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Abstract: Chitosan coated alginate beads containing poly(N-isopropylacrylamide) (PNI-

PAAM), were prepared to be used as a controlled pH/temperature sensitive drug delivery

system with improved encapsulation efficiency and delayed release rate. The studied beads

were characterized by differential scanning calorimetry, scanning electron microscopy, and

Fourier transform infrared spectroscopy. Water uptake and release studies using indometha-

cin as a model drug were also performed. The drug loading efficiency of the beads with the

polyelectrolyte complex coating is significantly higher (84%) than that of the uncoated ones

(74%). The equilibrium swelling of the developed materials was found to be pH- and thermo-

responsive. For all the conditions it was found that the release profile was slower for the coated

beads, indicating that the polyelectrolyte complex coating could slow down the release rate

effectively. These results suggest that the studied smart system has potential to be used as an

effective pH/temperature sustainable delivery system for biomedical applications. ' 2007 Wiley

Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 84B: 595–603, 2008
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INTRODUCTION

Recently, there has been a great deal of research activity in

the development of stimulus-responsive polymeric hydro-

gels. These hydrogels respond to external or internal stimuli

and the response can be observed through abrupt changes in

the physical nature of the network.1,2 Among these systems,

pH or temperature responsive hydrogels have been exten-

sively studied in the biomedical field because these two fac-

tors can be easily controlled and applicable both in vitro and

in vivo conditions.3–5

Much research has been done to associate biopolymers

(such as alginate and chitosan) with thermo-sensitive macro-

molecules in an attempt to prepare matrixes that present a

dual and independent sensitivity to both pH and temperature.

Poly(N-isopropylacrylamide), PNIPAAM, is one of the most

widely studied temperature sensitive polymers, exhibiting a

temperature-dependent volume phase transition at lower crit-

ical solution temperature (LCST) around 328C.6–8 Many

studies concerning alginate/PNIPAAM dual responsive

hydrogels have been reported.5,9–11 However, relatively little

work has been reported on the potential of both pH and tem-

perature sensitivity in these systems, to control effectively

the delivery of bioactive agents. In fact, such systems pres-

ent both an independent and mutual influence of temperature

and pH on the swelling and drug release of the system.12–14

For instance, the presence of a thermo-responsive material

in the developed system affects itself the pH response

of the pH responsive material, even when the thermo-sensi-

tive material is above the LCST. Moreover, the LCST

can be adjusted to obtain a desired swelling/drug release

profile.12–14

The temperature/pH responsive drug release behavior of

the calcium (Ca)-alginate/PNIPAAM semi-interpenetrating

(semi-IPN) beads were discussed in our former article.15

However, the relatively low drug encapsulation efficiency

and the high release rate of the Ca-alginate/PNIPAAM sys-

tem were the main limitations of this dual-stimuli-responsive

drug delivery system.

Chitosan, a polysaccharide derived from chitin by alka-

line deacetylation, has been proposed as a useful excipient

for either sustained release of water-soluble drugs and for

enhancing the bioavailability of poorly water-soluble com-

pounds. To achieve sufficient stability, chitosan gel beads

are often chemically cross-linked with glutaraldehyde and
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ethylene glycol diglycidyl ether.16,17 However, residues of

theses compounds in the chitosan beads may induce undesir-

able side effects. Recently, polyelectrolyte complexes have

been proposed for the design of drug delivery systems.18–25

The term ‘‘polyelectrolyte’’ is used for polymers carrying

covalently bound anionic or cationic groups, and low molec-

ular ‘‘counterions’’ securing for electroneutrality.26 A poly-

electrolyte complex can be prepared by the formation of

complexes resulting from the interaction of oppositely

charged polyelectrolytes. For instance, cationic chitosan can

form gels with nontoxic multivalent anionic counterions,

such as polyphosphate and sodium alginate, by ionic interac-

tions.

In the present work, we prepared chitosan coated alginate

beads containing PNIPAAM based on the electrostatic interac-

tion between the carboxylate groups of alginate and the ammo-

nium groups of chitosan. This procedure is an attempt to

improve encapsulation efficiency and delay the release behav-

ior and by this way overcome the main limitations of the pre-

viously reported temperature and pH-responsive Ca-alginate/

PNIPAAM beads.15 Such effects of electrostatic barriers have

been reported by some authors for pH-responsive beads.18,19

On the other hand, as the beads described in this study contain

a chitosan coating it is necessary to analyze if their pH/temper-

ature response is different than the response corresponding to

the former system, which does not contain chitosan. So, the

equilibrium swelling behavior of these modified beads (com-

pared to unaltered alginate-PNIPAAM beads), as well as their

performance as a drug delivery system, is investigated as a

function of both pH and temperature. It should be mentioned

that the LCST of the developed systems, which is around

318C, could be adjusted to around 378C or even higher tem-

peratures in a future work. Such systems could be physiologi-

cally relevant, for instance, for targeted drug release of solid

tumors in the intestinal track: (1) the drug administrated orally

can bypass the acidity of gastric fluids without liberating sub-

stantial amounts of drug and go into the intestinal fluids (neu-

tral conditions); (2) the tumor is subjected to local

hyperthermia (typically between 37 and 428C), which triggers

drug release.

MATERIALS AND METHODS

Materials

N-isopropylacrylamide (NIPAAM, Acros Chem.), ammo-

nium persulfate (APS, Sigma Chem.), N,N,N0,N0-tetramethy-

lethylenediamine (TEMED, Sigma Chem.), ‘‘low viscosity’’

sodium alginate (viscosity of 2% solution at 258C ¼
250 cps, Sigma Chem.), chitosan (medium molecular

weight, 85% degree of deacetylation, Sigma Chem.), and in-

domethacin (Fluka Chem.) were used as received.

Synthesis of PNIPAAM

Poly(N-isopropylacrylamide), PNIPAAM, was prepared by

redox polymerization as reported elsewhere.10 Briefly, an

aqueous solution was prepared by dissolving 35.3 mmol of

N-isopropylacrylamide and 1.35 mmol of ammonium persul-

fate in 45 mL deionized water. The solution was then purged

with nitrogen during 30 min to induce oxygen expulsion.

Afterwards, 0.267 mmol of TEMED was added. The poly-

merization was carried out at room temperature for 7 h.

After the reaction, the product was purified by precipitation

in hot water and dissolved in water repeatedly. The resultant

product was dried in air overnight and then vacuum dried at

408C for 24 h.

Preparation of Uncoated Beads

The aqueous solutions of 1.5% alginate (w/v) and PNI-

PAAM were mixed in the composition of PNIPAAM: algi-

nate ¼ 1:3 (w/w). About 20% (w/w) of indomethacin

(relatively to the total weights of alginate and PNIPAAM)

were added into the above solution. Thereafter, the solution

was extruded in the form of droplets using a syringe into 3%

CaCl2 (w/v) solution under stirring at 200 rpm. The smooth,

spherical, and homogenous beads obtained were kept for

30 min in CaCl2 solution under stirring. After crosslinking,

the beads were washed with deionized water repeatedly. The

resultant beads were dried in air overnight and then vacuum

dried at 408C for 24 h.

Preparation of Chitosan Coated Alginate Beads

The chitosan coated alginate beads were prepared based on

the procedure referred in other works.18,19 A homogeneous

mixture of 1.5% (w/v) sodium alginate, PNIPAAM [PNI-

PAAM: alginate ¼ 1:3 (w/w)], and 20% (w/w) of indometh-

acin (relatively to the total weights of alginate and

PNIPAAM) were dissolved in deionized water. The pH was

adjusted to 5.5 6 0.1 by adding HCl solution (1M) to the

earlier mixture. Homogeneous aqueous solutions of chitosan

in 1% (v/v) acetic acid (0.2% and 0.4%) containing 3%

CaCl2 were used as coagulation fluid. The solution was

mixed for 1.5 h before use. The pH of the coagulation fluids

was adjusted to 4.5 6 0.1 by adding NaOH solution (1M) to

the earlier coagulation fluids. Thereafter, the mixture of algi-

nate, PNIPAAM, and indomethacin were extruded in the

form of droplets using a syringe into coagulation fluid under

mechanical stirring at 200 rpm. The smooth, spherical, and

homogenous beads obtained were kept for 60 min in CaCl2
solution under stirring. The resultant beads were washed

once with deionized water and transferred into a 0.08% (w/

v) chitosan solution (previously obtained by dissolving 0.08

g of chitosan in 100 mL of 1% (v/v) acetic acid) for 30 min,

then incubated in a 0.08% (w/v) alginate solution (previ-

ously prepared by dissolving 0.08 g of alginate in 100 mL of

deionized water) for 30 min and at last put into 0.5% CaCl2
solution for 30 min. The beads were washed with deionized

water repeatedly. The resultant beads were dried in air over-

night and then vacuum dried at 408C for 24 h.
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Scanning Electron Microscopy

The morphology of the beads was examined by scanning

electron microscopy (SEM) (Leica Cambridge S 360) at an

accelerated voltage of 15 kV. Before being observed by

SEM, the beads were gold coated using a Hitachi coating

unit IB-2 coater at 6 mA.

Fourier Transform Infrared Spectroscopy

The Fourier transform infrared spectroscopy (FTIR) spectra

of the samples were recorded with a double-beam Perkin-

Elmer 1600 FTIR spectrometer in the range of 4000–

400 cm�1 using KBr pellets.

Determination of LCST

Differential scanning calorimetry (DSC) measurements

(Setaram DSC 131) were conducted to determine the LCST

of the uncoated semi-IPN and coated semi-IPN beads. First,

all the beads were immersed in deionized water at room tem-

perature and allowed to swell for 24 h. Then, the DSC analy-

sis of the swollen beads was performed from 26 to 448C at

38C/min and under a nitrogen flow of 20 cm3/min. Tempera-

ture and heat flow calibrations were carried out using a pure

indium standard at the same heating rate of the experiments.

Swelling Studies

The swelling behavior of the beads was studied in phosphate

buffer solutions (PBS) with two different pH, 2.1 and 7.4

(similar to that of gastric and intestinal fluids, respectively),

and at two temperatures, 25 and 378C. At predetermined

time intervals, the swollen beads were weighed after wiped

with soft paper tissue. The measurements were repeated at

least three times, for each condition. The degree of swelling

for each sample was calculated by using the following

expression: Swelling ratio ¼ (Ws � Wd)/Wd, where Ws and

Wd are the weight of the swollen beads and that of the dried

beads, respectively.

Determination of Indomethacin Encapsulation
Efficiency of the Beads

The beads (10 mg) were dissolved in 100 mL of PBS (pH

7.4, containing 5% (v/v) ethanol) under stirring during 24 h.

The amount of free indomethacin was determined in the

clear supernatant by UV spectrophotometry at 320 nm using

a calibration curve constructed from a series of indometha-

cin solutions with standard concentrations. Such experiments

allow the calculation of both the loading efficiency and the

loading content. The loading efficiency is defined as the

weight percentage of loaded drug based on feed amount and

the loading content is the weight percentage of drug rela-

tively to the beads.

In Vitro Release Studies

The beads (10 mg) were suspended in 50 mL of PBS (pH

7.4 or 2.1). This dissolution medium was stirred at 50 rpm in

a horizontal laboratory shaker and maintained at 378C or

258C. The sample (2 mL) was periodically removed and the

withdrawn sample was replaced by the same volume of fresh

medium. These experiments were performed at least three

times. The amount of released indomethacin was analyzed

with a spectrophotometer as described previously.

RESULTS

Characterization of the Beads

Three kinds of beads were prepared as listed in Table I. The

wet beads just after preparation were found to be globular in

shape; but upon drying in air at room temperature the sphe-

ricity was very much lost, as it is evident from SEM result

of dried beads (Figure 1). It can be noted from Figure 1 that

the beads are about 800–1000 mm in size and not spherical

in shape. It appeared that the incorporation of chitosan in the

Ca-alginate/PNIPAAM beads has greatly altered the surface

texture of the beads [Figure 1(c–f)], when compared with

the uncoated beads [Figure 1(a,b)]. For the uncoated beads

[Figure 1(a,b)], the surface is found to be rougher than for

the coated ones.

Figure 2 shows the FTIR spectra for alginate, chitosan,

and the studied beads. By looking at Figure 2, it can be seen

that the chemical structure of the beads is similar to alginate,

which is the major fraction in the composition of the beads.

For the studied beads, the characteristic peak of PNIPAAM

at 1650 cm�1 (amide I) cannot be observed because of the

strong peak of alginate at 1620 cm�1, but a shoulder peak

can be found at 1540 cm�1 associated to the amide II group

of PNIPAAM. Additionally, the peak that appeared at

1365 cm�1 was assigned to the methyl group of PNI-

TABLE I. Composition, LCST, and Drug Loading Efficiency of the Studied Beads

Sample

Chitosan

Concentration

in Coagulation

Fluid (%) LCSTa (8C)

Drug

Percent

(Feed, %)

Drug Content

(mg/10 mg

Beads)

Loading

Content (%)

Loading

Efficiency (%)

A uncoated 30.7 6 0.1 20 1.24 6 0.03 14.8 6 0.23 74.2 6 1.15

B 0.2 31.1 6 0.1 20 1.41 6 0.03 16.9 6 0.27 85.6 6 1.20

C 0.4 31.1 6 0.2 20 1.40 6 0.02 16.8 6 0.21 83.8 6 1.05

adetermined by DSC measurements.
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PAAM.27 The peaks at 1688 cm�1 and 1070 cm�1, which

can be seen for the coated beads, are due to the presence of

chitosan (see Discussion Section).

It can be observed from Table I that the loading efficiency

of the uncoated beads is around 74%, while the values for

the two coated beads are all around 84%. The drug within

the coated beads seems to be more tightly entrapped as a

result of the strong complex formed between the carboxylate

groups of alginate and the protonated amine groups of chito-

san.

LCST of the Beads

The LCST of the studied beads was determined by DSC

measurements (Figure 3). The values of the onset tempera-

ture of the peaks (defined as LCST) are shown in Table I.

The LCST was found to be around 318C for all the beads,

which is very close to the LCST of pure PNIPAAM. We

also observed that the color of the studied beads in PBS (pH

Figure 1. SEM micrographs of uncoated beads (a) and its surface morphology (b), chitosan (0.2%)

coated alginate beads (c) and its surface morphology (d), chitosan (0.4%) coated alginate beads (e)

and its surface morphology (f).

Figure 2. FTIR spectra of the studied semi-IPN beads (see Table I
for the correspondence of the codes A, B, and C).
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7.4) turned from almost colorless to white, when the temper-

ature increased from below the LCST to above the LCST;

this is in line with previous observations in similar sys-

tems.9,15

Swelling Study

Figure 4 shows the swelling behavior of the beads at differ-

ent pH values and temperatures. The coated beads have a

swelling property similar to alginate, since the fraction of al-

ginate in the resultant beads is much higher than chitosan (as

demonstrated by FTIR results). Figure 4 shows an obviously

higher swelling degree at higher pH for all the beads. The

mean values (and standard deviations) corresponding to

the distinct samples can be found in Table II. Regarding

the modifications in the swelling behavior after coating

(Table II and Figure 4) it can be observed that the swelling

ratio at pH 7.4 changes from �30% to �41% (258C) and

from �32% to �48% (378C); at pH 2.1 the swelling ratio

increases from �11% to �16% (either at 258C or 378C).
Analysis by a Student’s t-test showed that the differences

between the swelling ratio of the coated and uncoated beads

are statistically significant (greater than 95% confidence)

both at pH 7.4 and 2.1. The p values were in the range

0.001–0.005 at pH 7.4 and varied between 0.02 and 0.04 at

pH 2.1. So, we can say that the swelling ratio of the coated

beads is higher than the one corresponding to the uncoated

ones both at pH 7.4 and 2.1. Moreover, at pH 7.4 the swel-

ling ratio of the coated beads is significantly higher at 378C
than at 258C. Regarding the coated beads, the small differen-

ces in their swelling behavior are not statistically significant

(p value > 0.1).

An interesting property of the coated beads observed in

our experiments is that they could keep intact during

240 min at pH 7.4 even though the swelling ratio is very

high, while the uncoated beads can only maintain their integ-

rity for about 180 min at the same conditions.

Drug Release Study

Figure 5 shows the indomethacin release profiles of the stud-

ied beads at 378C and pH 7.4. These results suggest that the

amount of indomethacin released can be delayed in the

coated beads. A Student’s t-test analysis was conducted to

support the previous statement. The p values obtained in the

comparison between the data of sample A and sample B or

C were in the range 0.001–0.048 for the time period between

60 and 180 min, i.e., the difference between the data of sam-

ple A and samples B/C is statistically significant (greater

than 95% confidence) for the considered time period. The

release amount reaches 90% within 180 min for the uncoated

beads, while a drug release of 90% will take almost 270 min

for the coated beads.

Figure 6 presents the drug release behavior at 378C for all

the samples at pH 2.1 and pH 7.4. A significant pH-depend-

Figure 3. Temperature dependence of the normalized heat flow for

the studied beads (see Table I for the correspondence of the codes

A, B, and C) as studied by DSC from heating experiments at 38C/
min.

Figure 4. Temperature- and pH- dependent changes of equilibrium

swelling ratio for the studied beads (see Table I for the correspon-

dence of the codes A, B, and C).

TABLE II. Temperature- and pH- Dependent Changes of
Equilibrium Swelling Ratio for the Studied Beads

pH 7.4 pH 2.1

258C 378C 258C 378C

A

Average value 30.0 32.0 11.0 11.5

Standard deviation 1.7 1.9 0.6 1.0

B

Average value 41.5 49.5 16.6 15.3

Standard deviation 1.7 2.1 1.1 1.2

C

Average value 41.0 46.5 16.1 15.2

Standard deviation 1.9 2.2 1.0 0.9
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ent response can be observed for both coated beads, which is

similar to the release behavior of the uncoated ones

described in a previous article.15 The release behavior at pH

2.1 is characterized by an initial burst after which a very

slow release is observed. It can also be noted from Figure 6

that the release amount of the coated beads (about 3%) is

lower than for the uncoated one (about 10%) at pH 2.1.

Analysis by a Student’s t-test showed that the differences

between these results are statistically significant. The p val-

ues obtained in the comparison between the data of sample

A and sample B/C were in the range 0.0003–0.04. It should

be pointed that indomethacin solubility in acidic conditions

is much lower than in neutral solutions. Therefore besides

the response of alginate to pH, clearly detected in swelling

(Figure 4), the release profile may also be dependent on pH

due to the different solubility of indomethacin.28

Figure 7 shows the drug release profiles from samples in

a buffer solution of pH 7.4 at 378C and 258C. A temperature

dependent response can be observed for both coated beads:

higher release rates are obtained at 378C, while lower release
rates can be observed at 258C. It can also be observed that

for the coated beads the drug release rate seems to be lower

than for the uncoated one at pH 7.4 and 258C. Student’s t-
test analysis showed that the difference between the release

of sample A and samples B and C is statistically different

for times higher than 180 min (p values between 0.002 and

0.03). For the referred time period, the drug release was 7–

25% higher for sample A than for samples B and C.

It should be pointed that no statistically significant differ-

ences were found in the drug release behavior at different

pH and temperatures between the two coated beads (p value

> 0.1).

DISCUSSION

Characterization of the Beads

The change in the texture of the outer surface for the coated

beads [Figure 1(c–f)] when compared with the texture of the

uncoated ones [Figure 1(a,b)] should be related to the forma-

tion of a polyelectrolyte complex coating between alginate

and chitosan. We expect that this skin layer could reduce the

loss of entrapped indomethacin during the preparation pro-

cess, delaying the release of the drug in the following drug

release experiments. The roughness observed for the

uncoated beads probably results from the aggregation of in-

domethacin. Moreover, it seems that the surface texture of

the coated beads is not affected by the different chitosan

concentrations used in this study, because there are no

obvious differences between Figures 1d and 1f.

Compared to the characteristic adsorption peaks of algi-

nate and chitosan from the FTIR spectra of studied beads

Figure 5. Release profiles of indomethacin from the studied beads
(see Table I for the correspondence of the codes A, B, and C)

measured at 378C and pH 7.4.

Figure 6. pH-dependent release profiles of indomethacin at 378C
from the studied beads (see Table I for the correspondence of the
codes A, B, and C) measured at pH 2.1 and 7.4.

Figure 7. Temperature-dependent release profiles of indomethacin
from the studied beads (see Table I for the correspondence of the

codes A, B, and C) at pH 7.4 measured at 258C and 378C.

600 SHI, ALVES, AND MANO

Journal of Biomedical Materials Research Part B: Applied Biomaterials
DOI 10.1002/jbmb



(Figure 2), one can easily find that the chemical structure of

the beads is similar to alginate. This result indicated that

most of the bound chitosan was accumulated only at the sur-

face due to the hindrance of macromolecular chitosan from

further diffusing into the inner core.20 For the uncoated

beads (sample A), the characteristic peak of alginate is seen

at 1620 cm�1 corresponding to the carbonyl (C¼¼O) bond.

After coating, the peak of 1620 cm�1 was replaced by a new

broad band (1601 cm�1), as a result of the interaction

between the negatively charged ��COO� groups of alginate

(cross-linked with CaCl2) and the positively charged

��NH3
þ groups of chitosan. Additionally, two new peaks at

1688 cm�1 and 1070 cm�1 can be seen for all the coated

beads, which can be explained in terms of the unreacted chi-

tosan.22,29 These peaks are derived, respectively, from the

peaks of 1665 cm�1 and 1079 cm�1 of chitosan. The slight

shifts in the position of these peaks for the coated samples

could be attributed to the electrostatic interaction between

the carboxylate groups of alginate and the ammonium

groups of chitosan after reaction. These results suggest the

formation of a chitosan-alginate complex as a result of the

ionic interaction.

As suggested from SEM results (Figure 1), the drug on

the outer surface of the beads is covered by the polyelectro-

lyte complex membrane, which inhibits the loss of the

entrapped drug during the gelling and washing processes. As

a result, more indomethacin could remain in the beads. An

increased load of other drugs in chitosan-coated alginate

beads has also been reported.18,19,23,30 It can also be noted

from Table I that the chitosan concentration has little effect

on the loading efficiency. So, the electrostatic interaction

between chitosan and alginate tightens and stabilizes the sur-

face of the beads. This means that polyelectrolyte complex

coatings can improve the encapsulation yield effectively in

such kind of systems.

LCST of the Beads

When a swollen PNIPAAM hydrogel is heated above the

LCST, the PNIPAAM chains collapse and this is accompa-

nied by a drastic contraction of the gel.6,8 This behavior can

be explained by the reversible formation (below LCST) and

cleavage (above LCST) of the hydrogen bonds between

��NH and C¼¼O groups of PNIPAAM chains and the sur-

rounding water molecules.31 The LCST results listed in

Table I indicates that there is no chemical bond or other

strong interactions between the PNIPAAM fraction and the

other components of the system, which could change the bal-

ance between hydrophobic and hydrophilic interactions in

PNIPAAM.

The studied beads in PBS (pH 7.4) turned from colorless

to white when temperature changed from 25 to 378C. It was
suggested that the formation of the white core region gener-

ated above the LCST was due to the collapse and shrinkage

of the PNIPAAM network out of the semi-IPN composite

structure, which could lead to an increase of light diffusion.9

The presence of nearby physically entangled alginate and

chitosan polyelectrolyte complex chains do not affect the

collapse of the PNIPAAM chain network above the LCST.

Swelling Study

In the low pH region (pH 2.1) most of the carboxylic acid

groups in alginate are in the form of ��COOH, as the pKa of

alginate is about 3.2. The hydrogen bonds between ��COOH

in alginate and ��CONH�� in PNIPAAM leads to polymer–

polymer interactions predominating over the polymer–water

interactions. As a result, the swelling ratio of the studied

beads is relatively low. When the pH of the medium is

changed to 7.4 the carboxylic acid groups become ionized

and a small quantity of Hþ in water acts as the bridge among

alginate, resulting in the increase of the swelling ratio.32 The

higher swelling ratio presented by the coated beads when

compared with the uncoated ones, independently of pH or/

and temperature values is attributed to the presence of chito-

san at the surface. In fact chitosan by itself presents

extremely high swelling and water uptake capabilities

(�140% at neutral pH) as the work of Silva et al.33 Also, a

high temperature can help the water to penetrate into the

semi-IPN beads, which contributes to the higher swelling ra-

tio of the coated beads at 378C when compared with their

swelling at room temperature. Such observations have been

already reported before.15

Drug Release Study

A slight, but significant, delay in the drug release can be

observed for the coated beads at 378C and pH 7.4 (Figure 5).

This result is distinct from the results reported in other stud-

ies for chitosan-coated alginate beads without PNI-

PAAM,18,19,22,23 which revealed that the drug release could

be significantly delayed after coating. We expect that the dif-

ference in the release profile could be more evident in beads

coated with more layers.34 It was also observed no signifi-

cantly different drug release behavior at 378C and pH 7.4 for

beads coated with different chitosan concentration.

The relatively low release amount of the studied beads at

pH 2.1 (Figure 6) should be related to the low degree of

swelling ratio of the beads in acidic conditions as shown in

Figure 4. Although we did not expect the contribution of chi-

tosan coating, which should dissolve at pH 2.1, we were

able to observe that the coated beads exhibit a slightly

slower release profile. The amount of released drug at pH

7.4 increases significantly (about 95% within 450 min),

which can be related to the higher swelling ratio at neutral

pH compared to pH 2.1 (Figure 4). The relatively low

release amount of the coated beads (about 3%, compared to

10% for the uncoated ones) at pH 2.1 is attributed to the

polyelectrolyte complex coating. So, although chitosan itself

is expected to dissolve at pH 2.1, its dissolution may not be

complete when it forms a physical network with alginate

and/or PNIPAAM, and thus, can still provide the release bar-

rier. Therefore, in an ingestible pharmaceutical application,
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the coated beads are more efficient than the uncoated ones to

bypass the acidity of gastric fluid without liberating substan-

tial amounts of the loaded drug.

Regarding the results of Figure 7, the main reason to

explain the higher release rate at 378C and pH 7.4 is the pre-

cipitation of PNIPAAM above LCST, which leads to the

squeezing out of the drug.8,15,19 Additionally the swelling ra-

tio of the coated beads is higher at 378C than at 258C as

described in Figure 4, which can also result in a higher drug

release rate. It was also found that for the coated beads the

coating effectively decreases the drug release rate at pH 7.4

and 258C.
It must be noted that the drug release results presented

here were obtained with beads prepared with an alginate of

low viscosity and low molecular weight (2 wt % ¼ 250 cps).

In fact, different results would be probably obtained if an al-

ginate with a higher viscosity at 2 wt % (higher molecular

weight) is used, because it is expected that the resulting var-

iations in the molecular pore structure would affect the indo-

methacin diffusion. In terms of viscosity, it should be

mentioned that to prepare such kind of beads (coated or

uncoated) it is easier to use a low viscosity alginate (with

values close to the one referred in the experimental section),

otherwise it will be very difficult to extrude the mixture of

alginate, PNIPAAM, and model drug with a syringe, in the

form of droplets.

CONCLUSIONS

A pH/temperature sensitive drug delivery system, based on

chitosan coated alginate beads containing PNIPAAM, was

successfully prepared. The chitosan coating could (i)

increase the loading efficiency and (ii) marginally decrease

the release rate. Despite the chitosan coating, the alginate/

PNIPAAM beads maintained the pH- and thermo- respon-

sive behavior. The results obtained in this work could be

useful in the development of smart hydrogels for controlled

release of bioactive agents or for tissue engineering applica-

tions.
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