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 Toward Osteogenic Differentiation of 
Marrow Stromal Cells and In Vitro 
Production of Mineralized Extracellular 
Matrix onto Natural Scaffolds       

     Ana   M.   Martins   ,    Catarina   M.   Alves   ,    Rui   L.   Reis   ,    Antonios   G.   Mikos   ,
and    F.   Kurtis   Kasper           

  Tissue engineering has emerged as a new interdisciplinary field for the repair of various tissues, 
restoring their functions by using scaffolds, cells, and/or bioactive factors. A temporary scaf-
fold acts as an extracellular matrix (ECM) analog to culture cells and guide the development 
of new tissue. In this chapter, we discuss the preparation of naturally derived scaffolds of 
polysaccharide origin, the osteogenic differentiation of mesenchymal stem cells cultured on 
biomimetic calcium phosphate coatings, and the delivery of biomolecules associated with 
ECM mineralization.  

  Abbreviations  

  BMP    bone morphogenetic protein   
  BMP-2    bone morphogenetic protein-2   
  BMSC    bone marrow stromal cell   
  BMSSC    bone marrow stromal stem cell   
  CaP    calcium phosphate   
  ECM    extracellular matrix   
  FGF-1    fibroblast growth factor-1   
  FGF-2    fibroblast growth factor-2   
  IGF-2    insulin-like growth factor-2   
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  MSC    mesenchymal stem cell   
  RGD    arginine–glycine–aspartic acid   
  SBF    simulated body fluid   
  1.0 SBF    simulated body fluid (normal concentration)   
  1.5 SBF    concentrated simulated body fluid (1.5× normal concentration)   
  SPCL    blend of starch and poly( e -caprolactone)   
  TGF- b     transforming growth factor- b    
  TGF- b 1    transforming growth factor- b 1       

  13.1. Introduction  

 Bone is a dynamic, highly vascularized tissue with a unique capacity to heal and remodel 
without leaving a scar. It is the structural framework of the body and is composed of an 
inorganic mineral phase of hydroxyapatite and an organic phase of mainly type I collagen. 
Bone continuously resorbs and reforms in a remodeling process that is carried out by two 
types of bone cells: the bone-building osteoblasts and the bone-resorbing osteoclasts. Slowly 
and insidiously, bone deteriorates, losing minerals and structure. Bone injuries produced as 
a result of disease and/or trauma present a major health concern. A fracture, usually of the 
hip, wrist, or a vertebra, is often the first indication that osteoporosis has been weakening the 
bones of a patient for years  [1] . Treatment options include transplantation, surgical repair, 
prostheses, mechanical devices, and drug therapy  [2] . However, major damage to a tissue or 
organ can neither be repaired nor long-term recovery effected in a truly satisfactory way 
using these methods. 

 In this context, an emerging field of science termed “tissue engineering,” defined as an 
“interdisciplinary field that applies the principles of engineering and life sciences toward the 
development of biological substitutes that restore, maintain, or improve tissue function”  [3]  
has been gaining significant recognition. Tissue engineering uses organ-specific cells for 
seeding a scaffold ex vivo, however it may also involve the implantation of an acellular 
construct for guided tissue regeneration  [4] . Indeed, a wide range of strategies exists for tis-
sue engineering in general, and bone tissue engineering specifically. 

 Bone tissue engineering is a rapidly expanding field, full of innovative ideas for treat-
ing bone trauma and pathologies. Selection of the most appropriate material to produce a 
scaffold in bone-related applications is a very important step toward the construction of a 
tissue-engineered construct. There is an increasing interest in the production of novel scaf-
folds from renewable resources. Natural polymers are an attractive alternative to synthetic 
polymers for various clinical applications partly due to their biocompatibility and also 
because they are typically biodegraded by “normal” and/or enzymatic hydrolysis (carried out, 
in the majority of cases, by specific enzymes also present in the human body). Some of the 
advantages associated with naturally derived biomaterials are their cost effectiveness as well 
as the wide range of properties and structures attainable with these materials. A large number 
of different naturally derived biomaterials have been studied and proposed for bone tissue-
engineering applications, namely polysaccharides (chitosan, starch, alginate, hyaluronic acid, 
and cellulose, among others) and proteins (soy, collagen, and fibrin). Polysaccharides, in 
particular, have some attractive properties, such as nontoxicity (pertinent monomer residues 
are not hazardous to health), high swelling ability, and stability over a range of pH values. 

 For successful bone replacement, the ideal scaffold should be biocompatible  [5-  8]  with 
the surrounding biological fluids and tissues to avoid any detrimental tissue response. The 
scaffolding material should degrade into nontoxic residues that can be easily removed from 
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the body through normal excretion processes  [5,   6,   8,   9] . The scaffolds serve as temporary 
substrates for living cells as well as physical supports for tissue regeneration  [10] . Adequate 
surface area and appropriate surface energy are also needed to permit cell adhesion, promote 
cell proliferation, and allow retention of differentiated cell functions  [5–  8,   10] . In addition, 
sufficient mechanical stability of the scaffold material is necessary to maintain the desired 
shape and structure during cell culture in vitro and transplantation in vivo. Control of scaffold 
pore morphology is critical for controlling cell colonization rates and maintaining transport 
of oxygen, nutrients, and metabolic waste, as well as for supporting organization of the engi-
neered tissue. Furthermore, angiogenesis, a requirement for the survival and success of vas-
cularized tissues, can be affected by the porosity of the scaffold l.    Pore morphology can also 
be expected to significantly affect scaffold degradation kinetics and the mechanical proper-
ties of the developing tissue  [6,   11] . 

 The scaffolds used for tissue-engineering purposes mimic the extracellular matrix (ECM) 
of the regenerating bone environment. Thus, in addition to serving as a mechanical support, 
a tissue-engineering scaffold may also be “informative” to the cells. An ideal three-dimen-
sional (3D) construct for bone tissue engineering, above all other pertinent characteristics, 
should be simultaneously osteoinductive (capable of recruiting osteoprogenitor cells and 
stimulating their differentiation along the bone-forming cell lineage), osteoconductive (capa-
ble of supporting the formation of bone at the surface of the scaffold), and also resorbable 
and amenable to gradual replacement by newly formed bone  [12] . In the medical field, con-
sideration of biodegradation is a priority on the list of safety standards when choosing poly-
mers as potential biomaterials for tissue-engineering applications. Naturally derived materials 
have recently gained interest, as they are structurally similar to the native ECM of many tis-
sues; exhibit excellent biocompatibility; and induce minimal inflammatory response and 
tissue damage. Natural polymers may present a biologically active environment to the cells, 
since they usually contain domains that provide cues and can send important signals to guide 
cells at various stages of development  [10] . 

 A method to potentially increase the biological activity of a bone tissue-engineering 
scaffold is to coat the surface of scaffolds with calcium phosphate (CaP). One of the main 
goals of using CaP coatings on bone tissue-engineering scaffolds is to promote osteoconduc-
tion by enhancing adhesion of osteogenic cells and ingrowth of bone into porous biomaterials 
 [13] . New technologies have been developed to promote osteogenic activity of bone tissue-
engineering scaffolds. These approaches tend to integrate into the coatings osteoinductive 
or bioactive agents (e.g., enzymes and antibiotics), to immobilize constitutional elements 
of bone (e.g., growth factors, including bone morphogenetic proteins [BMPs] and other 
members of the transforming growth factor [TGF]- b  superfamily), adhesion proteins (e.g., colla-
gen, fibronectin, laminin, and vitronectin) and peptides (e.g., the arginine-glycine-aspartic 
acid [RGD] sequence) on the surface of biomaterials. Immobilization and/or delivery of 
bioactive molecules at specific sites have been exploited to enhance cell adhesion, differen-
tiation, and other cell functions as well as to promote mineralization of the ECM of the tissue-
engineered bone constructs.  

  13.2. Scaffolds of Natural Origin – Polysaccharides  

 A large number of natural polymers, including polysaccharides, have been suggested 
as candidates for the production of scaffolds for bone tissue-engineering purposes. 
Polysaccharides are relatively complex carbohydrates. They are high molecular weight poly-
mers having one or more monosaccharide repeating-units joined together by glycosidic 
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bonds. Polysaccharides tend to be amorphous and insoluble in water. Some of the main 
advantages associated with this class of polymers are wide availability, cost effectiveness, 
good hemocompatibility (probably because of their similarities with heparin), nontoxicity, 
and a wide range of properties and structures suitable for biomedical applications. These 
polymers have been proposed as scaffolds for bone tissue-engineering applications as well as 
carriers for cells and bioactive molecules (e.g., proteins, enzymes, and growth factors) for 
controlled-release systems. 

 Chitosan, starch, and alginate, three examples of polysaccharide materials, will be 
described in detail in the sections that follow. 

  13.2.1. Chitosan 

 Chitosan, a naturally derived polymer, is a partially deacetylated derivative of chitin 
found in crustacea exoskeletons (e.g., shrimp, crab, and lobster), cell walls of fungi, and 
 cuticles of insects  [14,   15] . Depending on the source and preparation procedure, the molecular 
weight of chitosan may range from 300 to more than 1,000 kDa     [11] . Chitosan is a suitable 
functional biomaterial because it is biocompatible, biodegradable, minimally immunogenic, 
nontoxic, and hydrophilic. Moreover, it has adsorption properties with remarkable affinity for 
proteins, and is not expensive  [16–  21] . Some studies report that chitosan enhanced  osteogenesis 
 [22–  24]  and improved wound healing  [25,   26] . In addition, chitosan is a hemostatic agent  [11, 
  16]  with antithrombogenic properties  [27] . It has proved to be a useful excipient in various 
drug delivery systems due to its nontoxicity, high cohesive and hydrophilic properties, and 
polycationic character resulting from primary amine groups, which provide a high charge 
density in acidic solutions (pH < 6.5)  [18,   28] . It is soluble in dilute or weak acids (such as 
acetic and formic acid), but it is normally insoluble in aqueous solutions above pH 6.5. 

 Chitosan is a binary polyheterosaccharide of  N -acetylglucosamine and glucosamine 
with a  b 1→4 linkage. The superior tissue compatibility of chitosan can be partially attributed 
to its structural similarity to glycosaminoglycans, which are major components of the ECM 
of bone and cartilage  [15,   29] . Chitosan is easily hydrolyzed by various chitosanases  [30] , 
which are completely absent in mammals, and is biodegraded in the presence of lysozyme in 
aqueous media in vitro  [17,   31–  35] ; this degradation process depends on the degree of 
deacetylation  [31] , which represents the proportion of  N -acetyl- D -glucosamine units with 
respect to the total number of units  [30] . Chitosan degradation kinetics are inversely related 
to the degree of deacetylation  [31,   32] . In vitro and in vivo, chitosan is degraded by enzy-
matic hydrolysis; the primary agent of this process is lysozyme, which targets acetylated resi-
dues  [36] . Chitosan and glucosamine, its biodegradation product, are not toxic in vivo  [37] . 
Lysozyme, or muramidase, is an enzyme that catalyzes the hydrolysis of the peptidoglycan 
layer of bacterial cell walls  [38] . This enzyme is active over a broad pH range (from 3 to 8) 
and hydrolyzes its substrates both inside and outside cells. Lysozyme is widely distributed in 
the human body  [39] . It is found in the nose, bronchus, bronchiole, middle ear, lacrimal 
gland, bone marrow, and digestive tract  [16] , and in lymphocytes; lysozyme is also secreted 
by monocytes, macrophages, and granulocytes, which are the largest source of the enzyme 
 [40,   41] . Monocytes and macrophages are the primary contributors to the lysozyme content 
in human serum  [41] ; the concentration in serum is in the range of 7–13 mg/L  [39] . The 
susceptibility of chitosan to degradation induced by lysozyme make the protein an attractive 
target for incorporation into this biodegradable material  [29,   42–  44] . 

 Incorporation of active biomolecules, such as growth factors, has been used as a highly 
beneficial strategy for improving bone regeneration in tissue-engineering applications. The 
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biological activity of chitosan on bone regeneration has been confirmed in many studies  [18,   45] . 
Chitosan can be easily fabricated into bulk porous scaffolds, films, microparticles, sponges, 
and beads. The feasibility of forming porous scaffolds permits wide application of this poly-
mer in tissue engineering. This is mainly true for bone tissue-engineering applications 
because chitosan supports osteoblast proliferation and phenotypic expression  [15] . Chitosan 
fiber meshes with appropriate mechanical properties, developed by Tuzlakoglu et al.  [46] , 
exhibited bioactivity; this is a very important aspect for biomaterials used as bone tissue-
engineering scaffolds. Martins et al.  [35]  proposed the development of chitosan-based scaf-
folds with the capability of forming porous structures in situ following attack by specific 
enzymes (namely,  a -amylase and lysozyme) present in the human body. In addition to the 
capability of forming pores in situ, other advantages these scaffolds have when compared 
with other conventional materials are their suitable mechanical properties and lack of toxic-
ity. Coutinho et al.  [47]  studied the function of an osteoblastic-like cell line (SaOs-2) on 
chitosan blends with synthetic biodegradable polymers, and reported enhanced the osteoblas-
tic activity. Costa-Pinto et al.  [48]  formulated scaffolds based on blends of chitosan and 
synthetic polyesters, and provided evidence that these scaffolds are cytocompatible. 
Furthermore, chitosan-based scaffolds promoted the attachment and proliferation of mouse 
mesenchymal stem cells (MSCs)  [48] , which exhibited high levels of alkaline phosphatase 
activity and produced a mineralized ECM  [48] .  

  13.2.2. Starch 

 Starch is one of the most abundant naturally occurring polymers with properties that 
make it attractive for several biomedical applications. Starch is found as insoluble granules 
of  a -amylose (20-30%) and amylopectin (70-80%)  [49] . Amylopectin polymers are highly 
branched structures containing (1→4)- a - D -glucose and (1→6)- a - D -glucose linkages, 
whereas amylose is much more linear with long stretches of (1→4)- a - D -glucose-linked 
monomer units. Starch is extremely difficult to process and is brittle when used without the 
addition of a plasticizer  [49] . Over the years, several other materials have been blended with 
starch to improve its processability, including several synthetic  [50–  54]  and natural polymers, 
such as polysaccharides  [35,   55]  and proteins  [56] . Reis and coworkers  [35,   57–  70]  have 
proposed use of starch-based scaffolds for biomedical applications. Starch exhibits low toxicity 
 [35,   64] , biodegradability  [35,   70–  72] , and biocompatibility  [73–  75] , which are excellent 
characteristics for bone tissue-engineering applications. Compared with other biodegradable 
polymers available, starch is inexpensive, and above all, reusable. Specific enzymes present 
in the human body, namely  a -amylase in the blood plasma, can easily degrade starch. The 
main enzymes involved in starch degradation are  a -amylases,  b -amylases,  a -glucosidases, 
and other debranching enzymes. 

 An important consideration of biodegradable materials of natural origin being consid-
ered for use in the biomedical field is the host response to the degradation products. Starch 
degradation products are oligosaccharides that can be metabolized to produce energy. Due to 
their degradation by  a -amylases, this constitutes another strategy to control and tailor the 
degradation of starch-based scaffolds. Martins et al.  [35]  developed a novel biodegradable 
matrix based on chitosan and starch, with the capability of forming a porous structure in situ 
following attack by specific enzymes (namely  a -amylase and lysozyme) present in the 
human body. These researchers showed that pore size and distribution in the chitosan matrix 
is controlled by the location of the “sacrificial” phase (i.e., native starch) that is enzymati-
cally degraded  [35] . This same study reported an interesting approach for the control of 
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matrix degradation in situ and consequent pore formation, which could result in scaffolds 
with mechanical properties appropriate for the initial stage of implantation  [35] . Martins 
et al.  [76]  also studied the influence of  a -amylase on the degradation of fiber-mesh scaffolds 
based on a blend of starch and poly( e -caprolactone) (SPCL) and demonstrated enhanced 
scaffold porosity and pore size and decreased average fiber diameter with time. Furthermore, 
culture of rat marrow stromal cells on SPCL fiber meshes (in medium supplemented with 
 a -amylase) resulted in enhanced cell proliferation  [76] .  

  13.2.3. Alginate 

 Alginate (alginic acid or algin) is a linear polyuronate containing  D -mannuronic acid 
and  L -guluronic acid that is abundant in the cell walls of brown algae. Due to the biocompa-
tibility and gelation of alginate with certain divalent cations, it is widely used for cell immo-
bilization and encapsulation. Alginate is soluble in aqueous solutions at room temperature 
and forms stable gels in the presence of calcium, barium, and strontium without chemical 
crosslinking agents  [77] ; for this reason, the viability and biological activity of entrapped 
cells and biochemical agents are maintained in alginate gels. As a biomaterial, alginate has a 
number of advantages including biocompatibility and nonimmunogenicity, which are related 
to its hydrophilicity  [78,   79] . 

 Several studies examined alginate sponges as scaffolds for tissue-engineering applica-
tions  [78]  and reported that their structural and morphological properties are appropriate for 
cell culture and proliferation as well as for neovascularization  [78] . Other studies reported 
that alginate supports synthesis of pertinent ECM components by various cell types, and 
provides an amenable environment for cell encapsulation, drug delivery, and gene delivery 
 [80] . Alginate also permits cotransplantation of multiple cell types and appropriate growth 
stimuli to promote, for example, the osteogenic phenotype  [81] . Encapsulated bone marrow 
stromal cells (BMSCs) were studied for the purpose of healing bone defects in orthopedics 
 [82] . Studies with gels containing MSCs and alginate beads loaded with vancomycin (a treat-
ment for bone infections), reported that bone marrow-derived MSCs proliferated and 
expressed alkaline phosphatase, osteopontin, and collagen 1A1 genes  [83] . Cai et al.  [84]  
reported expression of bone-specific ECM markers when they examined the ectopic bone-
forming ability of BMSCs in combination with scaffolds made from alginate gel and 
implanted subcutaneously in nude mice for 8 weeks. Moreover, hydrogels such as alginate 
are effective substrates for both two-dimensional (2D)  [85]  and 3D  [78,   85]  cell cultures, 
indicating the suitability of alginate for tissue-engineering applications.   

  13.3. CaP Biomimetic Coatings  

 Ideally, tissue-engineering scaffolds should mimic, to the greatest degree possible, the 
properties of the native target tissue in an effort to promote, direct, and control regeneration 
of a specific, desired type of tissue. The term “biomimetics” is used to describe a branch of 
science that seeks to produce such “bioinspired” materials for a variety of applications. 

 Compared with other biomaterials, CaPs have a unique characteristic for bone mim-
icry and substitution. Their composition resembles that of bone mineral; most importantly, 
they can induce a biological response similar to that generated during bone remodeling, 
which involves resorption and formation of new bone tissue  [86] . Osteoclasts are responsi-
ble for bone mineral degradation, resulting in bone resorption  [86] . During bone resorption, 
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the degradation products of CaP (calcium and phosphate ions) are naturally metabolized but 
do not cause abnormally increased calcium and phosphate levels in urine, serum, or organs 
 [87] . It should be noted that osteoclasts degrade CaP in a similar fashion as they degrade 
natural bone  [88–  90] . 

 In 1972 Hench et al.  [91]  showed that “Bioglass” (that is, glass in the Na 2 O-CaO-SiO 2 -
P 2 O 5  system), spontaneously bonded to living bone without formation of surrounding fibrous 
tissue. In the early 1990s, Kokubo and coworkers  [92,   93]  proposed that the essential require-
ment for a biomaterial to bond to living bone is the formation of bone-like apatite on the 
surface of the biomaterial when implanted in vivo. This in vivo apatite formation can be 
reproduced in vitro using simulated body fluid, which is a solution containing inorganic ion 
concentrations similar to those of human extracellular fluids but without any cells or proteins 
 [94] . Under such in vitro conditions, the formed layer consists of carbonate apatite with small 
crystallites and low crystallinity  [94] . This apatite is referred to as “bone-like apatite” due to 
its similarity to apatite present in natural bone. 

 Biomimetic methodology for coating biomaterials with a bone-like apatite layer has 
been described in several publications  [92,   95-  98] . This technique mimics the natural 
biomineralization processes, which involve controlled crystal phase nucleation and growth. 
The main advantage of the biomimetic methodology is the use of physiological conditions 
(pH 7.4 at 37°C) simulating the conditions under which apatite is formed in bone. 
Moreover, this technique allows incorporation of proteins and bioactive agents into CaP 
coatings without compromising bioactivity of the organic compounds  [96,   98–  101] . In 
1997, Reis et al.  [95]  adapted the methodology developed by Kokubo and used bioactive 
glass as a precursor to nucleation and growth of CaP films on starch-based polymers. 
Briefly, for the preparation of biomimetic CaP coatings based on the methodology previ-
ously developed by Abe et al.  [92]  and Kokubo  [93]  and adapted by Reis et al.  [95] , the 
materials under consideration were first impregnated with bioactive glass, and were then 
immersed in simulated body fluid (1.0 SBF) solution for several days at 37°C; this phase 
is known as the “nucleation stage” and allows formation of CaP nuclei. In order to acceler-
ate apatite formation, the biomaterials were subsequently immersed at 37°C in simulated 
body fluid solution (1.5 SBF) with an ionic concentration 1.5-fold greater than physiologi-
cal levels; this condition enhances CaP nuclei growth. The CaP biomimetic coatings, 
which are thus formed, exhibit osteoconductive properties that will be discussed later 
on in this chapter. 

  13.3.1. Osteoconductivity 

 Scaffolds for bone tissue engineering should be osteoconductive; that is, able to support 
formation of bone within and/or upon the scaffold. Osteoconductivity has been observed 
when porous structures were implanted into or adjacent to bone. In such cases, osteoprogeni-
tor cells migrated into pores and filled the porous structure with newly formed bone. This 
process is characterized by an initial ingrowth of fibrovascular tissue that invades the porous 
structure followed by later development of new bone directly within it  [102] . Hydroxyapatite-
based materials are osteoconductive, provided that fully differentiated osteogenic cells are 
available at the site of implantation  [12] . Adsorption of growth factors from the local milieu 
and from the blood circulation contributes to the osteoconductivity of hydroxyapatite by 
creating suitable conditions for bone formation when implanted in an osseous environment 
in vivo. Many relatively insoluble CaP materials are osteoconductive, and, in some cases, 
may induce extraskeletal new bone formation (i.e., they are osteoinductive).     AU3
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  13.3.2. Osteoinductivity 

 Osteoinduction is the process by which stem and osteoprogenitor cells are recruited 
to the bone-healing site and stimulated to undergo osteogenic differentiation  [103] . Osteo-
inductivity implies the ability of chemical compounds to induce osteogenic differentiation of 
uncommitted progenitor cells  [12] . It has been proposed that biomaterials do not have an 
osteoinductive character in the absence of appropriate osteoinductive agents, such as certain 
BMPs and other bioactive molecules  [104] . However, several studies have reported that 
some CaP biomaterials  [105-  107] , namely CaP coatings  [107,   108] , may be osteoinductive. 
These CaP biomaterials may induce bone formation at extraskeletal sites without addition of 
osteogenic cells or bioactive agents. Hydroxyapatite is not osteoinductive because it cannot 
induce osteogenic differentiation of progenitor cells when implanted in a nonosseous envi-
ronment, such as skin and muscle  [12] .  

  13.3.3. Incorporation of Biomolecules into CaP Biomimetic Coatings 

 Numerous attempts have been made to improve the osteoconductivity of biomaterials. 
Coatings of CaP expedite osteoconduction and bone ingrowth at the surface of bone substitutes 
and, therefore, are useful strategies in tissue-engineering endeavors for the regeneration of 
bone tissue. However, a methodology that enables regeneration of bone tissue should not 
only expedite osteoconduction, but also osteoinduction through biochemical pathways 
 [109–  112] . It is known that BMPs can be incorporated into CaP implants (with adequate 3D 
geometry) to promote osteogenesis  [112,   113] ; the surface of such implants, however, will be 
rapidly conditioned by several highly concentrated molecules  [114] . For this reason, other types 
of delivery-specific approaches have been investigated as alternatives that further functionalize 
and enhance the potential of CaP coatings. Specifically, the CaP biomimetic coatings have 
been used as a carrier of various molecules, including osteoinductive agents such as BMPs 
 [115–  117] , other proteins  [101,   118–  120] , enzymes  [96,   98,   101] , and antibiotics  [13,   121] . 

 Biomimetic CaP coatings, produced as described in earlier parts of this chapter, are 
deposited onto surfaces under physiological temperature and pH  [110] , enabling coprecipita-
tion and consequent incorporation of biologically active molecules  [99] . This approach cir-
cumvents difficulties common to plasma spraying techniques. By using low temperatures, 
biomimetic processes can be applied not only to highly resistant materials (e.g., metallic 
alloys) but also to polymeric and naturally derived materials (e.g., chitosan, starch, and col-
lagen) for implantation  [122] . 

 The major objective of CaP coatings is to provide appropriate biological composition 
and to improve the quality of the surfaces of various materials used for orthopedic applica-
tions. The conditions under which such a coating is prepared affect conformational stability 
of incorporated biomolecules, and thus the bioactivity and shelf-life of the final product. 
Such coatings, which are structurally and chemically comparable to the mineral component 
of bone, can possesses favorable bioactive properties that may facilitate outcomes in cases of 
critical clinical need  [13,   123] . 

 This alternative coating technique may be used to produce systems with several advan-
tages, such as reduction of burst release of incorporated molecules into the biological milieu. 
In this case, biomolecules incorporated in the inorganic phase are gradually released as the 
latticework undergoes degradation. The advent of the slow degradation of the coating modu-
lates delivery of bioactive agents. Slow release of these chemical compounds may improve 
the osteoinductive capacity of the implant material  [100,   124] . 
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 One of the potential applications of CaP coatings pertains to the incorporation of bioactive 
agents and proteins. Azevedo et al.  [101]  used a biomimetic technique and successfully 
incorporated bovine serum albumin and  a -amylase into a CaP coating on the surface of a 
starch-based polymer. In that study, the properties of the resultant biomaterial were tailored 
by judicious choice of specific enzymes and their incorporation at different compositions and 
combinations into CaP coatings that retained their bioactivity  [101] . Efficient incorporation 
of active  a -amylase into biomimetic coatings controlled the degradation rate of starch-based 
biomaterials. Similar results and applications were achieved with chitosan scaffolds after 
incorporation of lysozyme  [96,   98] . Martins et al.  [96,   98]  incorporated lysozyme into CaP 
coatings on the surface of chitosan scaffolds in order to control the degradation rate of chi-
tosan and subsequent formation of pores. Furthermore, since lysozyme has antibacterial 
properties, these coatings may be used as a carrier for its sustained release, potentially miti-
gating infection at the implantation site. Several studies reported in the literature addressed 
incorporation of BMPs into biomimetic CaP layers  [110,   116,   123,   125] . These studies indi-
cated that CaP coatings have the potential for sustained delivery of many other bioactive 
agents. Liu and coworkers  [99]  demonstrated that BMP-2 retained its osteoinductivity when 
delivered from biomimetic systems and that the osteoconductivity of implant material sur-
faces was affected by BMP-2 and its delivery mode  [123] . 

 In summary, the results discussed in this section support the strategy of adding osteoin-
ductive signaling molecules into CaP biomimetic coatings for the purpose of inducing bone 
growth.   

  13.4.  Osteogenic Differentiation of Marrow Stromal Cells and 
Mineralized ECM Production In Vitro  

 Biomaterials and scaffolds considered for bone tissue engineering are often evaluated 
in vitro for their ability to support adhesion, proliferation, and differentiation of progenitor 
cells along the osteogenic pathway prior to being evaluated in vivo. In vitro cell–scaffold 
interactions are determined using osteoblasts, osteosarcoma cell lines, and osteoprogenitor 
cells. The scaffolds used for this purpose mimic the ECM of bone and play a crucial role in 
supporting cell functions and differentiation, but may also be used to deliver biomolecules. 

 Osteoblastic differentiation of MSCs comprises cell proliferation, cell maturation, and 
matrix mineralization. During these phases, cells synthesize and secrete alkaline phosphatase, 
type I collagen, and other noncollagenous ECM proteins, such as osteocalcin, osteopontin, 
osteonectin, and bone sialoprotein. Mineralization occurs through accumulation of calcium 
and phosphorous in the ECM. 

  13.4.1. BMSCs Versus MSCs 

 The osteoprogenitor cells used for bone tissue-engineering purposes are derived from 
various tissue sources. Bone marrow stroma consists of a heterogeneous cell population that 
provides structural and physiological support for hematopoietic cells  [126] . Bone marrow 
contains three main cell types: endothelial cells, hematopoietic cells, and stromal cells. 
Friedenstein  [127,   128]  were the first to identify in bone marrow cell populations with strong 
osteogenic potential. When marrow cells are plated at low cell densities, BMSCs form colonies 
known as “colony-forming unit–fibroblasts”; this term indicates that each colony derives from 

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

CH13.indd   9CH13.indd   9 4/8/2009   8:03:47 AM4/8/2009   8:03:47 AM



10 A. M. Martins et al.

BookID 158674_ChapID 13_Proof# 1 - 8/4/2009

a single proliferating progenitor  [129] . The term “BMSCs” is applied to isolated bone marrow 
cells with potential to form connective tissues  [129] . 

 Due to their high proliferation potential, BMSCs can be expanded in culture to obtain 
large numbers of cells starting from a small sample of bone marrow aspirate. The BMSC popu-
lation contains precursor cells capable of extensive proliferation and differentiation into several 
phenotypes. Furthermore, BMSCs maintain their multipotential capacity during prolonged 
culture and multiple passages in vitro. Among these BMSCs there is a subpopulation of undif-
ferentiated multipotent cells able to generate “mesenchyme,” the mass of tissue that develops 
from the mesoderm of an embryo. This cell population is present in all postnatal tissues and is 
referred to as “MSCs”  [130,   131] . In the past, researchers working with cells from the bone 
marrow used different names to refer to the same cells. This practice lead to nomenclature 
confusion; for example, BMSCs have been referred to as multipotent adult progenitor cells, 
MSCs, bone marrow stromal stem cells (BMSSCs), and mesodermal progenitor cells  [132] . 
What is presently known is that, if appropriately induced, these cells can also differentiate along 
pathways different from those associated with the cells’ tissues of origin  [133] . 

 Stem cells are able to provide replacements for various differentiated cell types. The use 
of MSCs has several advantages, as they have unique biological properties, are capable of 
extensive replication in culture in an undifferentiated state, and can differentiate along multiple 
pathways to form various cells from a number of tissues, including bone, cartilage, and fat  [4] . 
Identification of stem cells using surface markers has not been definitive either, because similar 
markers are also present on nonstem cells, or because a particular marker may only be tempo-
rarily expressed on a stem cell at a certain stage or under specific conditions.  

  13.4.2. Osteogenic Differentiation 

 In addition to being osteoconductive and osteoinductive, an ideal scaffold should also 
be osteogenic (that is, containing living cells capable of differentiation into osteoblasts). 
Differentiation of MSCs along the osteoblastic lineage in vitro starts with a period of cell 
proliferation followed by synthesis and deposition of ECM components by the cells; accu-
mulation of calcium finally leads to mineralization of the ECM. To induce osteogenic dif-
ferentiation in MSCs, the culture medium is usually supplemented with osteogenic agents 
such as dexamethasone,  b -glycerophosphate, and ascorbic acid. 

 Dexamethasone, a synthetic glucocorticoid, stimulates MSC proliferation and supports 
osteogenic lineage differentiation  [134–  136] . Organic phosphates, such as  b -glycerophos-
phate, also support osteogenesis by contributing to mineralization of the ECM and modulat-
ing osteoblast function  [136–  138] . Free phosphates can also induce expression of osteogenic 
protein markers, such as osteopontin  [136,   139] . Other supplements, such as ascorbic acid, 
enhance collagen synthesis and upregulate alkaline phosphatase expression in bone cells. 
Ascorbic acid stimulates marrow stromal cells to differentiate along the osteoblast lineage 
 [139–  141] . Furthermore, ascorbic acid promotes osteogenic induction evidenced by increased 
alkaline phosphatase activity and production of osteocalcin in osteogenic cultures  [142] . 

 Martins et al.  [76]  used marrow stromal cells cultured on starch-poly( e -caprolactone) 
blend scaffolds in static cultures and reported that the enzyme lipase enhanced osteogenic 
differentiation and promoted deposition of a mineralized ECM. The BMP family of growth 
factors is frequently used for osteoinduction. BMP-2 increases calcium-containing nodule 
formation and the calcium content of osteogenic cultures in vitro  [136] . The TGF- b  super-
family contains a large number of growth factors with different functions, many of which 
regulate cell proliferation and ECM production. Fibroblast growth factors (FGFs), namely 
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FGF-1 and FGF-2, are produced by oseoblasts and are constituents of the bone matrix s   . 
Insulin-like growth factors (IGF) stimulate osteogenesis; IGF-2 is the most abundant growth 
factor found in bone matrix. Gomes et al.  [143]  demonstrated that an in vitro generated bone-
like ECM produced by marrow stromal cells contains bioactive growth factors including 
TGF- b 1, FGF-2, vascular endothelial growth factor, and BMP-2. Pham et al.  [144]  reported 
that the gene expression profiles of various bone-related growth factors and ECM proteins in 
MSCs cultured in osteogenic media were upregulated; these chemical compounds are present 
in native bone tissue. Costa-Pinto et al.  [48]  studied the osteogenic differentiation of a mouse 
MSC line (BMC9) cultured on novel melt-based chitosan/polyester scaffolds and reported 
high levels of alkaline phosphatase activity and formation of a calcified ECM; these results 
are evidence of differentiation of the cells along the osteogenic pathway. 

 Expression of osteoblast phenotype markers in culture defines three different phases of 
bone-related activities: cell proliferation, ECM maturation, and ECM mineralization. During 
active cell proliferation, growth-related genes are expressed, and minimal levels of type I col-
lagen are observed  [145] . Following this phase, a period of matrix maturation occurs when 
alkaline phosphatase is maximally expressed. Finally, the ECM becomes mineralized, the 
third period of the bone developmental sequence  [145] . There are two transition periods 
between the aforementioned developmental periods: the first occurs at the end of proliferative 
period and the second when expression of osteoblastic phenotype markers (such as osteocalcin 
and osteopontin), become significantly elevated with the onset of mineralization  [145] . 

 Alkaline phosphatase activity, an early marker of the osteoblastic phenotype, is upregu-
lated at the onset of cell differentiation but subsequently decreases as cell differentiation 
progresses. Another marker of bone formation is calcium-containing mineral deposits in the 
ECM. To detect mineral deposition, tetracycline-HCl, a fluorochrome-labeling agent for bone 
tissues  [146] , is added to the osteogenic culture media  [147] . Tetracycline accumulates at sites 
of bone formation and fluoresces brightly when activated with appropriate fluorescent light. 
Qualitative (or semiquantitative) analysis of calcium-containing mineral deposits in bone cell 
cultures uses the von Kossa, alizarin red, and methylene blue/basic fuchsin staining methods 
 [147,   148] . An important artifact, which should be kept in mind when using these analyses, is 
that the ECM uptakes calcium independently from cell-mediated mineral deposition. For this 
reason, confirmation of the results obtained using the aforementioned staining methods should 
be complemented with data from either diffraction or spectroscopy methods such as thin-film 
X-ray diffraction and Fourier-transformed infrared spectroscopy  [76,   148,   149] . 

 Expression of osteopontin occurs during the mid- to late-stages of osteogenic differen-
tiation of MSCs  [150] . Osteopontin is an extracellular protein secreted by differentiating 
osteoblasts that is upregulated both during cell proliferation and at the onset of ECM minerali-
zation. Osteocalcin, another late-stage marker of osteoblastic differentiation, can be assessed 
using commercially available immunoassays. Immunohistochemistry using specific antibodies 
to detect the presence of growth factors, bone- and ECM-related proteins, and enzymes is well 
established and widely used. Real-time reverse transcriptase polymerase chain reaction is 
used to determine expression of bone-related genes, such as osteoblast marker genes, growth 
factors, and ECM biomolecules, in MSCs  [144] .  

  13.4.3. Bone-Specific Matrix Proteins 

 The bone matrix is not only composed of a mineralized phase, but also of an organic 
phase containing collagenous and noncollagenous proteins, matrix metalloproteinases, pro-
teoglycans, and glycoproteins. Bone formation involves regulated secretion, deposition, and 
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removal of a complex array of these matrix proteins, which appear in a defined temporal and 
spatial sequence  [12] . Mineralization also dictates the spatial orientation of matrix deposition 
 [12] . Most proteins originally thought to be unique to the bone ECM were subsequently 
proven to be expressed in many other tissues of the body. Osteocalcin is the only protein still 
considered to be bone specific in bone mineralization  [12] . 

 As discussed previously, alkaline phosphatase is considered an early-stage marker of 
osteoblastic differentiation  [145]  and is expressed during the postcell proliferative period of 
ECM deposition. Type I collagen, the major ECM protein of bone, provides a template for 
subsequent mineralization  [151] . Alkaline phosphatase, collagen, and osteonectin are 
expressed at high levels near the end of cell proliferation and during the period of ECM depo-
sition and maturation  [139] . 

 Osteopontin and bone sialoprotein,  N -linked glycoproteins containing integrin-binding 
RGD motifs, are involved in cell-matrix interactions. Osteopontin is widely distributed in 
different tissues, whereas bone sialoprotein is highly enriched in bone and skeletal cartilage 
 [152] . Osteopontin, a phosphorylated glycoprotein associated with the early stages of osteo-
genesis that precede mineralization, is secreted by osteoblasts into the mineralizing ECM 
during bone development  [139,   153] . In bone, bone sialoprotein is expressed by fully mature 
osteogenic cells capable of depositing mineralized matrix  [152] . Extracellular bone sialopro-
tein localizes to newly formed, mineralized bone matrix; its distribution coincides with that 
of mineral deposits  [154] . Bone sialoprotein, a protein expressed during the early phases of 
bone deposition, controls both mineral formation and cell-matrix interactions  [155] . This 
protein is used as a marker of initial bone formation  [155] . The function of bone sialoprotein 
in bone, which has not been completely elucidated yet, may be related to the regulation of 
physiological mineralization of skeletal ECMs  [154,   156] . Osteocalcin is another marker of 
late-term osteogenic differentiation associated with osteoblast-mediated matrix deposition 
and mineralization  [157,   158] . Expression of osteopontin, osteocalcin, and bone sialoprotein 
occurs later during the third period of ECM mineralization.   

  13.5. Summary  

 Surface modification of biomaterials uses methods that mimic biomineralization and 
enable incorporation of bioactive molecules and agents; such treatments can improve both in 
vitro and in vivo osteogenic differentiation. The main objective of CaP coatings is osteocon-
duction and enhanced adhesion of osteogenic cells onto biomaterial surfaces. Because CaP 
coatings have structures and chemical properties similar to those of native bone, they have 
great potential and promise to increase bone ingrowth in areas of clinical need. 

 Because they lack essential properties, such as bioactivity and osteoinductivity, most 
currently available polymers present limitations for bone-related biomedical applications. In 
this respect then, the biomimetic coating technique discussed in the present chapter has the 
potential to impart these essential properties to biomaterials. Since CaP layers can be applied 
on 3D scaffolds, the biomimetic-coating approach has been receiving increased attention in 
the bone tissue-engineering field. 

 Moreover, CaP coatings have been considered as a potential carrier for the delivery of 
various biomolecules, chosen for their physicochemical and biological properties as well as 
for their osteoconductivity. Complementing the CaP biomimetic coating approach, incorpo-
ration of biomolecules provides osteoinductive properties to biomaterials. Since this method 
is carried out under physiological conditions, proteins, enzymes, and other bioactive agents 
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can be incorporated into CaP layers without loss of their bioactivity. A major advantage is 
the fact that the biomaterial–CaP coating-biomolecule can simultaneously exhibit osteoin-
ductive and osteoconductive properties, because it can act as a carrier system for the control-
led release of multiple biologically active proteins. Incorporation of enzymes into CaP layers 
coated on the surface of scaffolds (using the biomimetic-coating technique) can be also used 
to control the degradation rate of the material substrate in vivo. An integrated approach com-
bining a material scaffold, CaP coatings, bioactive molecules and/or enzymes, and in vitro 
cell cultures may provide an optimal environment for cell adhesion and osteogenic differen-
tiation as well as generate a mineralized ECM containing select bioactive molecules. 

 Incorporation of bioactive molecules into CaP coatings on scaffolds for tissue-engi-
neering applications has the potential to provide advanced, tissue-specific constructs to pro-
mote improved alternative treatment of bone pathologies and trauma. The present chapter 
summarized the results of studies that used biomolecules important to bone tissue engineer-
ing. Further research is needed to elucidate important aspects such as details of the release 
profiles of entrapped bioactive molecules, retention of their bioactivity, etc. Establishment 
and further development of nature-inspired techniques to design and formulate novel bioma-
terials could provide the next generation of effective scaffolds for bone tissue engineering.      
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