixes prepared are shown in Fig. 2. The
tructures obtained present large open pores ∼80 �m and smaller
ores spread all over the structure. Tsivintzelis and Pavlidou [21]
repared porous matrixes of PLLA from dichloromethane solutions
nd observed the formation of uniform cellular structures. However
n this case, the pores are not interconnected. Comparing the results
btained by these authors and the ones presented in this work,
e can conclude that the presence of starch in the polymeric mix-

ure alters the phase behaviour of the system and using adequate
rocessing conditions instead of a cellular structure a bicontinuos
ighly interconnected porous structure is formed.

From the results obtained, chloroform was chosen to be the best
olvent for the process. It not only dissolves better the raw material
SPLA) as the structures formed are also thicker and more porous.
he thickness of the samples is 1.65 mm and 1.00 mm when pre-
ared from a chloroform or dichloromethane solution, respectively.

To evaluate the advantages of using carbon dioxide as a drying
edium, a sample of polymer solution (10 wt%) was left to dry in the

tainless steel cap overnight. The film obtained was much thinner
nd did not present a porous structure.

.1. SPLA (50:50 wt%) scaffolds

.1.1. Effect of polymer concentration
In a first approach the concentration of the polymer solution

experiments 1, 3, 4 and 5) was evaluated. The polymer concen-
ration in the organic solution plays an important role in the final
tructure of the membrane obtained. In immersion precipitation at
east three components are present in the system. A better under-
tanding of the mechanisms involved in the process requires the
nowledge of the ternary phase diagram of the components in the
ystem. Fig. 3 presents a schematic representation of the phase
iagram.

The complexity of the mechanisms involved in the process can
e reduced if we consider the process isothermal; this is valid as
ong as the mixing heat between the solvent and non-solvent is not
onsiderably high.

The boundary between the homogeneous phase and the
iquid–liquid (L–L) demixing gap is often called binodal and it corre-
ponds to the cloud point curve of the polymer. Usually the region of
roform solution and (b) dichloromethane solution.

L–L demixing is subdivided into a region of spinodal demixing. The
grey area of the diagram corresponds to two different metastable
regions where nucleation and growth take place.

According to the theory of Flory–Huggins the size and loca-
tion of the demixing gap, as well of the critical point, depends on
the molar volumes of the components present in the system and
their interactions, i.e., polymer–solvent, polymer–non-solvent and
solvent–non-solvent interactions [32].

The suggested mechanism responsible for the morphology of
porous matrixes by phase inversion is the liquid–liquid demixing.
However, the attribution of a specific structure in the membrane to
a certain phase separation process is rather complicated [33]. Dif-
ferent mass transport mechanisms are involved in these regions and
for that reason different polymeric matrixes can be obtained. The
morphology of the matrixes prepared can be characterized accord-
ing to four structural elements, namely cellular structures, nodules,
bicontinuous structures or unconnected particles [34].

The equilibrium phase diagram represents the thermodynami-
cally favoured processes that might occur during phase separation,
nonetheless it is the kinetics that will determine to what extent the
thermodynamically favoured phase transition will take place. Fur-
thermore, non-equilibrium processes may play an important role
during the membrane formation.

The majority of the matrixes are prepared by controlled phase
separation of polymer solutions in two phases: one with a high
polymer concentration and one with a low polymer concentration.
A proposed mechanism of membranes formation indicates that a
porous cellular structure is obtained if L–L demixing by nucleation
and growth of the droplets of a polymer lean phase occurs [27].

Solutions with different polymer concentrations were tested.
It was observed that at lower polymer concentrations, i.e., 5 wt%
Fig. 3. Schematic representation of the ternary phase diagram of the components
involved in the phase-inversion process.
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Fig. 4. Effect of polymer concentration in samples prepared at 100 bar and 45 ◦C (a) 10 wt%, (b) 15 wt%, and (c) 20 wt%.

repar

w
c
t
a

d

a
t
i
t
m
t
T
p
t
a
n

F
t

inner structure of the matrixes prepared. An example of the 3D
model of a SPLA matrix prepared by supercritical assisted phase-
Fig. 5. Representative micro-CT images of SPLA matrix p

hen the concentration of the polymer solution is higher, the vis-
osity is also higher and the diffusion of the supercritical phase in
he liquid is slower. That is to say, the demixing will occur slowly
nd the polymer will form a porous continuous structure.

In Fig. 4, the SEM images of the polymer matrixes prepared with
ifferent concentrations are presented.

The morphology of the SPLA matrixes obtained by supercritical
ssisted phase-inversion method can be considered as a bicon-
inuos structure. Besides the macropores (∼75 �m) one can also
dentify the existence of micropores with sizes ranging from 10
o 20 �m and the surfaces appear very rough. Such particular

icrostructures enhance the transport properties within the struc-
ure and could also encourage cell attachment and proliferation.
hese matrixes are also characterized by a highly interconnected

orous structure. Ideal scaffolds for bone tissue engineering require
hree-dimensionally interconnected porous structures, so nutrients
nd oxygen can be accessible to the cells together with the elimi-
ation of cell wastes.

ig. 6. Effect of the polymer concentration in the initial solution in the porosity of
he structures prepared.
ed at 100 bar and 45 ◦C (a) 3D model and (b) 2D model.

The mechanism proposed for the precipitation of these intercon-
nected pore structures is a spinodal decomposition, nevertheless
this is still object of discussion and another hypothesis is that the
bicontinuos structures are a result of coalescence of polymer poor
droplets generated by bimodal decomposition [33].

In the SEM images it is possible to notice already the intercon-
nectivity of the pores, further analysis by micro-CT confirms these
features. From micro-CT analysis it is also possible to calculate also
the porosity of the samples.

3.1.2. Micro-computed tomography
Micro-computed tomography allows a better visualization of the
inversion method is shown in Fig. 5.
Fig. 5a demonstrates that the macroporous structure is homoge-

neous throughout all the volume of the sample. The representative

Fig. 7. Stress deformation curve of SPLA 20 wt% sample prepared at 45 ◦C and 100 bar.
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Table 2
Mechanical properties of the matrixes prepared at 100 bar and 45 ◦C (standard deviation error is also presented).

Polymer concentration in solution (%) Thickness (mm) Compressive modulus (MPa) Maximum stress (MPa) Strain at maximum stress (mm)

10 1.5 0.11 (±0.01) 2.75 (±0.63) 0.46 (±0.15)
15 1.7 0.14 (±0.02) 4.26 (±0.39) 0.44 (±0.07)
20 1.9 0.15 (±0.02) 4.84 (±0.82) 0.43 (±0.08)

Fig. 8. Effect of the initial polymer concentration on the mechanical properties of the scaffolds prepared.
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Fig. 9. Effect of pressure in the formation of SPLA poro

D slice in Fig. 5b shows that the macroporous exibit a significant
nterconnectivity.

Micro-CT allows also a more objective comparison since the
orosity and interconnectivity of the samples can be calcu-
ated. The interconnectivity of the scaffold is calculated according
o the formula: I = [(Vtotalpore − Vtotalpore)/Vtotalpore] × 100, where
he volume of the disconnected pore stands for the discon-
ected pore volume which was defined to be higher than
0 �m.

Fig. 10. Effect of temperature in the formation of SPLA porou

Fig. 11. Effect of pressure and temperature in the porosity (�
trixes, at 45 ◦C (a) 100 bar, (b) 150 bar, and (c) 200 bar.

The increase of the initial polymer concentration does not influ-
ence the porosity of the scaffolds produced (Fig. 6). Instead, the
thickness can be tunned just by varying the amount of polymer
present in the organic solution. As the volume of the polymer solu-

tion is the same for all conditions, higher concentration leads to
the production of thicker scaffolds, which vary from 1.5 mm up to
1.9 mm when a solution with 10 wt% or 20 wt% SPLA is processed.

Mechanical properties of the samples prepared were evaluated
and compression tests were performed to the samples prepared

s matrixes, at 100 bar (a) 35 ◦C, (b) 45 ◦C, and (c) 55 ◦C.

) and interconnectivity (♦) of the structure prepared.
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Fig. 12. Porous structures prepared from (a) SPLA 30:70 at 100 bar, 45 ◦C

ith different polymer concentrations. Fig. 7 shows, as an example,
representative curve for the deformation behaviour of the porous
atrixes, namely for a sample prepared with 20% SPLA.
A summary of the results, which are a mean value of at least five

xperiments, is presented in Table 2.
In Fig. 8, the relationship between the compressive modulus and

he polymer concentration is highlighted. As expected a higher con-
entration of the material gives more stiffness to the material and
herefore, the modulus tends to be higher. In the same way, the
tress of the material also increases with the higher concentration
f SPLA. On the contrary, increasing polymer concentration tends
o decrease the strain at maximum stress.

.1.3. Effect of pressure and temperature
The effect of pressure the porosity was studied for the system

PLA (10 wt% polymer solution) for three different temperatures.
s an example, a comparison of the different structures prepared
t 45 ◦C and different pressures is shown in Figs. 9 and 10 elucidates
he effect of temperature in the matrixes prepared.

From SEM images we observe that scaffolds prepared at different
onditions present a similar morphology, which is very homoge-
eous in all cases. A major limitation in tissue engineering is the

ailure to induce rapid vascular ingrowth during tissue develop-
ent. The viability of cells that migrate into the scaffold from

he native tissue is highly dependent on transport of nutrients
nd waste products between the cells and the host tissue [35].
herefore, the high interconnectivity of the implant is extremely
mportant for the success of the bone defect repairment. Fig. 11
epresents the trend of the matrix porosity and interconnectivity
s a function of these two processing parameters.

Although the temperature effect is not as pronounced as the
ressure effect we can observe a slight decrease in the porosity of
he samples prepared at higher temperatures. A possible explana-
ion for this is the fact that at lower temperatures the demixing
rocess is slower and so is the growth of droplets of the polymer

ean phase which is translated in a higher average pore size.
The pressure effect is more related to the solvent power of car-
on dioxide. As pressure decreases, there is a reduction in the
arbon dioxide density and therefore a reduction in the solvent
ower of CO2. At lower pressures, the affinity of the sc CO2 to the
rganic solvent decreases and the cell size increases because of
he formation of a larger quantity of the polymer lean phase. Fur-
PLA 30:70 at 100 bar and 55 ◦C, and (c) SPLA 50:50 at 100 bar and 45 ◦C.

thermore, higher pressures result in a compression of the matrixes.
For this reason, the scaffolds prepared at 200 bar present a lower
porosity.

3.2. SPLA (30:70 wt%) scaffolds

Another commercial blend of SPLA (30:70 wt%), with a higher
content in PLLA was tested. Fig. 12 presents the SEM images of a
cross-section of the scaffolds prepared with 10 wt% at 100 bar and
45 and 55 ◦C. When analysing these cross-sections no substantial
differences are observed from samples prepared at 45 ◦C or 55 ◦C.

Comparing the matrixes from SPLA (30:70 wt%) and SPLA
(50:50 wt%) it becomes clear that a higher content in PLLA leads to
the production of a more heterogeneous matrix with bigger porous.

We can conclude from the results that the morphology of the
porous structures obtained in blends of starch and PLLA is highly
dependent on the composition. Therefore, this parameter can be
used to produce scaffolds with different porosities and pore sizes,
tailored for a particular application.

4. Conclusions

In this work, the feasibility of preparing porous structures of
a natural-based polymeric systems using supercritical assisted
phase-inversion method was evaluated.

Different parameters that influence the process were tested.
Scaffolds prepared with SPLA 50:50 wt% show that a bicontinuous
structure if formed which indicates that the mechanism govern-
ing the precipitation of these interconnected pore structures is
the spinodal decomposition. However, this is still object of dis-
cussion and another hypothesis is that the bicontinuous structures
are a result of coalescence of polymer poor droplets generated by
bimodal decomposition. The initial concentration of polymer solu-
tion does not affect the porosity of the scaffolds produced however,
the thickness of the samples can be tunned when this parameter is
varied.

From the results obtained it is possible to conclude that pressure

is the parameter that most affect the porosity, interconnectivity
and pore size of the structure prepared. A comparison between the
matrixes prepared at different temperatures demonstrates that this
parameter does not play an important role in the morphology or
porosity of the scaffolds prepared.
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Blends of SPLA 50:50 wt% and 30:70 wt% were processed, how-
ver the presence of a much higher concentration of PLLA in the
lend produces structures exhibiting bigger and more heteroge-
eous pores.

The preparation of a highly porous and interconnected struc-
ure of a starch-based material using a clean and environmentally
riendly technology constitutes a new processing technology for the
reparation of scaffolds for tissue engineering using these materi-
ls. We believe that such methodology could be adapted to prepare
orous structures using other natural-based polymeric systems.
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