ABSTRACT

PURPOSE: To review the peer-reviewed literature reporting postoperative complications of the most recent models of Visian Implantable Collamer posterior chamber intraocular lenses (ICL, STAAR Surgical Co).

METHODS: A literature search of the PubMed database was performed to identify all articles related to ICL complications. Articles were obtained and reviewed to identify those that reported complications using the latest ICL designs.

RESULTS: Cataract was the major postoperative complication reported: 136 (5.2%) in 2592 eyes. Of those, 43.4% (n=59) were reported within 1 year, 15.4% (n=21) between 1 and 3 years, and 35.3% (n=48) >3 years after ICL implantation. Twenty-one (15.4%) cataracts were reported as surgically induced, 46 (33.8%) eyes had poor vault (>200 µm), and cataract surgery was carried out in 27.9% (n=38) of eyes. Early acute intraocular pressure increase was also reported to be relatively frequent, whereas acute pupillary block was less frequent and mostly resolved with additional iridotomies. A total of 42 ICLs were explanted due to cataract and IOP. Reported endothelial cell loss varied from 9.9% at 2 years to 3.7% 4 years postoperatively. This loss was reported to be more pronounced within the first 1 to 2 years, with stability or lower progression after that time.

CONCLUSIONS: The majority of reported complications after ICL implantation are cataract formation. The improvements in lens geometry and more accurate nomograms applied to the selection of the lens to be implanted, in addition to the surgeon’s learning curve, might be factors in the decreased occurrence of postoperative complications reported currently. [J Refract Surg. 2011;xx(x):xxx-xxx.]

doi:10.3928/1081597X-20110617-01
Although the published studies reporting results of ICL implantation have low rates of adverse events, carrying out a comparative analysis of the occurrence, type, and visual outcomes of postoperative complications has proven difficult and variable, as the majority of published studies include different versions of earlier models of ICLs. To provide an updated view of current potential threats of ICL implantation, the present article provides results and conclusions derived from published, peer-reviewed studies reporting the outcomes and potential complications of the latest Visian ICL models.

ICL MODELS AND LITERATURE REVIEW

Clinical Studies Reporting Postoperative Complications After Visian ICL Implantation

A Medline search from January 1999 to May 2010 was performed to identify all journal articles related to posterior PIOLs. The terms posterior PIOL, Implantable Collamer Lens, Implantable Contact Lens, and ICL were used for a wide and sensitive search. Other searches were performed to identify additional articles that were pertinent to clinical results or ICL complications using terms such as complications of PIOLs, vault, anterior subcapsular cataract, pigment dispersion, intraocular pressure (IOP), endothelial loss, cataract extraction, angle narrowing, endophthalmitis, and retinal detachment.

Copies of the articles were obtained and reviewed to identify those that reported original clinical data or complications after ICL implantation. Furthermore, their reference lists were searched manually for additional articles published in peer-reviewed journals. Only journal articles published in English were included. Only those articles using the latest designs of Visian ICL (V4 for myopia and astigmatism and V3 for hyperopia) were included. Articles reporting complications after ICL implantation in which the exact numbers of eyes being affected were unknown or the ICL model was not reported were excluded. Particular attention was given to avoid duplication of data of published papers covering previously published cases; only those adding new cases were included. Of those papers including different and earlier versions of the Visian ICL, only those cases implanted with the latest version of the lens were included. The significant complications reported regarding safety, such as anterior subcapsular cataract formation, increased IOP, endothelial cell loss, and any other clinical complications represent the outcomes of interest for this review.

Visian ICL Models

The Visian ICL is a foldable PIOL made from a biocompatible material named Collamer, composed of a hydrophilic porcine collagen (≤0.1%)/hydroxyethyl methacrylate copolymer with an ultraviolet-absorbing chromophore. It features a plate-haptic design with a central convex/concave optical zone and incorporates a forward vault to minimize contact of the ICL with the central anterior capsule of crystalline lens. This lens was designed to be placed in the posterior chamber behind the iris with the haptic zone resting on the ciliary sulcus.
After the first prototypes were implanted, some similar models followed with slight modifications, mainly in the built-in vault height. The latest Visian ICL models are the ICMV4 for myopia, ICHV3 for hyperopia, and TICMV4 for myopic astigmatism. The ICL is a rectangular, 7-mm-wide lens implant, available in four overall lengths (11.5, 12, 12.5, and 13 mm for the myopic and toric lenses, so called ICM and TICM, respectively; and 11, 11.5, 12, and 12.5 mm for the hyperopic lenses, so called ICH). The optic diameter ranges from 4.65 to 5.5 mm in the ICM and TICM models, depending on the dioptic power, being always 5.5 mm for ICH lenses. Front and side views of the Visian ICL V4 for myopia, hyperopia, and astigmatism are shown in Figure 1 (top) along with a comparison between the vault of the Visian V3 and Visian V4 for myopia (see Fig 1, bottom). In an attempt to increase the clearance from the anterior crystalline lens surface, and therefore minimize the risk of iatrogenic subcapsular anterior opacities, the V4 has an additional 0.13 to 0.21 mm of anterior vault height due to the steeper radius of curvature of the base curve and dioptic power (see Fig 1). When appropriately selected, the lens creates a clearance space over the whole anterior crystalline lens surface.

LITERATURE REVIEW RESULTS

An initial literature search identified 108 articles reporting the results of ICL implantation to correct different degrees of myopia, hyperopia, and astigmatism, among other applications. Based on the defined criteria, 44 articles were included in the present review.

Following the criteria previously quoted, and after a careful and systematic review of the complete articles, the postoperative complications and their treatment were obtained. The major postoperative complications documented for these lenses were crystalline lens opacities, increased IOP and pupillary block, and endothelial cell loss. The occurrence of cataract formation was determined as a percentage of the sum of cataract events reported over the total number of ICLs implanted. The percentages of complications given herein are not values of incidence on the general population undergoing these procedures. Instead, these reflect the percentage of cases reported over the whole sample analyzed in the articles surveyed.

CRYSTALLINE LENS OPACITY

Table 1 shows a summary of studies reporting cataract development after implantation with the latest ICL models. Data from 13 articles reporting cataract development after implantation of ICMV4 for myopia, 3 reports on ICHV3 for hyperopia, and 4 reports on TICM for astigmatism are presented, comprising a total of 2592 eyes surveyed. Of those eyes, 2142 (82.6%) were implanted with the ICMV4, 112 (4.3%) with the ICHV3, and 338 (13.0%) with the TICMV4. A total of 136 (5.2%) eyes have been reported with cataract, and the occurrence varied within a range from 1.3% to 28% in the ICM group, 6% to 14.3% in the ICH group, and 2.3% to 10.4% in the TICM group. The majority of ICL-associated cataracts were reported as being anterior subcapsular. For those reporting the time of onset, the average time for the development of cataract after ICL implantation varied from 125 ± 116 days (range: 1 week to 14 months) to 44 ± 31 months (range: 7 to 120 months). Of those eyes developing cataract for which the approximate time of onset was known, 43.4% (n=59) were reported within 1 year, 15.4% (n=21) between 1 and 3 years, and 35.3% (n=48) >3 years after ICL implantation (Fig 2). For the remaining eyes (n=8), the time of onset could not be accurately determined.

Early crystalline lens opacities (>40%) were reported to be possibly related with surgical trauma or ICL–crystalline contact, as they directly involved the anterior capsule as suggested by the authors of the articles surveyed. In the present analysis, 21 (15.4%) eyes with cataract were reported as surgically induced, mostly associated to inadvertent lens touch during ICL insertion or other intraoperative complications. Lackner et al reported 4 eyes developing cataract due to a prolonged surgery in elderly patients with a shallow anterior chamber and narrow pupil. Sanders reported 1 patient developing cataract after vitreoretinal manipulation. Sanchez-Galeana et al observed that most of the early-onset cataracts occurring in the immediate postoperative period...
(up to 3 months) were frequently asymptomatic and associated with surgical trauma. Surgeon learning curve has also been reported by those authors as a risk factor for the early development of cataract.22 This has been supported by their findings, in which 79% (11/14) of opacities occurred in the first or second implantation of surgeons-in-training, and with increased surgical experience the incidence of opacities dropped from 19% to 0% for the same surgeon.23 Sanders et al.24 in a multicenter trial, found that the incidence of lens opacities increased with inexperienced surgeons and 2 of 19 surgeons in their study were responsible for the majority of observed lens opacities.

Regarding cataract development 1 year after ICL implantation, several factors have been reported. Patient-dependent factors at the time of ICL implantation, such as age and preoperative refractive status, were considered predictive risk factors for cataract development after ICL implantation by several studies. Convers et al26 reported higher incidence of cataract development in older patients (14% of young patients [age: 10 to 40 years] versus 37% of older patients [age: 41 to 50 years]). Lackner et al26 reported in a series of 76 eyes that all eyes with late cataract development (n=11) were in patients older than 50 years. In a study by Alfonso et al,27 in 1.3% of eyes (13/964) developing cataract after ICL implantation, patient age was the parameter with the highest correlation with cata-

Table 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Lens Type</th>
<th>No. Eyes</th>
<th>Age (Range) (y)</th>
<th>SE (Range) (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conyers et al24</td>
<td>ICM</td>
<td>13</td>
<td>39.9±9 (22 to 50)</td>
<td>−14.87±5.89 (−6.78 to −28.25)</td>
</tr>
<tr>
<td>Sanchez-Galeana et al25</td>
<td>ICM</td>
<td>96</td>
<td>37.1±8.4 (21 to 60)</td>
<td>—</td>
</tr>
<tr>
<td>Lackner et al26</td>
<td>ICM</td>
<td>76</td>
<td>48.3±7.4 (21 to 59)</td>
<td>−16.5±5.60 (−5.50 to −33.40)</td>
</tr>
<tr>
<td>Sarkkola et al27</td>
<td>ICM</td>
<td>26</td>
<td>34 (24 to 42)</td>
<td>−15.10±4.59 (−6.75 to −23.50)</td>
</tr>
<tr>
<td>Bleckmann & Keuch28</td>
<td>ICM</td>
<td>99</td>
<td>42.7±11.9</td>
<td>8.56±4.30 (−4.00 to 19.25)</td>
</tr>
<tr>
<td>Chang & Meau29</td>
<td>ICM</td>
<td>61</td>
<td>34.9</td>
<td>−14.54±3.61 (−7.00 to −24.75)</td>
</tr>
<tr>
<td>Sanders30</td>
<td>ICM</td>
<td>526</td>
<td>36.5±5.9 (22 to 45)</td>
<td>−10.06±3.74 (−3.00 to −20.00)</td>
</tr>
<tr>
<td>Alfonso et al31</td>
<td>ICM</td>
<td>964</td>
<td>32.50±6.05 (18 to 53)</td>
<td>−9.47±4.12 (−3.25 to −24.00)</td>
</tr>
<tr>
<td>Chung et al32</td>
<td>ICM</td>
<td>49</td>
<td>34.3±9.5 (21 to 49)</td>
<td>−14.00±4.00 (−6.25 to −23.25)</td>
</tr>
<tr>
<td>Kamiya et al33</td>
<td>ICM</td>
<td>56</td>
<td>37±10.3 (21 to 59)</td>
<td>−9.83±3.00 (−4.00 to −15.25)</td>
</tr>
<tr>
<td>Boxer Wachler et al34</td>
<td>ICM</td>
<td>30</td>
<td>39.6 (25 to 56)</td>
<td>−11.48±3.84 (−7.00 to −20.25)</td>
</tr>
<tr>
<td>Lindland et al13</td>
<td>ICM</td>
<td>48</td>
<td>36 (19 to 52)</td>
<td>−9.10 (−4.30 to −24.30)</td>
</tr>
<tr>
<td>Schindinger et al35</td>
<td>ICM</td>
<td>98</td>
<td>36±10 (10 to 46)</td>
<td>−16.40±5.40 (−5.50 to −29.00)</td>
</tr>
<tr>
<td>Pesando et al7</td>
<td>ICH</td>
<td>50</td>
<td>38.41±4.9 (31 to 55)</td>
<td>+5.78±2.54 (+2.50 to +11.75)</td>
</tr>
<tr>
<td>Sanchez-Galeana et al25</td>
<td>ICH</td>
<td>34</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bleckmann & Keuch28</td>
<td>ICH</td>
<td>28</td>
<td>—</td>
<td>+3.62±1.72 (+2.75 to +7.75)</td>
</tr>
<tr>
<td>Sanders et al36</td>
<td>TICM</td>
<td>210</td>
<td>36.4±7.4 (21 to 45)</td>
<td>−9.36±2.66 (−2.38 to −19.50)</td>
</tr>
<tr>
<td>Schallhorn et al36</td>
<td>TICM</td>
<td>43</td>
<td>30±8±6</td>
<td>−8.04±1.28 (−6.00 to −20.00)</td>
</tr>
<tr>
<td>Lindland et al13</td>
<td>TICM</td>
<td>29</td>
<td>34.6 (25 to 48)</td>
<td>−8.50 (−3.50 to −17.50)</td>
</tr>
<tr>
<td>Kamiya et al37</td>
<td>TICM</td>
<td>56</td>
<td>35.5 (23 to 50)</td>
<td>−10.37±2.78 (−4.00 to −17.25)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2592</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SE = spherical equivalent refraction, ASC = anterior subcapsular cataract, ICM = ICL for myopia, ICH = ICL for hyperopia, TICM = ICL for astigmatism, CYL = spherical refractive cylinder.
ract development; additionally, those eyes tended to present lower vault values, average lower ICL size, and shallower anterior chamber depth. In a study by Sanders, all clinically significant cataracts occurred in the group with myopia >10.00 diopters (D). In the study by Sanchez-Galeana et al, mean spherical equivalent refraction in eyes with cataract was -19.20 ± 5.40 D versus -17.10 ± 4.70 D for those without cataract development in the myopic group and $+8.60 \pm 1.20$ D versus $+6.20 \pm 1.90$ D for those with and without cataract development in the hyperopic group. Furthermore, all 4 opacities in the hyperopic group occurred in eyes with a lens diameter of 11.0 mm, which is no longer produced by the manufacturer.

The separation between the ICL and crystalline lens is also an important issue associated with cataract formation after ICL implantation. It has been suggested that insufficient vault might induce cataract formation by mechanical interaction or trauma on the anterior capsule. Additionally, poor vault could also lead to disturbances in aqueous flow, interfering with lens nutrition and causing metabolic disturbances to the crystalline lens. In those reports in which data were available regarding vault values, $7,13,16,24,28,31-34$ (33.8%) eyes were documented to have poor vault ($<200 \mu$m). An underestimation in the selection of the ICL diameter was frequently associated with poor vault immediately after surgery and, in these cases, anterior subcapsular cataract was more likely to
occur due to ICL–crystalline lens contact. In the study by Gonvers et al,24 the one cataract observed with the V4 model was associated with absence of vault (direct contact between ICL and crystalline lens). In a study conducted in myopic Asian eyes by Chang and Meau,29 the only cataract occurred in a case in which the lens was considered too small. Sarikkola et al30 reported that the appearance of cataract could first be seen beneath the thickest part in the midperiphery of the ICL as a circle on the anterior crystalline lens surface in myopic eyes and in the central area in hyperopic eyes. This characteristic location of the cataract might be expected to affect patients with higher refractive errors due to the inherent geometry of the lenses. Moreover, a trend for vault to slightly decrease over time has been reported, which could lead to similar problems even if enough vault was warranted immediately after surgery.31 Schmidinger et al32 reported a significant and continuous reduction in central vaulting over a 10-year period in eyes treated with an ICMV4 model—eyes that developed cataract with this lens had midperipheral contact between the ICL and anterior crystalline lens surface. They also reported a mean vaulting of 216±104 μm at the initial manifestation of cataract and 98±100 μm by the time of cataract removal. In the study by Boxer Wachler et al,34 of the two eyes that had trace cataract, one eye had no vault and the ICL was replaced by a larger diameter lens.

Studies that evaluated the pathophysiology of anterior subcapsular cataracts secondary to ICL confirm those associations between cataract development and lower vault.28,42,43 In a study of 127 eyes by Bleckmann and Keuch,28 5 eyes that had vault <150 μm developed cataract. Histological examination of anterior capsule fragments after phacoemulsification revealed some evidence that contact or closeness of the phakic lens to the crystalline capsule might have induced permeation disturbances, which may have led to a cascade of metabolic disturbances and transformations within the epithelial cells. Using light microscopy, Khalifa et al42 evaluated the histopathology of anterior subcapsular cataract associated with ICL in 4 eyes that had ICL explantation due to low vault and cataract surgery. The histopathology of the anterior subcapsular cataract showed fibrous metaplasia of the anterior subcapsular lens epithelial cells with dense fibrous tissue attached to the inner surface of the anterior capsulorrhexis specimens corresponding to the areas of anterior subcapsular cataract. In addition, light microscopy of the explanted ICL showed a varied amount of pigment deposition and locations, and the authors state that these histopathologic changes are thought to be due to disturbance of the aqueous flow, causing metabolic changes within the crystalline lens structure or intermittent microtrauma.42

Regarding clinical significance of cataract, most were reported as nonprogressive or slowly progressive and asymptomatic and were placed under surveillance. However, in 30.1% (n=41) of eyes, the opacity became clinically significant and cataract surgery was performed in 27.9% (n=38) of eyes. The duration of follow-up should also be taken into account given that the occurrence of cataract is higher in patients with longer follow-up.28,33,35

Combined PIOL explantation and cataract surgery was reported to be an easy and feasible procedure43 once the lens was extracted through its original corneal incision or at a site identical to the original incision with usually minimal trauma because of the lens’ flexibility.44,45 All patients in studies published to date who underwent combined PIOL explantation and phacoemulsification had successful reimplantation of pseudophakic IOLs and did not show any adverse effects derived from the combined procedure. Bleckmann and Keuch46 reported an improvement in corrected distance visual acuity (CDVA) after cataract surgery of 1.44±1.33 lines more than that before ICL implantation. Morales et al47 also reported that the mean CDVA before ICL implantation, after ICL implantation, and after cataract surgery was 0.31±0.32, 0.28±0.19, and 0.27±0.21 logMAR, respectively. Kamiya et al48 reported an improvement of one line in CDVA in the only ICL V4–induced cataract observed in the study. In the study by Khalifa et al,42 the four eyes that underwent ICL explantation and cataract surgery achieved CDVA of 20/20. With regard to the predictability of these combined procedures, it has been reported that they offer high predictability of the intended correction. Bleckmann and Keuch48 stated that refractive error did not exceed 1.00 D irrespective of the initial refraction or degree of hyperopia or myopia. Morales et al46 reported that the percentage of eyes within ±1.00 D of the targeted correction was 71.4%. Kamiya et al45 reported that the percentages of eyes within ±0.50 D and ±1.00 D of the targeted correction 3 months after surgery were 80% and 90%, respectively. In addition, they also reported a high patient satisfaction rate with visual outcomes with the combined surgery.

It is known that the presence of an IOL will affect axial length measurements. Recently, however, Sanders et al47 determined that the axial length measurements made by partial coherence laser interferometry are not significantly affected by the presence of a phakic ICL. The maximum difference between pre- and postoperative PIOL axial length measurements was less than 0.1 mm, which will barely induce clinically significant errors near 0.25 D; even with axial lengths of 30 mm.
Morales et al16 also stated that the difference between the axial length measurements before ICL implantation and those after was small. These findings may somewhat account for the higher predictability of these combined procedures.

Intraocular Pressure

Table 2 summarizes those studies reporting an increase in IOP2,11,26,29,31,32,36,48-57 after implantation of the ICL V4 model and the procedures adopted to resolve it. An early rise in IOP was reported to be relatively frequent and usually moderate (<30 mmHg). Incomplete removal of viscoelastic material and instillation of steroid eye drops11,29,32 or the reduction of the angle opening distance (41.5\%) and reduction of the trabecular-iris angle (31.8\%)32 were associated with this rise, which was usually observed within the first month after surgery. When asymptomatic and not followed by marked chamber shallowing, these situations often resolved spontaneously within the first 48 hours and did not need any special treatment or resolved with temporary topical antiglaucoma medication.26,32 Chronic pigment dispersion was also suggested as another potential cause of increased IOP58 and can be related to preoperative laser iridotomies or chronic iris chafing by the ICL. Chung et al32 found that the mean trabecular meshwork pigmentation at 1 month postoperatively was not significantly different from the preoperative value with the ICL V4 model, and the ongoing reduction observed during postoperative follow-up may reflect the progressive clearing of the pigment dispersion secondary to laser iridotomies. Sanchez-Galeana et al52 reported a patient who developed pigment glaucoma with refractory increase in IOP; medical therapy and lens explantation trabeculectomy were performed to reduce IOP. Chung et al32 reported one eye showing increased IOP with significantly increased trabecular pigmentation 1 week postoperatively, despite low ICL vaulting. Significant pigment deposits were observed on the ICL surface and prolonged antiglaucoma medication was necessary.

In some cases, the rise in IOP remained persistent and a secondary emergency procedure was required. Acute pupillary block2,29,49,51 and subsequent narrowing of the iridocorneal angle are considered primary causes of sustained elevated IOP, frequently associated with inadequate preoperative iridotomies2,49,51 and/or excessive ICL vault (usually by an overestimation of the ICL size11,36). Smallman et al19 reported bilateral ICL explantation because of the risk for further episodes of pupillary block in a patient with delayed pupillary block glaucoma from closure of iridotomies. A similar complication was reported by Park et al.53 The majority of cases with pupillary block are successfully managed by enlargement of existing iridotomies or by the creation of additional surgical peripheral iridectomies,54,55 avoiding the need to explant the ICL.

The use of cycloplegic agents was also reported to temporarily relieve IOP in this ICL-induced angle closure mechanism21,56 by reducing the inward compressive force on the ICL footplates and consequential ICL vault reduction and avoidance of angle closure. Nevertheless, in some cases, acute angle closure is secondary to nonpupillary block mechanism,30,56,57 as described by Khalifa et al.57 This nonpupillary block mechanism is mainly due to an overestimation of ICL size and excessively vaulted ICLs, as a result of a poor correlation between white-to-white distance and sulcus-to-sulcus diameter50,57 and/or to an abnormally large and irregular ciliary process.56 These particular cases do not respond to additional laser or surgical iridotomies and ICL extraction is necessary.

Endothelial Cell Loss

Table 3 presents a summary of studies reporting endothelial cell loss secondary to implantation of the latest versions of ICL.7,11,26,32,33,37,59-61 Some discrepancies are present within the data. Some authors reported that mean endothelial cell density was significantly lower at 1 month after ICL implantation by 9.9\%,32 and this decrease was maintained during the subsequent 2 years. Pesando et al7 reported 4.7\% cell loss at approximately 6 months, which remained unchanged throughout 10-year follow-up, whereas others reported 6.1\% cell loss after 3 years39 and 3.7\% cell loss 4 years after ICL implantation.33 Alfonso et al19 reported corneal endothelial cell loss of 8.1\% 2 years after toric ICL implantation in eyes after penetrating keratoplasty.

Coefficient of variation of endothelial cell size did not show a significant change during the first year after surgery, but it was significantly lower thereafter,32,61 whereas mean percentage of hexagonality remained stable or slightly increased throughout the postoperative period. Despite this, in all studies, the rate of endothelial cell loss slowed down substantially from 1 to 2 years, and tended to remain stable or have lower progression after that period. Edelhauser et al41 reported a cumulative endothelial cell loss of 8.4\% and 8.5\% over the first 3 and 4 years, respectively. This loss continued at a rate of 2\% to 3\% per year over the first 3 years and a cell increase of 0.1\% between 3 and 4 years of follow-up. From these findings in cell loss behavior, the authors considered prolonged corneal remodeling following the surgical procedure to be the cause of the early corneal endothelial cell loss31 whereas further decrease in cell density in the late postoperative period may be due to natural cell loss.52

Endophthalmitis and Retinal Detachment
Implantation of a posterior chamber PIOL carries a potential risk for intraocular complications such as endophthalmitis and retinal detachment. Allan et al conducted an anonymous online survey of 234 surgeons in 21 countries to determine how many of their ICL cases had been complicated by endophthalmitis between January 1998 and December 2006. During the study period, 95 (40%) surgeons responded to the survey with a total of 17,954 ICLs implanted and 3 surgeons reported 1 case of endophthalmitis each, a rate of 0.0167% or approximately 1 case of endophthalmitis per 6000 ICL implantations. Davis et al reported a case of culture-positive bacterial endophthalmitis 4 days following ICL implantation. The patient made a full visual recovery after proper treatment.

Most ICL implantations are performed in patients with high myopia and long axial length; therefore, these eyes have a predisposition for retinal detachment.2,29,65 In the US FDA trial,2 3 retinal detachments were reported in 526 eyes. Retinal detachment was reported in 1 eye 15 months after ICL implantation in a study comprising 61 eyes, and this case was attributed to the pre-existing axial length of 31.0 mm.29 In a retrospective study of 628 eyes implanted with the ICL V4, Martinez-Castillo et al reported retinal detachment in 11 eyes, which occurred from 1 to 70 months after lens surgery. The authors attributed these cases to pre-existing high myopia and long axial length (>30 mm).

DISCUSSION

Apart from the rare adverse risks of intraocular surgery, mild endothelial cell loss, increased IOP and pupillary block, and cataract formation are the most documented safety concerns related to ICL implantation. Although a number of articles in the peer-reviewed literature support the relatively low rate of complications after ICL implantation, development of anterior subcapsular opacities and clinically significant cataract remain a major concern. In a recent meta-analysis by Chen et al,23 the incidence of cataract formation in the STAAR Collamer group (1933 eyes) was 8.48%. Early cataract formation was attributed to surgical trauma whereas late cataract formation was attributed to ICL–crystalline lens contact. However, the meta-analysis considered all ICL designs, including earlier versions that are now discontinued. In the present literature review comprising 2592 eyes, the occurrence of cataract formation with the latest ICL models was 5.2%. In the US trial,38 the rate of symptomatic and asymptomatic anterior subcapsular opacities was 12.6% with the V3 model and 2.9% with the V4 model. Furthermore, the rate of clinically significant cataract was 9.2% in the

TABLE 2

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Eyes</th>
<th>No. (%)</th>
<th>Potential Cause</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfonso et al31</td>
<td>964</td>
<td>12 (1.2)</td>
<td>High vault</td>
<td>Temporary topical medication</td>
</tr>
<tr>
<td>Chun et al48</td>
<td>81</td>
<td>9 (11.1)</td>
<td>Steroid</td>
<td>Temporary topical medication</td>
</tr>
<tr>
<td>Chang & Lau41</td>
<td>44</td>
<td>1 (2.3)</td>
<td>Steroid</td>
<td>Temporary topical medication</td>
</tr>
<tr>
<td>Lackner et al26</td>
<td>76</td>
<td>1 (1.3)</td>
<td>—</td>
<td>Temporary topical medication</td>
</tr>
<tr>
<td>Rayner et al28</td>
<td>126</td>
<td>1 (0.8)</td>
<td>High vault</td>
<td>ICL replacement</td>
</tr>
<tr>
<td>Chang & Meau29</td>
<td>61</td>
<td>16 (26.2)</td>
<td>Suspected pupillary block (1 eye), steroid (1 eye)</td>
<td>Temporary topical medication</td>
</tr>
<tr>
<td>Chung et al42</td>
<td>49</td>
<td>18 (2.0)</td>
<td>Pigment dispersion</td>
<td>Prolonged topical medication (1 eye)</td>
</tr>
<tr>
<td>Sanders et al7</td>
<td>526</td>
<td>21 (4.0)</td>
<td>Pupillary block</td>
<td>Additional iridotomies</td>
</tr>
<tr>
<td>Smallman et al49</td>
<td>Case report</td>
<td>1</td>
<td>Pupillary block</td>
<td>Additional iridotomies</td>
</tr>
<tr>
<td>Vetter et al50</td>
<td>Case report</td>
<td>1</td>
<td>Pupillary block</td>
<td>ICL explantation</td>
</tr>
<tr>
<td>Bylsma et al43</td>
<td>Case report</td>
<td>1</td>
<td>Pupillary block</td>
<td>Additional iridotomies</td>
</tr>
<tr>
<td>Sánchez- Galeana et al32</td>
<td>Case report</td>
<td>1</td>
<td>Pigment dispersion</td>
<td>ICL explantation</td>
</tr>
<tr>
<td>Park et al33</td>
<td>Case report</td>
<td>2</td>
<td>Pigment dispersion</td>
<td>ICL explantation</td>
</tr>
</tbody>
</table>
V3 group and 0.8% in the V4 group. These results have also been confirmed by other authors,26,59 which support the lower occurrence derived from this review compared to the earlier review by Chen et al.23

Overall, the occurrence of early onset cataract seems to have decreased in recent years, which may be attributed to the changes in lens design of the V4 model, compared to the less vaulted anterior models, and surgical-related factors such as the surgeon’s learning curve and skill. Despite this refinement in lens design, the selection of lens parameters and the execution of surgical maneuvers are still critical for long-term success as they define the physical position of the lens in the posterior chamber. An underestimation in the selection of the ICL diameter is frequently associated with poor vault (H11021 250 µm), thereby increasing the risk of cataract formation, whereas an oversized ICL may result in excessive vault (H11022 750 µm), thereby increasing the risk of angle-closure, pupillary block glaucoma, or pigment dispersion glaucoma.

Because the haptics of the ICL rest in the ciliary sulcus, the overall size of the ICL depends on the ciliary sulcus diameter. The ideal approach to selecting the appropriate size ICL would be to directly measure the sulcus-to-sulcus length. Before the development of high-resolution ultrasound biomicroscopy, no system allowed determination of the internal diameter of the ciliary sulcus. This evaluation relied on white-to-white measurement. The ICL’s diameter is oversized 0.5 to 1.0 mm from the white-to-white measurement in myopic eyes, and is the same length or oversized 0.5 mm in hyperopic eyes, and the amount of ideal postoperative vault must create a clearance space over the whole anterior crystalline lens surface and was recommended to be equal to 1.0 to 1.5 times the central corneal thicknesses on slit-lamp examination, which corresponds to an approximate value between 400 and 600 µm.66 However, regardless of the accuracy of the white-to-white measurement, recent studies demonstrate that there is no accurate anatomical relationship between external measurements and internal dimensions.67-69 Therefore, white-to-white distance alone may not predict angle or sulcus size, and size mismatches can occur, making this method unlikely to predict accurate vault values.70 Moreover, it has been reported that ICL length determined by high-resolution ultrasound biomicroscopy rendered significantly more ideal ICL vault than the conventional white-to-white method.71 In addition, changes made in size nomogram also proved to provide a more satisfactory vault.29

Other non-surgeon–dependent factors, such as high myopia and consequently higher ICL power, have also been related to earlier cataract development; the potential role of the thicker periphery in high-power lenses has been associated as well.

The anterior segment (including anterior and posterior chambers) is a dynamic rather than static space. Factors such as accommodation and aging or dynamic interactions between the ICL and crystalline lens and with the back surface of the iris during accommodation or pupillary dynamics13,72,73 affect the space available between the posterior cornea and anterior crystalline lens surface. Considering the relatively early patient age for the implantation of these lenses, PIOLs such as the ICL are subjected to these variations. Yan et al67 have shown that the crystalline lens rises on average

TABLE 3

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Eyes</th>
<th>ICL Type (%)</th>
<th>Endothelial Cell Loss (%) (Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesando et al7</td>
<td>50</td>
<td>ICH</td>
<td>4.7 (10 y)</td>
</tr>
<tr>
<td>Kamiya et al23</td>
<td>56</td>
<td>ICM</td>
<td>2.0 (1 y); 3.7 (5 y)</td>
</tr>
<tr>
<td>Chung et al12</td>
<td>49</td>
<td>ICM</td>
<td>9.9 (2 y)</td>
</tr>
<tr>
<td>Lackner et al26</td>
<td>76</td>
<td>ICM</td>
<td>8.3 (1 y); 6.4 (3 y)</td>
</tr>
<tr>
<td>Pineda-Fernández et al59</td>
<td>12</td>
<td>ICM</td>
<td>4.9 (1 y); 6.1 (3 y)</td>
</tr>
<tr>
<td>Dejaco-Ruhswurm et al60</td>
<td>8</td>
<td>ICM</td>
<td>5.5 (1 y); 12.3 (4 y)</td>
</tr>
<tr>
<td>Edelhauser et al51</td>
<td>212</td>
<td>ICM</td>
<td>8.9 (1 y); 9.5 (4 y)</td>
</tr>
<tr>
<td>Chang & Lau11</td>
<td>44</td>
<td>TiCL</td>
<td>11.0 (1 y)</td>
</tr>
<tr>
<td>Kamiya et al37</td>
<td>56</td>
<td>TiCL</td>
<td>2.9 (1 y)</td>
</tr>
<tr>
<td>Total</td>
<td>551</td>
<td></td>
<td>7.17; 7.51</td>
</tr>
</tbody>
</table>

ICH = ICL for hyperopia, ICM = ICL for myopia, TiCL = toric ICL for astigmatism
28 µm per diopter of accommodation, which is associated to a decrease in anterior chamber depth of 24 µm per diopter. As the eye ages, accommodation plays a less significant role, but other changes occurring in the crystalline lens that might compromise the amount of safe space from the ICL must be considered. Indeed, it is well known that the anterior chamber decreases in the aging eye. Such decrease in anterior chamber depth is likely to be induced by the thickening of the aging crystalline lens at an average rate of 24 µm/year depth is likely to be induced by the thickening of the aging crystalline lens at an average rate of 24 µm/year.

Finally, the anatomic configuration and age-related changes of the ciliary muscle must be taken into account. The age-related increase in anteroposterior thickness of the ciliary muscle in phakic patients might somewhat affect the positioning of the ICL over time. Recent information about the biomey of the anterior segment of the eye and its changes with age and accommodation should help improve these outcomes even further. Overall, the improvement of new anterior segment imaging should improve the ICL selection nomogram, thus increasing the safety of the procedure. Although ICL implantation can be considered a safe and effective method for the surgical correction of moderate to high refractive errors, follow-up studies are needed to establish the long-term safety of these posterior PIOLs.

REFERENCES

24. Conyers M, Othenin-Girard P, Bornet C, Sickenberg M. Implantable contact lens for moderate to high myopia: short-term fol-

47. Sanders DR, Bernitsky DA, Horton PJ Jr, Rivera RR. The Visian myopic implantable collamer lens does not significantly affect axial length measurement with the IOLMaster. J Refract Surg. 2008;24(9):957-959.

62. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial

