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Abstract

Recent research has focused on the links between long memory and structural change, stress-

ing the long memory properties that may arise in models with parameter changes. In this paper,

we contribute to this research by comparing the forecasting abilities of long memory and Markov

switching models. Two approaches are employed: a Monte Carlo study and an empirical com-

parison, using the quarterly Consumer Price in‡ation rate in Portugal in the period 1968-1998.

Although long memory models may capture some in-sample features of the data, when shifts occur

in the series considered, their forecast performance is relatively poor, when compared with simple

linear and Markov switching models. Moreover, our …ndings, in a more general framework, are

in accordance with the works of Clements and Hendry (1998) and Clements and Krolzig (1998),

reinforcing the idea that simple linear time series models remain useful tools for prediction.
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1 Introduction

There has been a considerable interest in long memory and structural change in time series, as wit-

nessed by the remarkable growth of the theoretical and empirical research on these issues over the

last years. However, only recently have econometricians begun to consider the relationships between

the two seemingly distinct phenomena. Indeed, Diebold and Inoue (1999), Granger and Teräsvirta

(1999) and Granger and Hyung (1999) show analytically and via Monte Carlo that models with struc-

tural change may exhibit long memory properties. Earlier, Hidalgo and Robinson (1996) developed a

test for structural change in a long memory context, which has not been much used in practice (see,

however, the work of Bos, Franses and Ooms, 1998).

What are the implications of these results for forecasting? Since long memory and structural

breaks may be hard to distinguish in practice, we investigate whether a long memory approach will be

”robust” to structural breaks in a time series, in terms of providing useful forecasts for …nancial and

macroeconomic data. The question of the relative forecast performance of long memory and structural

change models has not (to our knowledge) been addressed yet.

Therefore, in this paper we compare the univariate forecast accuracy of one type of structural

change model, the Markov Switching (MS) model, and fractionally integrated ARMA (ARFIMA)

models . We conduct our analysis by means of Monte Carlo simulations and empirically, by investi-

gating the ability of the two methods to forecast the in‡ation rate in Portugal. It is interesting to

use in‡ation rates for this comparison, since we may …nd di¤erent means and variances for di¤erent

periods in these series, but we also may use long memory models to account for their persistence.

Other structural change models may have been considered, but we stress the MS speci…cation, since

it is a widely used approach to model changes in parameters.

In a related study, Clements and Krolzig (1998) claim that, although non-linear models (including

the MS model) may be superior in capturing some features of the data, their forecast performance is

not superior to more simple linear time series models. Moreover, Clements and Hendry (1998) argue

that some types of linear models may be robust to structural breaks, in terms of their ability to

circumvent forecast failure. These authors compared the prediction accuracy of several linear models

when the data generating process (DGP) produced a single change in the mean.

Nevertheless, none of these works considered the more general linear ARFIMA model. Since
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long memory and regime shifts are intimately related and may easily be confused in many empirical

situations, it is of obvious interest to assess how long memory models behave in terms of forecasting

when time series su¤er regime shifts1. Therefore, our paper may be viewed as the implementation of

the ideas in Diebold and Inoue (1999), inter alia, to forecasting problems and as a complement to the

studies of Clements and Hendry (1998) and Clements and Krolzig (1998).

In the Monte Carlo experiment, we extend the simulations in Clements and Hendry (1998) by

including long memory and MS models and evaluating their forecast accuracy under di¤erent DGP’s

with parameter changes. Concerning our empirical illustration, we use MS and ARFIMA speci…cations

to model the empirical path of the in‡ation rate in Portugal and then evaluate their forecast perfor-

mance in a simple out-of-sample forecast comparison. This is carried out on a data set of seasonally

unadjusted quarterly observations of Consumer Price in‡ation for the period 1968:1-1998:4. We re…ne

our early Monte Carlo study with further simulations, using empirical estimates as parameter values

for the DGP. Obviously, by focusing on univariate methods we are simplifying our analysis, mainly

for expositional simplicity. Nevertheless, this may be viewed as a …rst approximation to more evolved

forecasting practices, since univariate forecasts are usually taken as benchmarks for later comparisons2.

The paper proceeds as follows. In section 2, we brie‡y review modelling and forecasting with

ARFIMA and Markov switching models, introducing de…nitions and notation, and consider why struc-

tural breaks may cause the appearance of long memory characteristics in a given time series. The

next section presents a set of Monte Carlo simulations and results. Section 4 discusses empirical as-

pects of our example, including a forecasting exercise, complemented by Monte Carlo analysis in the

next section. Finally, section 6 provides some discussion and conclusions. All unreported results are

available upon request.

2 Long Memory and Structural Change Models

2.1 Fractional ARIMA Models

Long memory in time series econometrics has been the subject of many studies, and recent surveys

of the literature may be found in Baillie (1996), for example. Fractional integration, as in Granger

(1980) and Granger and Joyeux (1980), aims to circumvent some of the limitations of integer analysis

1Although ”spurious long memory” may arise in this situation (as stressed by Granger and Teräsvirta, 1999 and

Granger and Hyung, 1999), an ARFIMA speci…cation may still be a useful tool for forecasting.
2See Stock and Watson (1999) for a recent discussion on forecasting in‡ation.
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of ARIMA models. A fractionally integrated ARMA process yt may be represented by

©(L)(1 ¡ L)dyt = £(L)"t; "t » i:i:d:(0; ¾2) (1)

where d is a parameter that assumes a non-integer value in the di¤erence operator, (1 ¡ L)d. The

fractional di¤erencing operator is de…ned by the binomial expansion

(1 ¡ L)d =
1X

i=0

Ã
d

i

!
(¡L)i; (2)

or (1¡L)d = 1¡dL+d(d¡ 1)=2!L2¡d(d¡ 1)(d¡2)=3!L3+ :::, for d > ¡1. The process is stationary

and invertible if the roots of the autoregressive polynomial of order p, ©(L) = 1 ¡ Á1L ¡ ::: ¡ ÁpL
p;

and of the moving-average part of order q, £(L) = 1 + µ1L + ::: + µqL
q; lie outside the unit circle,

with jdj < 0:5. Obviously, the ARFIMA model generalizes the traditional ARIMA representation with

integer values for d.

Long memory is traditionally de…ned in the time domain, characterized by a hyperbolically de-

caying autocorrelation function, with ½y(k) = ak2d¡1 as k ! 1, or alternatively, in the frequency

domain, where in the lowest frequencies the spectrum is fy(!) » c!¡2d; when ! ! 0: It is also noted

that a process is I(d) ( for d > 0) if the variance of the partial sum process ST =
PT
t=1 yt is of order

O(T 2d+1) as T ! 1: The process yt exhibits long memory for d 2 (0; 1); being covariance-stationary

if d < 0:5 and still mean-reverting if d < 1: This contrasts with stationary, I(0); ARMA, or ”short

memory”, processes, where dependence tends to be dissipated geometrically with time, meaning that

shocks have a temporary e¤ect in the process. In its turn, I(1) processes are not mean-reverting,

wherefore shocks have permanent e¤ects. Fractional ARMA models are, thus, an intermediate and

‡exible form of analyzing time series.

Several methods have been proposed to estimate the parameter d and the remaining parameters

of the ARFIMA speci…cation, either in the time or in the frequency domain. See Geweke and Porter-

Hudak (1983, hereafter GPH), Fox and Taqqu (1986) and Sowell (1992), among others, and Baillie

(1996) for comparisons and discussion of small sample properties.

Concerning prediction from ARFIMA processes, this is usually carried out by using an in…nite

autoregressive representation of (1), written as ¦(L)yt = "t; or

yt =
1X

j=1

¼jyt¡j + "t; (3)

where
Q

(L) = (1 ¡ ¼1L ¡ ¼2L2 ¡ :::) = ©(L)(1 ¡ L)d£(L)¡1. This form obviously needs truncation

after k lags, but unfortunately there is no solution on how to proceed in this case. The truncation
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problem will also be related to the forecast horizon considered in the predictions (see Crato and Ray,

1996).

2.2 Markov Switching Models

The importance of non-linearities (along with structural changes) in economic series has always been

debated in the literature. The discussion was further intensi…ed since Hamilton (1989) proposed his

autoregressive Markov switching model to analyze US GNP growth rate. It o¤ers a powerful and

‡exible instrument to characterize macroeconomic ‡uctuations, by accommodating asymmetries and

changes in the behavior of economic time series. Several extensions and generalizations have been

presented, see Kim and Nelson (1998), inter alia, for a survey.

Consider, for simplicity, the …rst-order autoregressive Markov switching model with two regimes,

MS(2)-AR(1),

yt ¡ ¹(st) = Á[yt¡1 ¡ ¹(st¡1)] + ¾(st)"t; (4)

where "t » n:i:d:(0; 1). Here, st is a binary random variable in S = f1; 2g, indicating the unobserved

regime or state driving the process at date t. To complete the speci…cation of the model, it is postulated

that fstg is a stationary …rst-order Markov chain in S with transition matrix P = (pij), where

pij = Pr(st = jjst¡1 = i); i; j 2 S: (5)

Furthermore, it is assumed that fstg is independent of f"tg. Therefore, the mean ¹(st) and the

variance of the innovation "t switch between two states according to an unobserved Markov chain. It

is also possible to consider a more general speci…cation, where the dynamic components, namely the

autoregressive coe¢cients, are allowed to depend on st.

Estimation of the parameters of the model, µ = f¹(st); ¾
2(st); Á; pijg; is carried out by maximizing

the likelihood function of the MS-AR model. It involves recursive computation of probabilities about

the unobserved regimes and obtaining µ̂ that maximizes the log-likelihood function. This may be

achieved through numerical optimization or using the EM procedure (see Hamilton, 1994 and Kim

and Nelson, 1998, for more details).

In terms of forecasting, the MS speci…cation allows to obtain forecasts in an easy fashion. To

construct forecasts for the regime probabilities conditional on past values of yt (Yt), let P denote the

matrix of transition probabilities for N states and let

^̧
0

t =

�
p(st = 1jYt) p(st = 2jYt) ¢ ¢ ¢ p(st = N jYt)

¸
(6)
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be the vector containing the inference about the current state (the …ltered probabilities). The opti-

mal h-step-ahead prediction for the probabilities of the unobserved state conditional on information

available at date t is given by ^̧
0

t+hjt = ^̧
0

tP
h or,

Pr(st+h = jjYt) =
NX

j=1

Pr(st+h = jjst = i)Pr(st = ijYt): (7)

On the other hand, to construct forecasts for the observed series fyg, we calculate the conditional

expectation E(yt+hjtjYt) as

E(yt+hjtjYt) =
NX

j=1

Pr(st+h = jjYt)E(yt+hjYt; st+h = j); (8)

meaning that the forecast for each regime is multiplied by the corresponding probability that the

process will be in that regime and the sum of these products will form the forecast for yt+h: For the

simple MS(2)-AR(1) model in (4), the second term in the summation is ¹(st+h)+Á[yt+h¡1¡¹(st+h¡1)],

so we have

ŷt+hjt = ¹̂(st+hjt) + Á[ŷt+h¡1jt ¡ ¹̂(st+h¡1jt)];

where ¹̂(st+hjt) =
P2
j=1 ¹j Pr(st+h = jjYt) = ~¹ and, thus,

ŷt+hjt = ¹̂(1 ¡ Áh) + Áhyt: (9)

Of course, this recursion could be easily extended to more complicated models (see Hamilton, 1994).

2.3 Long Memory in Markov Switching Models

As mentioned in the introduction, some recent papers deal with the relationship between long memory

and structural change, namely stochastic regime switching. Diebold and Inoue (1999), Granger and

Hyung (1999) and Granger and Teräsvirta (1999) analyzed several cases with stochastic parameter

shifts, by looking at the behavior of the autocorrelations of the processes (or by deducing the rate

of growth of the variance of partial sums of the processes), showing that they may be described

asymptotically as an I(d) process. The key idea behind this result is the following: as the frequency

of regime switching decreases (that is, as p11 and p22 approach unity in the Markov switching case),

the process will closely resemble a fractionally integrated series. Complementarily, the size of the

structural breaks will also be a factor, since a similar e¤ect will arise for larger magnitudes of breaks.

This can be easily veri…ed by considering an example with the simple two-regimes …rst-order au-

toregressive Markov switching model in (4), yt¡¹(st) = Á[yt¡1¡¹(st¡1)]+¾(st)"t; : The corresponding
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population autocorrelation function is given by

½T;k =
¼1¼2(¹1 ¡ ¹2)

2vec(P k)v1 + Ák¼0(Ik ¡ Á2B)¡1¾s
(¼1¹1 + ¼2¹2)

2 + (¼1¾21 + ¼2¾22)(1 + Á2)¡1
; (10)

where ¼j represents the ergodic probability of staying in regime j (j = 1; 2); ¼ = [¼1; ¼2] v1 =

[¼2;¡¼2; ¼1;¡¼1] ; ¾s =
£
¾21; ¾

2
2

¤
; ¹j and ¾2j are the state dependent means and variances, Ik is a

k-dimensional identity matrix and B is the matrix of transition probabilities for the ”time reversed”

Markov chain (see Timmermann, 2000, Proposition 2 and 4). Setting ¾21 = ¾22 = 1, p11 = p22 =

(0:95; 0:98; 0:99), ¹1 = 1 and considering distinct values for ¹2 (i.e., di¤erent magnitudes of shifts)

and Á, we calculated the autocorrelation function up to k = 50: From the results presented in Table

1, it is possible to observe that the rate of decay of the autocorrelations slows down as the transition

probabilities, the size of the shift and the autoregressive parameter increase. Even after 50 lags,

the autocorrelations are non-negligible. This means that a stationary I(0) process as this Markov

switching-mean model generates substantial persistence and, in certain cases3, may be easily confused

with a random walk. See Timmermann (2000, Section 6) and Nunes et al. (1997).

Furthermore, accounting for eventual shifts in the process has the e¤ect of reducing the estimated

fractional integration parameter, d̂, according to Bos, Franses and Ooms (1998) and Granger and

Hyung (1999), which indicates that long memory may arise due to neglected shifts. However, Granger

and Hyung (1999) argue that a ”spurious break”-type of phenomenon4 may appear when trying to

estimate the number of breaks of an I(d) process with no breaks. For instance, using a Schwarz-

Bayesian criterion approach to estimate the number of breaks will lead asymptotically to an in…nite

number of breaks being estimated, except for d = 0, where the correct number of breaks (none)

is consistently estimated. Therefore, these results seem to point that the issue ”long memory vs.

structural breaks” is just an intermediate form of the controversy ”unit roots vs. structural breaks”.

An interesting feature of the way optimal prediction rules are constructed from MS models is that

it can be decomposed into linear and non-linear contributions to the forecast. The contribution of the

MS structure depends on the magnitude of the regime shifts and on the persistence of the regimes,

given by p11 + p22 ¡ 1 (see Clements and Krolzig, 1998, pp. 70-71). Thus, for small breaks and

less persistent regimes, a forecast from a MS model will be generated in a way that will resemble a

linear prediction rule. On the other hand, it is expected that a MS model will perform better when

the regimes are more persistent and for larger breaks. Note, however, that these same factors that

favor prediction from MS models are central for the result that a MS process will display long memory
3Such as the case of large permanent changes.
4See Nunes et al ( 1997).
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properties. Hence, this adds relevance to our study, since it will be interesting to assess if the empirical

similarities between the two models will continue to hold in terms of forecasting.

3 Monte Carlo Study

In order to compare the relative merits of long memory and MS models, we designed a set of simple

Monte Carlo simulations. As with all Monte Carlo experiments, there is always an inevitable speci…city

concerning the DGP’s and the obtained results. However, we stress what is essential to our case, that

is, magnitude and frequency of parameter switching, as discussed in the previous section. To simplify,

the variance is kept constant.

Hence, we base our simulations on the DGP studied by Clements and Hendry (1998). We consider

the simple switching-mean process

yt = ¹t + "t; t = 1; :::; T (11)

where we assume that "t » n:i:d:(0; 1) and ¹t evolves as

¹t =

8
><
>:

¹1;

¹2;

t � ¿

t > ¿
; (12)

where ¿ is a exogenously …xed break point. In our experiments, ¹1 is always 1, while we allow ¹2

to take on di¤erent values, in this case ¹2 = (2; 5; 10): The case ¹2 = 10 corresponds to the DGP

analyzed in Clements and Hendry (1998), but we also wish to consider other empirically relevant shift

magnitudes. For simplicity, we let ¿ = T=2 and we generate T = 100 plus h = 16 random observations

in each replication, where the last h observations are held back for the forecast simulation.

Another interesting situation that merits attention is when structural change occurs in the fore-

casting period. It is of great interest to see how di¤erent models may be ”robust”, in terms of adapting

their forecasts to a change outside the sample period. Thus, we modify the previous DGP by assuming

that

¹t =

8
>>>><
>>>>:

¹1;

¹2;

¹3;

t � ¿

¿ < t � T + h=2

t > T + h=2

; (13)

which introduces a second break in the middle of the forecasting period. We focus on the empirically

more plausible values for ¹2; i.e., (2, 5). When ¹2 = 2; we let ¹3 = (1; 3), and when ¹2 = 5; ¹3 is

allowed to take the values (1; 9):
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Finally, we specify a Markov switching DGP where ¹t now depends on a stationary …rst-order

Markov chain fstg; independent of f"tg. The values for ¹2 are taken from (2; 5), and in our simula-

tions, the values of the transition probabilities are taken from (p11; p22) 2 f(0:95; 0:95); (0:99; 0:99)g.

We attempt here to experiment di¤erent settings for the pij’s without neglecting their empirical con-

gruence. The variance is the same for the two regimes. For this speci…c DGP, we consider a sample size

of 200 observations, given the persistence in the regimes we are considering.. In all experiments, the

number of replications was 5000 and the criterion used for comparisons is the forecast mean-squared

error (FMSE).

For comparison purposes, we consider di¤erent types and classes of models. In each replication, we

…t a simple Markov switching-mean model, ARFIMA (0; d; 0) and ARFIMA (1; d; 0) models, a random

walk (RW) and an integrated moving-average model (IMA), and compute the respective forecasts. This

last model (IMA) was found to be one of the most robust forecasting devices by Clements and Hendry

(1998). We tried di¤erent speci…cations for the ARFIMA models, but in general the ones considered

here worked better in terms of forecasting. Prediction for the ARFIMA’s from (3) was conducted with

k = 10: Regarding the estimation method, we adopted the frequency domain estimator of Fox and

Taqqu (1986) throughout the paper5. All results were obtained using routines written in GAUSS.

Tables 2 to 3 show the results of the simulations for the three DGP’s under study. An overall

conclusion, in line with what the literature implies, is that for larger magnitudes of shifts one gets

higher estimates for d. That also leads to a decrease in the predictive ability for all models. Our

experiments also allow us to conclude that the IMA model is the best predictor for most of the DGP’s

under study, which reinforces the result in Clements and Hendry (1998)6. On the other hand, the

ARFIMA speci…cations are not, in general, robust predictors. Although their ability to forecast for

shorter periods is reasonable, it rapidly deteriorates and, on average, it is even worse than the RW.

Relatively to the MS approach, it is generally superior to the ARFIMA’s, and occasionally better than

the IMA, especially for shorter forecasting periods.

The conclusions for each DGP are not very distinct from what was outlined above. Nevertheless, it

is worth mentioning that for the DGP in (13), an upward shift in the mean will worsen the predictive

ability of all models (except for the IMA, where the di¤erence is negligible), when compared to a

”reverting” shift. In this last case, the ARFIMA’s are to be preferred to the other models, but

5Again, we tried di¤erent procedures, such as the GPH estimator (see Geweke and Porter-Hudak, 1983) and the exact

maximum likelihood method of Sowell (1992), but the one we adopted seemed to do better.
6This may be explained by the fact that the MA component captures the previous error, thus improving the forecast

comparatively with the RW with no MA component.
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are clearly worse in the …rst situation. As for the MS DGP in (14), we observe that less frequent

switching improves the performance of all models. Curiously, the average d̂ decreases slightly in this

situation (see notes of Table 3), although the estimates are not signi…cantly di¤erent for pij = 0:95

and pij = 0:99 (i = j). Overall, the IMA model is still the best, while the ARFIMA’s improve their

relative performance in this DGP. The MS becomes relatively more inaccurate when the shift is larger,

which is in contradiction to what might be expected.

4 The In‡ation Rate in Portugal: an Empirical Example

In this section, we analyze, in a simpli…ed manner, the univariate properties of the quarterly CPI

in‡ation rate in Portugal for the sample period 1968:1-1999:4. The series is constructed by taking

…rst-di¤erences and logs of the CPI. It is evident from Figure 1 that the series displays seasonality

and clear changes in the mean and variance. For simplicity, we will abstract from the problems posed

by seasonality and concentrate on the other features of the data7. For this period, some major events

in Portugal led to changes in economic policy and substantial ‡uctuations in the in‡ation rate: the

two oil shocks, the democratic Revolution with the subsequent loss of its colonies (1974, 1975), two

agreements with the International Monetary Fund, the entry in the European Economic Community

(in 1986) and, later, in the European Monetary System (in 1992), among others.

Indeed, prior knowledge about the economic conditions in distinct periods and observation of the

series supports the hypothesis of di¤erent regimes. On the other hand, these events led to an increased

persistence in the in‡ation rate in Portugal, when compared to other European countries. In fact,

the series shows the typical behavior of a series with long memory, with a very slow return to a low

in‡ation regime after a big shock, so one may expect a high estimate for the order of integration.

Long memory models have been successfully applied to model in‡ation rates in several industrial-

ized countries. Hassler and Wolters (1995) found evidence that many in‡ation rates are neither I(0)

nor I(1), having estimated a fractional order of integration of around 0.5. Bos, Franses and Ooms

(1998) consider long memory and level shifts to explain the behavior of US in‡ation rate. See also

Ooms and Doornik (1999) for an application to US and UK in‡ation rates, including forecasting, and

Baillie, Chung and Tieslau (1996).

In turn, MS models are particularly suitable to analyze some of the dynamic features of in‡ation

rates, namely capturing the apparent changes in mean and variance. Regime shifts in in‡ation rates

7We considered di¤erent methods to account for seasonality, but the results of our subsequent analysis did not change

qualitatively.
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have been studied utilizing a variety of speci…cations with MS. Garcia and Perron (1996) explored

the possibility of more than two regimes in the in‡ation rate process. Evans and Wachtel (1993) and

Kim (1994), for example, used richer speci…cations of the basic MS model to study the link between

in‡ation and uncertainty, accounting for possible changing (conditional) heteroskedasticity of in‡ation

rates. We will not, however, consider these models in our analysis.

Before proceeding with the forecasting exercise, we present in Table 4 some tests concerning the

properties of the data. Di¤erent unit root tests (ADF, Phillips-Perron and DF-GLS as in Elliott,

Rothenberg and Stock, 1996) and the KPSS stationarity test are computed, and they do not agree

on whether there is a unit root in the in‡ation rate or not. However, both type of tests are known to

have their performance a¤ected by the presence of breaks. Furthermore, when testing for structural

change using the procedures de…ned in Andrews (1993), there is clear evidence of breaks in the series.

On the other hand, the estimation of the order of integration d also allows for testing whether

the series is I(0) or I(1). Looking at the estimates of d and respective standard errors (Table 5),

using di¤erent estimation methods, it can easily be seen that both the I(0) and I(1) hypothesis are

rejected8. Therefore, it is di¢cult to state clearly how the process behaves in the considered sample

period. Note that d̂ in the ARFIMA (0; d; 0) is less than, but close to, 0.5, which is consistent with the

evidence provided in Hassler and Wolters (1995) for the in‡ation rates of other countries9. However,

introducing an autoregressive component induces an increase in the estimated d.

Regarding the estimation of MS models, we present in Table 5 results for three distinct speci…ca-

tions: the simple MS model, the widely used MS(2)-AR(4) model and the three-regime model proposed

by Garcia and Perron (1996) for the in‡ation rate. Each model clearly point to di¤erent means and

variances within the sample period10. Moreover, the estimated transition probabilities indicate that

the regimes are quite persistent. Therefore, it is not surprising to …nd evidence of long memory in the

series, considering the results in Diebold and Inoue (1999), inter alia.

Turning to the forecast comparison, in terms of FMSE and forecast mean absolute error (FMAE),

we include again the RW and IMA models in the results presented in Table 6. We observe that no single

model dominates the others, with the MS(2)-AR(4) predicting better for a 4-period forecast horizon,

while the MS(3)-AR(2) does well for 16-steps forecasts. It is interesting to highlight the performance

8The results are for the period 1968:1-1998:4, that is, retaining 4 observations for prediction. Holding back 16

observations does not change substantially the previous results, so they are not shown.
9The estimates of d range from approximately 0.3 to 0.7 using other estimation methods.

10One could test the speci…cation of the MS models using the tests proposed in Hansen (1992), for example, but since

that is not our main concern, we disregarded the matter.
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of the ARFIMA (1; d; 0) model, which ranks second for the shorter horizon and a tied-second with the

IMA model for the longer horizon. The simplest ARFIMA (0; d; 0) also works well, ranking fourth for

each prediction period. Using di¤erent lags for the prediction rule of the ARFIMA models did not

alter the results substantially, since the ¼j ’s from (3) approach zero very quickly. Curiously, the worst

model was the simple MS model, perhaps meaning that extra (autoregressive) parameters are needed

to account for the dynamics in the series.

5 Further Monte Carlo Analysis

In this section, we re…ne our previous Monte Carlo simulations by taking an empirical model of the

in‡ation rate as the DGP. Although the arti…cial DGP is useful in this context, it is preferable to use

more economically meaningful estimated models, even if these only o¤er a poor approximation to the

true DGP. This practice also permits to control for sampling variability of a one-shot type of forecast

comparison as in the previous section, with the empirical example.

Having considered this, we base our DGP in this experiment on the simple MS model, since it

provides a simple, yet rough, description of the data, by estimating changes in mean and variance.

However, we restrict the break points to be those obtained from observing the …ltered regime proba-

bilities for the simple MS model. Furthermore, we consider a smaller value for the variance of the last

regime, which is in accordance with what is observed in the series.

Thus, the DGP is given by yt = ¹t + ¾t"t; with

¹t =

8
>>>><
>>>>:

¹1 = 1:8; ¾21 = 2;

¹2 = 5:2; ¾22 = 8;

¹3 = 1:8; ¾23 = 1;

t � 24

24 < t � 74

t > 74

:

We generate 5000 series of 128 observations, retaining 16 observations for forecasts comparisons. While

this DGP is not truly a MS process (there is no Markov chain behind it), it may be viewed as one

with …xed break points.

As expected , the MS model does relatively well, since it is the closest to the speci…ed DGP (see

Table 7). However, the IMA model performs even better, which, again, is not surprising, given the

results in Clements and Hendry (1998) and our previous simulations. As for the ARFIMA models,

although they provide reasonable forecasts for shorter periods, their performance quickly deteriorates

as the forecast horizon increases, which is line with the results we get from the other Monte Carlo

study. Of course, for other plausible DGPs, the results and the ranking could be di¤erent.
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6 Conclusion

Forecasting is a quite di¢cult task, which becomes even more complicated in a rapidly changing world,

where structural changes may occur. Recent studies have focused on this issue, and the aim of this

paper is to provide further insight to the problem. Given that economic time series usually display

high persistence and signs of structural breaks, it is natural to try to compare distinct modelling and

forecasting methodologies, which try to address the di¤erent features of the data. By looking at the

forecast performance of ARFIMA, MS and simple linear models, we tried to assess whether these

approaches are ‡exible enough to cope with changes in parameters.

Although long memory models may capture some in-sample features of the data, we found that,

when shifts occur in the series we considered, their forecast performance is relatively poor when

compared with IMA and MS models. Moreover, our …ndings, in a more general framework, are in

accordance with what Clements and Hendry (1998) and Clements and Krolzig (1998) claim, that is,

that simple linear time series models remain useful tools for prediction.

Obviously, the results in our paper are speci…c to the empirical data and the Monte Carlo design

we have chosen. It would be useful to look at other situations and data, for instance …nancial data,

where both long memory and structural change models are commonly used. On the other hand, it

would also be interesting to analyze how these results would carry over other forecast settings, namely

multivariate forecasting.
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7 Appendix

TABLE 1 - Autocorrelation function of an autoregressive Markov switching-mean model

p11 = p22 = 0:95

Á = 0:2 Á = 0:5 Á = 0:9

¹2 2 5 10 2 5 10 2 5 10

k = 1 0.336 0.755 0.866 0.563 0.80 0.875 0.90 0.90 0.90

10 0.068 0.277 0.332 0.056 0.262 0.327 0.349 0.349 0.349

20 0.235 0.097 0.116 0.019 0.091 0.114 0.122 0.122 0.122

50 0.001 0.004 0.005 0.001 0.004 0.005 0.005 0.005 0.005

p11 = p22 = 0:98

Á = 0:2 Á = 0:5 Á = 0:9

¹2 2 5 10 2 5 10 2 5 10

k = 1 0.347 0.803 0.923 0.573 0.845 0.932 0.903 0.926 0.947

10 0.129 0.528 0.632 0.106 0.499 0.624 0.363 0.485 0.60

20 0.086 0.351 0.42 0.07 0.332 0.415 0.136 0.259 0.376

50 0.025 0.103 0.124 0.021 0.097 0.122 0.011 0.059 0.104

p11 = p22 = 0:99

Á = 0:2 Á = 0:5 Á = 0:9

¹2 2 5 10 2 5 10 2 5 10

k = 1 0.351 0.819 0.942 0.576 0.86 0.95 0.904 0.935 0.963

10 0.158 0.648 0.777 0.13 0.613 0.767 0.37 0.551 0.72

20 0.129 0.53 0.635 0.105 0.501 0.626 0.146 0.357 0.555

50 0.07 0.289 0.346 0.058 0.273 0.342 0.021 0.16 0.29
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TABLE 2 a)11- Monte Carlo FMSE from DGP (12) and (13) with ¹2 = 2

(0; d; 0) (1; d; 0) RW IMA MS(2)

h NB

1 1:540 1:384 2:000 1:069 0:974

2 1:815 1:523 2:052 1:075 0:979

3 2:082 1:687 2:050 1:072 1:015

4 2:300 1:829 2:027 1:053 1:085

5 2:534 2:013 2:053 1:062 1:020

6 2:751 2:188 2:117 1:084 1:134

7 2:908 2:312 2:123 1:060 1:094

8 3:087 2:458 2:211 1:055 1:116

9 3:194 2:547 2:183 1:051 1:145

10 3:479 2:804 2:239 1:069 1:089

11 3:617 2:936 2:216 1:069 1:149

12 3:770 3:086 2:285 1:091 1:285

13 3:957 3:266 2:341 1:065 1:243

14 4:110 3:422 2:287 1:046 1:318

15 4:115 3:460 2:330 1:076 1:236

16 4:256 3:612 2:372 1:067 1:375

Average 3:094 2:532 2:180 1:067 1:141

¹3 = 1 ¹3 = 3 ¹3 = 1 ¹3 = 3 ¹3 = 1 ¹3 = 3 ¹3 = 1 ¹3 = 3 ¹3 = 1 ¹3 = 3

9 1:242 7:146 1:089 6:004 3:438 2:926 2:089 2:013 14:828 1:794

10 1:348 7:611 1:159 6:449 3:455 3:023 2:047 2:091 14:559 1:865

11 1:396 7:839 1:191 6:681 3:473 2:958 2:068 2:071 14:420 1:959

12 1:462 8:077 1:242 6:929 3:569 3:001 2:096 2:086 13:936 1:949

13 1:528 8:386 1:283 7:249 3:602 3:079 2:026 2:103 13:319 1:791

14 1:581 8:640 1:321 7:522 3:538 3:037 1:976 2:116 13:296 1:887

15 1:601 8:629 1:356 7:564 3:676 2:983 2:082 2:071 13:419 1:823

16 1:656 8:857 1:403 7:822 3:706 3:038 2:039 2:095 12:780 1:842

Average 1:464 8:148 1:256 7:028 3:557 3:006 2:053 2:081 13:820 1:864

11The values in the row ”Average” represents the means of each column; The reported FMSE’s are obtained considering

the 5000 replications; NB represents ”no break” in the forecasting period;

From the 5000 replications the following results were obtained for the main parameters: mean d = 0:357 (s.e.= 0:050);

mean p11 = 0:989 (s.e.= 0:010); mean p22 = 0:989 (s.e.= 0:014):17



TABLE 2 b)12- Monte Carlo FMSE from DGP (12) and (13) with ¹2 = 5

(0; d; 0) (1; d; 0) RW IMA MS(2)

h NB

1 1:596 1:443 2:003 1:210 0:975

2 1:792 1:529 2:060 1:224 0:987

3 2:101 1:584 2:065 1:218 1:033

4 2:447 1:672 2:052 1:191 1:117

5 2:874 1:832 2:091 1:203 1:085

6 3:336 2:014 2:173 1:230 1:218

7 3:771 2:164 2:203 1:201 1:192

8 4:267 2:358 2:314 1:216 1:251

9 4:682 2:490 2:327 1:197 1:281

10 5:365 2:820 2:396 1:222 1:282

11 5:866 3:022 2:413 1:210 1:383

12 6:447 3:293 2:520 1:239 1:561

13 7:112 3:607 2:599 1:218 1:593

14 7:717 3:889 2:574 1:187 1:707

15 8:129 4:081 2:694 1:212 1:639

16 8:789 4:414 2:769 1:207 1:857

Average 4:768 2:638 2:328 1:211 1:322

¹3 = 1 ¹3 = 9 ¹3 = 1 ¹3 = 9 ¹3 = 1 ¹3 = 9 ¹3 = 1 ¹3 = 9 ¹3 = 1 ¹3 = 9

9 5:691 35:673 9:677 27:303 21:532 15:121 17:460 16:934 17:414 18:069

10 5:022 37:708 9:007 28:632 21:685 15:108 17:243 17:201 16:966 18:859

11 4:533 39:198 8:552 29:492 22:109 14:716 17:314 17:105 16:601 19:363

12 4:115 40:779 8:127 30:458 22:566 14:474 17:368 17:110 15:997 19:988

13 3:631 42:592 7:569 31:646 22:796 14:401 17:174 17:261 15:173 20:632

14 3:182 44:252 7:044 32:734 22:970 14:178 17:016 17:357 15:007 20:929

15 3:012 45:246 6:877 33:285 23:717 13:670 17:345 17:079 15:008 20:786

16 2:694 46:884 6:432 34:396 23:983 13:555 17:205 17:209 14:208 21:776

Average 3:985 41:542 7:910 30:993 22:670 14:403 17:266 17:157 15:797 20:050

12See notes of Table 2 a).

From the 5000 replications the following results were obtained for the main parameters: mean d = 0:665 (s.e.= 0:042);

mean p11 = 0:989 (s.e.= 0:005); mean p22 = 0:989 (s.e.= 0:004):
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TABLE 2 c)13- Monte Carlo FMSE from DGP (12) and (13) with ¹2 = 10

(0; d; 0) (1; d; 0) RW IMA MS(2)

h NB

1 1:740 1:689 2:012 1:420 0:980

2 1:768 1:726 2:089 1:443 1:014

3 1:866 1:723 2:127 1:432 1:104

4 2:005 1:734 2:159 1:396 1:210

5 2:228 1:819 2:256 1:410 1:258

6 2:516 1:932 2:414 1:438 1:451

7 2:787 2:013 2:535 1:411 1:482

8 3:131 2:142 2:748 1:443 1:662

9 3:412 2:209 2:898 1:412 1:759

10 3:934 2:424 3:067 1:442 1:902

11 4:309 2:543 3:235 1:415 2:119

12 4:802 2:738 3:501 1:447 2:459

13 5:376 2:980 3:719 1:443 2:687

14 5:889 3:169 3:851 1:401 2:934

15 6:306 3:317 4:219 1:417 2:960

16 6:967 3:560 4:475 1:421 3:456

Average 3:689 2:357 2:956 1:424 1:902

13See notes of Table 2 a).

From the 5000 replications the following results were obtained for the main parameters: mean d = 0:862 (s.e.= 0:038);

mean p11 = 0:990 (s.e.= 0:001); mean p22 = 0:990 (s.e.= 0:001):
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TABLE 3 a) 14- Monte Carlo FMSE from DGP (14) with T = 200; ¹2 = 2

h (0; d; 0) (1; d; 0) RW IMA MS(2)

0:95 0:99 0:95 0:99 0:95 0:99 0:95 0:99 0:95 0:99

1 1:461 1:424 1:379 1:323 2:021 1:976 1:205 1:100 1:503 1:638

2 1:674 1:642 1:505 1:438 2:112 2:018 1:253 1:150 1:507 1:564

3 1:843 1:822 1:631 1:570 2:158 2:046 1:273 1:160 1:569 1:620

4 1:968 1:969 1:725 1:674 2:214 2:077 1:286 1:155 1:589 1:622

5 2:164 2:161 1:882 1:823 2:261 2:085 1:311 1:151 1:670 1:656

6 2:218 2:210 1:929 1:862 2:324 2:116 1:305 1:129 1:660 1:588

7 2:340 2:333 2:033 1:967 2:342 2:111 1:320 1:152 1:676 1:621

8 2:349 2:332 2:045 1:967 2:323 2:065 1:278 1:100 1:660 1:548

9 2:560 2:548 2:233 2:167 2:377 2:142 1:318 1:157 1:772 1:601

10 2:697 2:712 2:367 2:328 2:442 2:246 1:358 1:206 1:847 1:670

11 2:740 2:721 2:408 2:336 2:452 2:216 1:352 1:193 1:868 1:641

12 2:894 2:865 2:557 2:473 2:495 2:226 1:373 1:178 1:939 1:654

13 2:953 2:962 2:628 2:583 2:504 2:254 1:390 1:228 2:003 1:692

14 3:053 3:018 2:736 2:648 2:595 2:296 1:415 1:210 2:083 1:690

15 3:090 3:107 2:786 2:751 2:541 2:270 1:404 1:232 2:090 1:735

16 3:147 3:151 2:862 2:832 2:706 2:709 1:466 1:501 1:925 1:297

Average 2:446 2:436 2:169 2:108 2:366 2:178 1:331 1:187 1:772 1:614

14The values in the row ”Average” represents the means of each column; The reported FMSE’s are obtained considering

the 5000 replications; The notation 0:95 and 0:99 in the second row represents (p11; p22) = (0:95; 0:95) and (p11; p22) =

(0:99; 0:99) respectively.

From the 5000 replications the following results were obtained:

For 0:95; mean d = 0:334 (s.e.= 0:040);

For 0:99; mean d = 0:319 (s.e.= 0:058);
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TABLE 3 b) 15- Monte Carlo FMSE from DGP (14) with T = 200; ¹2 = 5

h (0; d; 0) (1; d; 0) RW IMA MS(2)

0:95 0:99 0:95 0:99 0:95 0:99 0:95 0:99 0:95 0:99

1 2:362 1:692 2:399 1:594 2:808 2:118 2:350 1:474 8:238 10:405

2 3:057 2:048 3:129 1:863 3:614 2:304 3:036 1:682 8:245 9:938

3 3:603 2:389 3:713 2:081 4:270 2:469 3:587 1:800 8:100 9:958

4 4:169 2:822 4:280 2:377 4:969 2:692 4:186 1:978 7:925 9:808

5 4:675 3:238 4:786 2:634 5:490 2:818 4:623 2:103 7:985 9:955

6 5:052 3:495 5:186 2:782 6:037 2:975 5:069 2:166 7:790 9:792

7 5:523 3:901 5:635 3:041 6:576 3:143 5:539 2:366 7:863 9:900

8 5:790 4:103 5:927 3:144 6:933 3:192 5:816 2:366 7:753 9:383

9 6:216 4:647 6:312 3:547 7:285 3:501 6:095 2:644 7:901 9:462

10 6:568 5:130 6:636 3:891 7:567 3:751 6:307 2:847 8:035 9:427

11 6:804 5:310 6:894 3:979 7:876 3:859 6:525 2:916 8:073 9:088

12 7:224 5:710 7:300 4:212 8:242 3:944 6:826 2:949 8:233 9:184

13 7:390 6:124 7:443 4:499 8:370 4:108 6:898 3:115 8:339 9:002

14 7:791 6:477 7:862 4:742 8:842 4:329 7:230 3:242 8:610 9:168

15 7:899 6:854 7:951 5:014 8:903 4:445 7:270 3:368 8:565 9:083

16 7:840 7:079 7:958 5:146 9:471 4:583 7:010 3:602 8:208 9:048

Average 5:748 4:438 5:838 3:409 6:723 3:389 5:522 2:538 8:116 9:537

15See notes of Table 3 a).

From the 5000 replications the following results were obtained:

For 0:95; mean d = 0:636 (s.e.= 0:052);

For 0:99; mean d = 0:570 (s.e.= 0:122):
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TABLE 4 16- Unit Roots, Stationarity and Structural Changes Tests for the In‡ation Rate in

Portugal

ADF ¡2:222

PP-Z® ¡75:673¤¤

PP-Zt ¡7:618¤¤

KPSS 0:761¤¤

DF-GLS ¡2:229

sup-F 422:431¤¤

avg-F 40:295¤¤

exp-F 285:884¤¤

16The lag length for the ADF and DF-GLS tests is selected according to a t-test downward selection procedure, by

setting the maximum lag equal to 8 and then testing downward until a signi…cant last lag is found, at the 5% level.. For

the Phillips-Perron and KPSS tests, the long run variance is estimated by means of a quadratic spectral kernel with an

automatically selected bandwidth estimator; ¤ - 5% signi…cant statistic; ¤¤ - 1% signi…cant statistic;
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TABLE 5 17- Estimation Results for the In‡ation Rate in Portugal (1968:1 - 1998:4)

(0; d; 0) (1; d; 0) MS(2) MS(2) ¡ AR(4) MS(3) ¡ AR(2)

d 0:477
(0:055)

0:712
(0:08)

Á ¡0:469
(0:094)

¾2 2:565
(0:163)

2:396
(0:152)

¹1 1:776
(0:171)

1:335
(0:586)

0:883
(0:126)

¹2 5:227
(0:42)

4:854
(0:845)

2:33
(0:203)

¹3 5:251
(0:377)

¾21 2:025
(0:349)

0:582
(0:121)

0:405
(0:121)

¾22 7:96
(1:599)

7:953
(1:465)

2:104
(0:476)

¾23 7:875
(1:625)

p11 0:989
(0:012)

0:97
(0:024)

0:952
(0:04)

p22 0:973
(0:022)

0:973
(0:021)

0:969
(0:024)

p33 0:972
(0:031)

17Standard errors in brackets.
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TABLE 6 - Forecasting Performance for the In‡ation Rate in Portugal

Forecast period 4 16

Models FMSE FMAE FMSE FMAE

(0; d; 0) 0:358 0:57 0:398 0:479

(1; d; 0) 0:273 0:457 0:308 0:422

RW 0:725 0:668 0:541 0:577

IMA 0:338 0:529 0:301 0:495

MS(2) ¡ AR(4) 0:242 0:437 0:557 0:636

MS(3) ¡ AR(2) 0:561 0:611 0:248 0:394

MS(2) 1:832 1:227 1:554 1:149
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TABLE 7 18- Monte Carlo FMSE for the empirical-based DGP

h (0; d; 0) (1; d; 0) RW IMA MS(2)

1 1:455 1:334 2:037 1:130 1:188

2 1:608 1:408 2:033 1:122 1:146

3 1:818 1:532 2:076 1:150 1:156

4 1:956 1:608 2:082 1:129 1:127

5 2:129 1:729 2:114 1:129 1:133

6 2:299 1:857 2:146 1:154 1:139

7 2:410 1:928 2:154 1:120 1:168

8 2:554 2:040 2:131 1:100 1:231

9 2:632 2:108 2:189 1:114 1:185

10 2:879 2:321 2:213 1:139 1:179

11 3:015 2:431 2:236 1:137 1:226

12 3:104 2:511 2:229 1:094 1:227

13 3:204 2:610 2:274 1:106 1:217

14 3:299 2:700 2:246 1:098 1:234

15 3:323 2:741 2:297 1:107 1:295

16 3:555 2:964 2:383 1:140 1:246

Average 2:577 2:114 2:178 1:123 1:194

18From the 5000 replications the following results were obtained for the main parameters: mean d = 0:388 (s.e.= 0:053);

mean p11 = 0:983 (s.e.= 0:021); mean p22 = 0:968 (s.e.= 0:031):
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Figure 1: In‡ation Rate in Portugal
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