
 
 
 
 

Reliability based robustness of timber structures through 
NDT data updating 
 
 
 
 

Hélder S. Sousa1, John D. Sørensen2, Poul H. Kirkegaard3, Paulo B. Lourenço4, Jorge 
M. Branco5 
 
 
 
 
Abstract This work presents a framework for reliability-based assessment of timber 

structures / members using data gathered from non-destructive test results. These results 

are used for modeling an update of the mechanical characteristics of timber, using 

Bayesian methods. These methods are suitable to be used for parameter estimation and 

also allow updating model uncertainties. From the updated model, decisions upon the 

life-cycle reliability of existing structures may be taken and maintenance or strengthening 

actions may be considered. In this work, results gathered from ultrasound testing, 

Resistograph® and Pilodyn® conducted on chestnut wood specimens were used, as well 

as correlations between those results and compression strength parallel to the grain tests’ 

results. The resistant characteristics are also updated assuming deterioration models 

applied to specific key elements of the structure, thus, being possible to evaluate 

reliability based in time dependent factors, as well to categorize that structure in terms of 

robustness. 
 
Keywords timber, NDT, reliability, Bayesian methods, existing structures 
 
 
 
 

1. INTRODUCTION 

Timber is a rather complex construction material, due to its anisotropic behavior. Moreover, its 

properties also vary on space and time. For instance, the material properties of a timber element vary 

both in different parts of the same cross-section as well as along the element itself. Differences are 

also visible when comparing different timber elements even if they are from the same species. 

Therefore, timber structures are better analyzed using probabilistic models rather than 

deterministically when considering a structural safety evaluation. 

Reliability methods are prone to be used in this assessment as they allow describing the properties of 

timber elements by random variables. The probability density functions of timber’s mechanical 

properties are defined in various codes and guidelines and may be updated with the results of 

mechanical tests. A grading methodology based on visual inspection associated with NDT results is 

also a suitable source of information for an updating data model. When dealing with existing 

structures, data updating may be regarded as an important tool in the assessment of its reliability 

                                                      
1
 Hélder Sousa, Department of Civil Engineering, University of Minho, Portugal, hssousa@civil.uminho.pt 

2
 John Sørensen, Department of Civil Engineering, Aalborg University, Denmark, jds@civil.aau.dk 

3
 Poul Kirkegaard, Department of Civil Engineering, Aalborg University, Denmark, phk@civil.aau.dk 

4
 Paulo Lourenço, Department of Civil Engineering, University of Minho, Portugal, pbl@civil.uminho.pt 

5
 Jorge Branco, Department of Civil Engineering, University of Minho, Portugal, jbranco@civil.uminho.pt 

SHATIS'11 International Conference on Structural Health Assessment of Timber Structures  -  Lisbon, Portugal  -  June 2011

1



parameters. For that purpose, Bayesian methods are often applied to implement new information into a 

probabilistic structural assessment due to their simplicity of use. Bayesian methods allow quantifying 

an approximation about the statistical uncertainty related to the estimated parameters, regarding both 

the physical uncertainty of the considered variables as well as the statistical uncertainty related to the 

model parameters. Therefore, they offer a suitable method for parameter estimation and model 

updating. However, for making this possible, it is necessary to take into account the measurement and 

the model uncertainties in the probabilistic model formulation. 

The purpose of this work is to present a framework for reliability based assessment of timber 

structures using data gathered from non-destructive tests (NDT) results. For that purpose, results 

gathered from non-destructive techniques via ultrasound testing, Resistograph® and Pilodyn® 

conducted upon a batch of chestnut wood specimens are used, as well as correlations between those 

results and compression strength values taken from Feio (2005). The uncertainties connected to the 

NDT are modeled and included in the assessment. 

The structural resistance characteristics are also updated assuming deterioration models applied to 

some specific key elements of the structure, thus, being possible to evaluate reliability based on time 

dependent factors, as well to categorize that structure in a robustness framework.  

 

 

2. UPDATING METHODS 

2.1. Bayesian updating methods 

When assessing existing structures a variety of information may be gathered from several distinct 

sources, which may be available or can be made available at a given cost. Qualitative together with 

quantitative information may allow defining the general condition of an existing structure. In the 

assessment of existing structures, this information can be taken into account and combined with prior 

probabilistic models resulting in so-called posterior probabilistic models. Regarding design assisted by 

results taken from tests, Eurocode 0 in Annex D (EN 1990:2002), provides different procedures to 

statistically determine a single property, in terms of design and characteristic values, and also provides 

information to statistically determine resistance models with use of additional prior information. 

Throughout their lifetime, structures change due to many aspects, from natural causes (such as 

material deterioration, environmental exposure and long term effects of loads), to human decisions 

(such as modification of the structure or changing of use) or even by accidental actions. Thus, the 

assessment of existing structures should be regarded as a successive process of model updating and 

consequent evaluation regarding new information. The Bayesian probabilistic assessment for 

structures is illustrated schematically in Figure 1. 

 

 

Figure 1 – Bayesian probabilistic assessment for structures, adapted from JCSS (2001).  
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2.2. Updating data 

In this paper, the updating data is obtained through results collected from NDT’s using ultrasound 

testing, Resistograph® and Pilodyn®, conducted upon a batch of chestnut wood specimens, as well as 

from tests allowing to estimate the correlations between those results and the compression strength 

parallel to grain, fc,0. These data were gathered in Feio (2005) and is represented in Figure 2. The 

resistographic measure represents the ratio between the integral of the area of the diagram, Area, and 

the height, h, of the test specimens, which is therefore an average value. This value is given as: 

 �� � � ����	
 �  (1) 

For the case of the Pilodyn®, the considered measure parameter is the needle penetration depth taken 

directly from the tests. In the case of the ultrasound pulse velocity method the (elasto) dynamic 

modulus of elasticity, Edin, was calculated by: 

 ��� � �� � (2) 

where Edin represents the (elasto) dynamic modulus of elasticity (N/mm
2
), V is the propagation 

velocity of the longitudinal stress waves (m/s) and ρ is the density of the specimens (kg/m
3
). It must be 

noted that the indirect method was used in the ultrasound tests. 

 

 

 

Figure 2 – Correlation between fc,0 and NDT results, adapted from Feio (2005): a) Resistograph®; b) Pilodyn ®; 

c) ultrasound. 

 

2.3. Model uncertainty 

The uncertainties connected to the NDT methods are modeled and included in the assessment through 

a Maximum Likelihood method. For parameter estimation of linear regression lines, the following 

linear regression model in x1, ..., xm –space was considered: 

 � � �
 � ����� . . . ����� � � (3) 

where α0, α1, ..., αm are the regression parameters and ε models the lack-of-fit. ε is assumed to be 

Normal distributed with expected value 0 and standard deviation σε. The regression parameters for 

each correlation between fc,0 and the NDT results are given in Table 1. 
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Table 1 – Regression parameters and lack-of-fit standard deviation for the non-destructive tests results in 

correlation with the fc,0 given by destructive tests. 

 a0 a1 σσσσεεεε 

Resistograph® -30.69497 -0.22750 4.12217 

Pilodyn® 102.59179 7.50664 5.12435 

Ultrasound 19.24686 -0.01761 4.06081 

 

 

3. DETERIORATION MODELS 

To assess the evolution of the timber elements deterioration, a bi-parametrical idealized decay model 

proposed by Leicester (2001) was considered. The two parameters correspond to an initial propagation 

period of the deterioration phenomenon, tlag (year) and an annual penetration ratio, r (mm/year). 

Considering a probabilistic analysis, the tlag parameter is defined as a deterministic variable, while the 

r parameter should be defined by a lognormal distribution with a coefficient of variation between 0.5 

and 1 according to the timber durability class (Wang et al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a)  b) 

Figure 3 – Progress of decay: a) idealized model, adapted from Leicester (2001); b) damage penetration on a 

decayed cross-section. 

 

 

4. RELIABILITY BASED ROBUSTNESS 

In Frangopol and Curley (1987) and Fu and Frangopol (1990), some probabilistic measures related to 

structural redundancy are proposed. These measures can also be indicators of the level of robustness in 

some occasions. A redundancy index, RI, is defined by: 

 �� � ��� �!" # ���$%$"���$%$"  (4) 

where Pf(dmg) is the probability of failure for a damaged structural system and Pf(sys) is the probability of 

failure of an intact structural system. The redundancy index provides a measure on the robustness / 

redundancy of the structural system. The following related redundancy factor, βR, is also considered: 

 &' � &()*+,*&()*+,* # & +�+!-  (5) 

where βintact  is the reliability index of the intact structural system and βdamaged is the reliability index of 

the damaged structural system. 

Robustness may be considered as the ability of the system to suffer an amount of damage not 

disproportionate with respect to the causes of the damage itself (Biondini 2008). Therefore, in the 
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scope of this work, deterioration must be defined in a period of time in order to assess if the effects in 

respect to this phenomenon are in proportion to the causes. Depending on the importance of a specific 

structure and regarding to structural and durability performance, different design lifetimes are 

considered. Since degradation is a long duration cause of damage, a time index, TI, was considered as: 

 .� � ./(� # . .  (6) 

where Tlim is the time given by the deterioration model for a defined limit of reliability, and Td the time 

lifetime used for design. The values of TI may be equal: 

- to -1, if the structure has a lower reliability than the required reliability level at time = 0. However 

this value must be disregarded for an existing structure with deterioration being the damage cause. 

This value can only be obtained if a wrong design procedure (or execution) was taken; 

- to ]-1;0[, if the reliability limit time is obtained before the design time; 

- to 0, if the reliability limit time is obtained exactly at the design time; 

- to > 0, if the reliability limit time occurs after the design time, which is normally the required 

condition for safety conditions. 

 

 

5. EXAMPLES 

In this section, practical examples are given regarding structural safety assessment of timber 

structures. Life-cycle structural reliability is considered with respect to deterioration models. Those 

models are then updated with consideration of different scenarios given by possible NDT results. 

Depending on different assumptions a reliability based robustness assessment is also proposed, with 

respect to time evolution of the deterioration process. Resistance properties of timber for stochastic 

models were assumed from JCSS (2006) when no information was available. 

 

5.1. Single element structures 

The first example consists in a simple supported beam with rectangular cross-section. The loads are 

assumed uniformly distributed along the beam length, l. The second example consists in a column, 

with square cross-section. The loads are considered as concentrated loads applied at the top of the 

column, as shown in Figure 4. Therefore, the column transmits through compression, the effects of 

loading to the support elements at the bottom of the column. Both structures are composed by 

elements of solid timber and the load combinations are modeled by: 

 0 � �1 # �"2 � �3 (7) 

where G is the permanent load and Q is the variable load (live load in this case), α is a factor between 

0 and 1, modeling the relative fraction of variable load and permanent load. The modification 

parameter regarding the effect of load duration and moisture content of timber, kmod, was considered 

with respect to the load with smaller duration. 

 

 
 

 
a) b) 

Figure 4 – Structural models: a) simple supported beam; b) column. 

A sensitivity analysis of the parameters used for the reliability assessment procedure was performed 

regarding the importance of the coefficient of variation (COV) for loads and resistant parameters, for 
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both examples. The results given by this analysis show that when the coefficient of variation for load 

parameters is increased, the reliability of a given structure decreases, mainly due to the fact that the 

uncertainty of the problem is also increased. The same procedure was considered regarding the 

coefficient of variation of the resistance strength. From this analysis resulted that for all values of α, 

different values of reliability are obtained, however, the higher differences are found for lower values 

of α. As for the load sensitivity analysis, when the uncertainty is increased lower values of reliability 

are obtained. 

 

5.1.1. Simple supported beam 

The limit state equation was considered to be related to the maximum bending moment at mid-span of 

the beam. The following limit state equation was used: 

 4 � 16 6��  7�8  9� # 18 ;�<�1 # �"2 � �3= (8) 

where, the bending strength is given by fm. 

The corresponding design equation, according to the combination of loads in Eq. (6.10) of Eurocode 0 

(EN 1990:2002), can be written considering the height, h, of the cross-section as the design parameter: 

 
166��  7�8  9�,?@� # 18 ;� A�1 # �"2?  @B � � 3 @CD E 0 (9) 

The partial factors used are values that provide an acceptable level of reliability. They have been 

selected assuming that an appropriate level of workmanship and of quality management applies (EN 

1990:2002). Partial factors allow to obtain design values from characteristic values. 

Based in a semi-deterministic approach through partial safety factors, the load variables were defined 

through their characteristic values, and the remaining parameters deterministically. The reliability 

obtained in consideration to the design of timber elements subjected to bending, as given in Eq. (6.11) 

of Eurocode 5 – EC5 – (EN 1995-1-1:2004), is presented in Figure 5a), i.e. the design parameter h  is 

determined from (9) for each value of α. However, when assessing existing structures it is necessary to 

define the present conditions and therefore a design parameter is not considered. Figure 5b) also 

presents the reliability obtained regarding the parameters, given in Table 2, for a practical example 

purpose, i.e. the design parameter h = 400mm is fixed for all values of α. 

 

   

Figure 5 – Reliability index with reference time one year with respect to: a) design assessment with Eq. (9); 

b) example assessment of the model given in Table 2. 

 

Table 2 – Variables used in the stochastic model for a simple supported beam example (JCSS, 2006). 

Variable [X] Distribution E [X] COV [X] Description Characteristic values Eq.(9) 

fm Lognormal 25 N/mm
2 

0.25 Bending strength 5% 

G Normal 6 N/mm 0.10 Permanent load 95% 

Q Gumbel 4 N/mm 0.40 Annual maximum live load 98% 

h Deterministic 400 mm - Height of the cross-section - 

b Deterministic 200 mm - Width of the cross-section - 

l Deterministic 6000 mm - Length of the beam - 
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Timber is highly dependent of the climatic conditions of the surrounding environment. Also the attack 

of pathological agents is more significant in a specific range of values for humidity, temperature and 

solar exposure. In order to assess the differences that climatic factors may have in the reliability level 

of a structure, an analysis was conducted varying the climatic zones, assuming the models proposed in 

Wang et al. (2008) (climatic zones A to D, being A the less hazardous). The structural element is 

given by Table 2 with consideration of durability class 1. The results for the different deterioration 

curves regarding different climatic zones are presented in Figure 6, where a stochastic degradation 

model presented in Brites et al. (2008), with r = 1 mm/year and COV = 0.5, is also plotted, for lifetime 

reference period. In all models a α = 0.5 was considered. 

 

 

 

 

Label (from top to bottom): 

- climatic zone A 

- climatic zone B 

- climatic zone C 

- climatic zone D 

- model adapted from Brites et al. (2008) 

 

Figure 6 – Reliability comparison between deterioration models for different climatic zones. 

The reliability index decreases faster when the climatic conditions are more hazardous because the 

propagation of deterioration in the timber element is also faster. When comparing the different models, 

it is visible that the most unsafe curve is given by the stochastic model of Brites et al. (2008) with 

r = 1 mm/year and COV = 0.5. The main reason is due to the fact that the mean value of penetration 

ration for the other models is inferior to 1 mm/year. 

To evaluate the advantage of using an updating scheme for deterioration models with data from NDT, 

a hypothetical trial of tests with a Resistograph® device are assumed. This kind of tests allows 

determining areas with different resistance to the drilling process, thus making it possible to see 

decayed areas and its depth. With these measurements, the residual cross-section may be derived and 

therefore the model of deterioration may also be updated regarding the r parameter. 

The hypothetical tests performed to the structure were conducted in year 19. For updating purposes the 

most hazardous model was considered and that 8 tests were performed obtaining different values of 

residual cross-section (n = number of tests). From those values a sample of penetration ratios were 

found as presented in Table 3. 

The r parameter is often described by a lognormal distribution with coefficient of variation equal to 

0.5 (Brites et al. 2008) and two approaches were considered in order to update the deterioration model. 

These approaches regard vague prior information on the mean and on both mean and standard 

deviation for the updating scheme. 

 
Table 3 – Sample of penetration ratios derived from hypothetical Resistograph® tests. 

  r (mm/year) µµµµ σσσσ 

Xi 0.45 0.52 0.65 0.47 0.40 0.42 0.55 0.54 0.50 0.082 

Yi = ln (Xi) -0.799 -0.654 -0.431 -0.755 -0.916 -0.868 -0.598 -0.616 -0.70 0.160 

 

Considering vague information on both mean and standard deviation, a 5% quantile value for X was 

obtained with respect the following equation (JCSS, 1996): 

 G � exp<µ�K"= · expM# NO · σ�K" · P1 � 1QR (10) 

where tνd has a central t-distribution and for this case a value of 1.89 (ν = n – 1 = 7 degrees of freedom 

and 5% quantile), µ�K" and σ�K" are the mean and standard deviation for Y = ln (X). That value and 
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the standard deviation observed for the test results were them used to obtain the mean value of r, from 

the following equation: 

 �
,
S T U · exp V#1.645 YUZ (11) 

where -1.645 is obtained from the standard Normal distribution function such that Φ(-1.645) = 0.05, 

and x0.05 is the 5% quantile of the Lognormal variable. 

A mean value for r of 0.57 mm/year and standard deviation of 0.16 mm/year was obtained and 

implemented in the deterioration model. In respect to this, the updated model of deterioration of the 

timber element was considered from the date of the inspection and tests. 

For the next approach, it was considered that the information from the coefficient of variation of r is 

known and equal to the model used previously (COVr = 0.5). A mean value of 0.58 mm/year and 

standard deviation of 0.35 mm/year was obtained and used in the updating of the deterioration model. 

In Figure 7, the updated models may be compared with the first prevision made with a model assumed 

without any NDT data. 

 

 

 

Label: Decay models: 

i. – assumed before NDT information 

ii. – after NDT information, but not 

updated 

iii.  – updated model with NDT data, with 

no prior information 

iv.  – updated model with NDT data with 

σ known 

Figure 7 – Deterioration model with updating. 

By updating the model with information from the NDT’s an increase in reliability is well noticed. The 

differences, although significantly large, may be explained by different reasons in the real life, such as 

the element may have not been exposed to extreme conditions of humidity or temperature or it might 

be from a higher durability class than first assumed. 

From Figure 7, it is shown that with the model updated with σ known, lower values of reliability are 

obtained. This is a consequence from the consideration of a coefficient of variation in the prior 

information that is higher than the one observed in the NDT’s. From this, it is possible to point out two 

conclusions: (i) the prior information is not adequate to this specific structure and climate and, thus 

should be disregarded; (ii) or, the number of tests is insufficient and therefore the observation sample 

is not adequate and should be improved. 

It must be paid attention to the fact that other hypothetical results given by the NDT’s may had also 

indicated a decrease in reliability. 

For the purpose of this example let us consider, once more, the deterioration model with r = 1mm/year 

and COVr = 0.5. Since the deterioration phenomenon has a constant activity, also the reliability 

decreases in time and therefore robustness may also be considered to be decreased. Redundancy index 

and the redundancy factor are not suitable to be considered for this example since this is not a 

redundant structure.  

For instance, let us consider that this example structure was designed to sustain a period of time of 50 

years. For this case, if a limit reliability level of Pf = 10
-3

 for lifetime reference period is considered, 

then a TI50 = -0.62 is obtained and, therefore, the damage due to the deterioration process limits the 

performance and the life expectance of the structure. 

Reliability-based robustness indices may be obtained in a similar way regarding the updating of 

deterioration models with NDT data. If the previously hypothetical data would be considered than, for 

the case of the model updated with no prior information, a TI50 = -0.22 would be obtained. Although 

this index presents an indication of a higher robustness, it is erroneous to conclude that updating a 

model leads to a better or worse level of robustness. Actually, updating a model will only provide a 
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more accurate and precise definition of the structural behavior of a specific element or system of 

elements, both in terms of reliability and robustness. 

 

5.1.2. Column 

The limit state equation was considered to be related to the maximum compression stress along the 

height of the column. The following limit state equation was used: 

 4 � 7�8  9,,
 # <�1 # �"2 � �3=/� (12) 

where, the compression strength parallel to grain is given by fc,0. Considering the area, A, of the cross-

section as the design parameter: 

 7�8  9,,
,?@� # A�1 # �"2?  @B � � 3?  @CD /� E 0 (13) 

Based in a semi-deterministic approach through safety partial factors, the load variables were defined 

through their characteristic values, and the remaining parameters deterministically. The reliability 

obtained with consideration to design of timber elements subjected to simple compression, as given in 

Eq. (6.2) of EC5, is presented in Figure 8. For this analysis it was considered that the height, h, of the 

column would be such that second order effects on structures (e.g. buckling of slender elements) could 

be disregarded (in EC5 this respects to λrel ≤ 0.3). 

 

 

Figure 8 – Reliability index with reference time one year with respect to Eq. (13) 

The mean value found for reliability was approximately β = 4.7 which is higher than the suggested in 

the Probabilistic Model Code – PMC – (JCSS 2000) for 1 year reference period and reliability class 1 

(β = 4.2) but equal to the requirement in EC 0 annex B (EN 1990:2002) for reliability class RC2. Also, 

it is noticeable that this limit function equation for simple compression produces similar design 

reliabilities compared to the simple bending limit equation in terms of evolution of α (see Figures 5a) 

and 8). However, the reliability values obtained according to the limit states equations as suggested by 

EC5 for design in simple compression are higher than for simple bending. Another difference is that, 

in this case, β for α = 1 is inferior than β for α = 0. 

In order to have a practical updating example, a cross-section of 60 × 60 mm
2
 was considered for 

analysis. The objective of this updating analysis is to have a suitable method to update the value of 

compressive strength parallel to grain of a timber element when NDT results are available and also to 

consider the uncertainty involved in this process. The data used in the updating scheme is given in 

topic 2.2 and the uncertainty was modeled as in topic 2.3.  

In order to evaluate the validity of the considered correlations a reliability analysis was conducted. 

Also with this procedure it was intended to analyze the influence of the uncertainty introduced by each 

separate NDT. Firstly, the resistant parameters of the column were implemented in reference 

stochastic models considering the values for compression strength parallel to the grain given by the 

destructive tests (DT). Then, for an updating scheme, the compression strength parallel to the grain 

was modeled with respect to the linear regression obtained by the Maximum Likelihood method for 

each NDT. The parameters of the models are given in Table 4. The two references models for fc,0 

pretend to establish a benchmark for comparison. The first one is modeled by the mean value of the 

destructive tests and with a coefficient of variation as proposed by the JCSS Probabilistic Model Code 

(JCSS 2006). The second is modeled by the mean value and COV as given by the destructive tests. For 

both models, a lognormal distribution was considered. 
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Table 4 – Variables used in the stochastic model for a column example. 

Variable [X] Distribution E [X] COV [X] Description 

fc,o Lognormal µDT
 0.2 

Compression strength parallel to grain – mean value 

of destructive tests (reference model) 

fc,o Lognormal µDT
 σDT = 0.15 

Compression strength parallel to grain – mean value 

and COV of destructive tests (reference model) 

fc,o - a – b · µRM + ε - 
Compression strength parallel to grain – mean value 

of Resistograph®  tests 

fc,o - a – b · µdepth + ε - 
Compression strength parallel to grain – mean value 

of Pilodyn® tests 

fc,o - a – b · µEdin + ε - 
Compression strength parallel to grain – mean value 

of Ultrasound tests 

εεεε Normal 0 σε Uncertainty parameter of each NDT 

G Normal 60000 N 0.10 Permanent load 

Q Gumbel 40000 N 0.40 Annual maximum live load 

A Deterministic 3600 mm
2
 - Area of the cross-section 

 

According to the NDT data, three models were made with respect to each type of test. The results for 

the reference models and for the models updated by the correlations between compression strength 

parallel to grain and results from NDT are given in Figure 9. 

 

 

 

 

Label (from top to bottom, in α = 0): 

Continuous line: reference models 

fc,0 = µDT; COVDT =0.15 

fc,0 = µDT; COV=0.20 

 

Dashed line: models with NDT information 

fc,0 = a – b · µRM + ε 

fc,0 = a – b · µEdin + ε 

fc,0 = a – b · µdepth + ε 

Figure 9 – Reliability of the reference models and models obtained by NDT information. 

The results shown in Figure 9 denote higher values of reliability for the models updated with NDT 

data. This is mainly due to the consideration of fc,0 as a function of the correlation given between the 

destructive and non-destructive tests. Although uncertainty is implemented through the consideration 

of the parameter ε, some variability of fc,0 is lost since it was already considered in the reference 

models as a stochastic variable. 

The Resistograph® and ultrasound updating scheme must be used with attention since they led to 

higher values of reliability than the references values. The main differences are found for the 

maximum value of the reliability curves around α = 0.12. However, the data with respect to the 

Pilodyn® tests presented very similar values to one of the reference models. 

 

5.2. Truss structure 

As a practical example, a planar timber truss is considered (Figure 10), submitted to both permanent, 

G, and live load, Q. Considering that the elements of this kind of structures are mainly submitted to 

axial stresses, three different limit state conditions were initially assumed. The limits state conditions 

are related to tension and compression parallel to grain, and to instability due to buckling of 

compressed elements. 
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In this example, before conducting any kind of reliability assessment, the different elements were 

designed in terms of cross-section dimensions. The structure was assumed to be constructed with 

chestnut timber. Two different strength classes for timber were considered in the design procedure. 

The classes considered were D30 and D50 as given by EN 338:1995. For both cases, the element 

design respected the following premises: 

- tension elements (1, 2, 3, 4, 8, 10) with a 75% of cross-section used; 

- compression elements (5, 6, 9, 12, 13, 15, 16) with a 95% of cross-section used, with respect 

to buckling verification; 

- cross-section uniformed with respect to an easier construction process; 

- vertical elements (5, 7, 9, 11, 13) with the same dimension that the most stressed strut (9). 

- both chords are composed by a single 10 m long element. 

With these premises it was intended to have a common example of this kind of timber structural 

system and also to permit that the most conditioning limit state would be related to the compression 

parallel to grain. Therefore, it would be possible to use the previous mentioned NDT data in an 

updating methodology. 

 

 
 

Figure 10 – Structural model of a planar truss. 

When evaluating the safety level of a structure, both in terms of reliability or robustness, it is 

important to assess which is the most likely failure mode as well as to detect the key elements of the 

structure. In this case, key elements should be understood as the most vulnerable elements which its 

weakening or local failure would correspond to the worst structural behavior, such as a global failure. 

Determining the key elements is also important in an updating methodology. Effort in finding new 

information will be better employed regarding those key elements. 

In this example, the failure of the lower or upper chords would correspond to the structural failure of 

the system, denoting a series system behavior in a reliability analysis. Therefore, they represent key 

elements of the structure in case of sudden failure of one of these elements. For D30 design the 

reliability index of the structural system was found to be β = 5.18 (failure of the upper chord by 

instability), whereas for D50 the reliability index of the structural system was found to be β = 4.64 

(failure of the upper chord by instability). This is a consequence of the assumed design considerations 

and also due to the estimation point considered in the reliability analysis. 

However, when considering that deterioration of the timber elements might be a relevant parameter in 

the reliability evaluation of a specific structure, the key elements must be found accordingly. 

Therefore, in order to define which were the key elements and the most conditioning limit state, 

regarding deterioration of the timber elements, a reliability assessment was conducted considering a 

perimetral loss of cross-section, λ, for each element separately. The elements considered as key 

elements were those which the influence of perimetral loss of cross-section would be more 

pronounced and lower reliability index would be found. The key elements regarding each limit state 

are shown in Figure 11. 
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Figure 11 – Reliability index with reference time one year with respect to perimetral loss of cross-section for the 

limit state condition: buckling (element 9) – dashed line; tension (elements 8 and 10) – continuous line; 

compression (element 9) – dotted line. 

The initial values (λ = 0), for the most conditioning limit state, are in accordance to usual design 

values. For D30, the reliability index of the key elements is β = 5.01, whereas for D50 the reliability 

index is β = 4.88. For the structure with D30 timber, tension parallel to grain is the most conditioning 

limit state at the beginning of loss of cross-section in elements 8 and 10. However, when the reliability 

index values start to be inferior to 4.5 the most conditioning limit state condition is given by buckling 

influence in element 9. For D50 timber, the buckling limit state is always the most conditioning, being 

element 9 the key element. Since timber tension behavior is more influenced by the presence of 

defects than compression, tension strength parallel to grain has a larger difference from one strength 

class to another when compared to compression strength parallel to grain. Regarding these results, 

element 9 is considered to be a key element and the buckling limit state is the most conditioning. 

Element 9 is also considered as a key element because when weakened, or in case of failure, the 

stresses are redistributed to the other elements of the truss producing shear and bending stresses in the 

upper chord. Since that element was not initially designed for that kind of stress, its reliability highly 

decreases and structural failure is a likely scenario. The increase of shear and bending stresses in the 

upper chord is mainly noticeable when elements 8, 9 or 10 are weakened. 

Regarding the influence of a deterioration process in element 9, the structural reliability index would 

be β = 6.28 and β = 5.90 for D30 and D50 design, respectively. In D30 design, the failure of element 9 

by instability would be followed by the failure of the upper chord by shear. In D50 design, the failure 

of element 9 by instability would be followed by failure of the upper chord by lateral torsional 

instability. Regarding the removal of element 9, the redundancy factors βR = 1.92 and βR = 2.38 were 

found for D30 and D50 design, respectively. Although the structural reliability index is higher in the 

case of D30 design, the redundancy factor is higher in the case of D50 design. This situation is due to 

the fact that the removal of element 9 leads to a higher difference between the intact and damaged 

reliability indexes in the case of D30 design. 

After assuming the information taken from EN 338:1995, an updating methodology was implemented 

with consideration to the data given in topic 2.2. With respect to the new information and removal of 

element 9, updated redundancy factors were calculated with respect to the D50 design. The updated 

redundancy factors and relative difference with the previous redundant factor are given in Table 5, for 

each different source of information. 
 

Table 5 – Updated reliability and redundant factors by NDT data and relative difference with the redundant 

factor assuming EN 338 (1995) information. 

 ββββintact ββββdamaged ββββR Relative difference (%) 

EN 338:1995 4.640 2.696 2.387 --- 

Resistograph® 5.288 2.953 2.264 5.11 

Pilodyn® 5.159 2.927 2.311 3.18 

Ultrasound 5.286 2.950 2.263 5.21 

 

0

2

4

6

8

0 5 10 15 20 25 30

β

λ (mm)

0

2

4

6

8

0 5 10 15 20 25 30

β

λ (mm)

D30 D50 

SHATIS'11 International Conference on Structural Health Assessment of Timber Structures  -  Lisbon, Portugal  -  June 2011

12



The updated redundancy factors are similar for the updating with Resistograph® and ultrasound 

techniques since the uncertainty parameter given by the Maximum Likelihood method is similar for 

both NDT. In each case, the updated redundancy factor is similar to the redundancy factor obtained in 

the D50 design with consideration to EN 338:1995. Although the initial and damaged reliability 

indices from the EN 338 (EN 338:1995) design are significantly different from the updated values, the 

redundancy factor is similar. 

After updating the resistance parameters, a deterioration process was considered for elements 9 and 15 

separately and the reliability of the structural system was then calculated (Figure 12). When 

considering only the deterioration in element 9, a parallel system was considered and the necessary 

failures of the elements for a global collapse were considered as independent events. However, load 

redistribution on other elements was considered during the process of deterioration of an isolated 

element.  The updating information consists in the information given by the Pilodyn® tests. Since no 

information is known for the environmental conditions, it was considered a loss of cross-section 

independent of time. Therefore the structural reliability is directly related to a cross-section loss 

parameter, λ. When new information is obtained, regarding the rate of deterioration, the loss of cross-

section may be then related to the penetration ratio, r. After gathering the information about the 

penetration ratio a model of deterioration may be implemented and correlated with the corresponding 

reliability. This finally leads to a time evolution curve for reliability assessment of the structure. 

 

 

Figure 12 – System reliability index with reference time one year with respect to perimetral loss of cross-section 

for element: 9 – continuous line; element 15 – dashed line. 

From the analysis of Figure 12, it is visible that the system reliability is more conditioned by the loss 

of cross-section of element 15. However, when considering the loss of cross-section of element 9, a 

sudden decrease of the system reliability is visible due to the loss of resistant capacity of that element 

(failure due to compression instability). Although the system reliability is always lower for the loss of 

cross-section in element 15, in terms of robustness, the decay process in element 9 may be considered 

more relevant since the same action leads to effects not proportionate to the causes.  

Since no time relation is present in Figure 12, it is not possible to obtain a time index, TI. However, 

when the model is updated with information about the deterioration rate, it becomes an intuitive 

procedure. This information may be gathered through NDT and then updated as in the previous 

examples. 

 

 

6. CONCLUSIONS 

This work presented a framework for reliability assessment of timber structures using data gathered 

from NDT results. For that purpose, three example cases were presented: (i) a simple supported beam; 

(ii) a column; and (iii) a truss structure. In those examples, the structural reliability was calculated in 

both design and assessment phases. After updating the resistant properties, deterioration models were 

implemented and robustness indicators were considered. From the analysis of the examples several 

conclusions may be taken. 

As found in the truss structure example, different strength classes of timber, even for the same design 

considerations, led to different reliability and robustness levels. Also, not always a higher reliability 
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index produces higher indicators of robustness, depending in the nature of the structural failure that is 

associated. 

Determining the key elements was found to be a fundamental step in order to understand the level of 

robustness of a structure. By changing the design of key elements, different load paths and 

consequently different structural systems may be found. In that case, a parallel system may be turned 

into a series system with great interest specially to increase the reliability of the structure. The 

structural system may, also, influence both the reliability of the system as well as its robustness level. 

Although model updating is a useful method for safety assessment of existing structures, NDT data 

updating does not increase or decrease robustness. The objective of NDT data updating is to allow for 

a better definition the characteristics of the structural elements, with special regard to the key elements 

of a structure. From the deterioration model analysis, it is concluded that different indicators for 

robustness assessment should be used depending in the type of possible actions / loads that might 

influence the structure. 

Further investigation should address a better definition of climatic conditions and parameters for 

different geographical locations, as well as its influence in timber elements. Effort should also be 

taken into obtaining a larger database for NDT results and its correlations with timber resistant 

properties in order to have more reliable information for data updating. Future work should address the 

development of robustness indicators. 
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