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Abstract

We use wavelet analysis to study business cycle synchronization across the EU-15 and the
Euro-12 countries. Based on the wavelet transform, we propose a metric to measure and test
for business cycles synchronization. Several conclusions emerge. France and Germany form the
core of the Euro land, being the most synchronized countries with the rest of Europe. Portugal,
Greece, Ireland and Finland do not show statistically relevant degrees of synchronization with
Europe. We also show that some countries (like Spain) have a French accent, while others have
a German accent (e.g. Austria). Perhaps surprisingly, we find that the French business cycle has
been leading the German business cycle as well as the rest of Europe. Among the countries that

may, in the future, join the Euro, the Czech Republic seems the most promising candidate.
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1 Introduction

The literature on business cycle synchronization is related to the literature on optimal currency
areas and, more broadly, on economic unions. With the recent enlargement of the European Union
and the challenges that EMU currently faces, the interest on this topic is guaranteed for a while.
If several countries delegate on some supranational institution the power to perform a common
monetary (or fiscal) policy, then they lose this policy stabilization instrument. If countries have
asymmetric business cycles then it will not be optimal to have the same decision applied to every
country. Business cycle synchronization is not sufficient to guarantee that a monetary union is
desirable. However, it is a necessary condition: a country with an asynchronous business cycle will
face several difficulties in a monetary union, because of the ‘wrong’ stabilization policies.

The literature is large, and growing, and may be subdivided into several branches, which are not
isolated between themselves. One branch is concerned with the best way to estimate a common busi-
ness cycle. For example, the EuroCOIN, a coincident indicator that measures European Economic
Activity, is based on the work of Forni et al. (2000), who rely on a dynamic factor model to extract
the common European Activity Index. Another example of this type of approach is given by Artis
et al. (2004), who use Markov switching vector autoregressions to identify a common unobserved
component that determines the dynamics of an European business cycle. Another branch does not
take as given the existence of a common business cycle. Instead, it tries to answer the question of
whether or not there is a common business cycle. Camacho et al. (2006) and Harding and Pagan
(2006) discuss how the degree of synchronization among business cycles of different countries can
be measured and tested. So far, the empirical evidence on the existence of an European business
cycle is mixed. For example, while Clark and Wincoop (2001) document that business cycles of U.S.
Census regions are substantially more synchronized than those of European countries and Camacho
et al. (2006) conclude that there is no common business cycle across Europe, Artis et al. (2004)
find a common component governing European business cycle dynamics. Finally, some authors are
concerned with the determinants of business cycle comovements. Selover and Jensen (1999) take a
purely mathematical modeling approach to conclude that the world business cycle may result from a
mode-locking phenomenon (a nonlinear process by which weak coupling between oscillating systems
tends to synchronize oscillations in the systems). Other authors look for economic reasons. Frankel
and Rose (1998) focus on the effects of international trade and Rose and Engel (2002) argue that,
because currency union members have more trade, business cycles are more synchronized across
currency union countries. According to Imbs (2004), economic regions with strong financial links
are significantly more synchronized. Relevant to our analysis are the results of Inklaar et al. (2008),
who conclude that convergence in monetary and fiscal policies has a significant impact on business
cycle synchronization. However, again, evidence on this topic is mixed. Baxter and Kouparitsas
(2005), for example, argue that currency unions are not important determinants of business cycle
synchronization (or at least this effect is not robust) and Camacho et al. (2008) present evidence
that differences between business cycles in Europe have not been disappearing.

We use wavelet analysis to study business cycle synchronization. As we will show, wavelet

analysis is particularly well suited to study this issue because it performs the estimation of the



spectral characteristics of a time-series as a function of time, revealing how the different periodic
components of a particular time-series evolve over time. By comparing the wavelet spectra of two
countries, we are able to check if the contribution of cycles at each frequency to the total variance is
similar between both countries, if this contribution happens at the same time or not, and, finally, if
the ups and downs of each cycle occur simultaneously. As a coherent mathematical body, wavelets
were born in the mid-1980s (Grossmann and Morlet 1984, Goupillaud et al. 1984). The literature
rapidly expanded and wavelet analysis is now extensively used in physics, epidemiology, signal

1" One peculiarity of the

processing, etc. Still, this technique is infrequently used in Economics.
applications of wavelet to economics is the almost exclusive use of the discrete wavelet transform,
e.g. Gengay et al. (2005), instead of the continuous transform that we use in this paper. To our
knowledge, Raihan et al. (2005), Crowley et al. (2006), Crowley and Mayes (2008), Aguiar-Conraria
et al. (2008) and Rua (2010) are among the few exceptions to this rule.

We use data on the Industrial Production for the countries in the EU-15, i.e. the first twelve
countries joining the Euro and the three countries that could have joined the Euro in 1999 (the
United Kingdom, Sweden and Denmark). We propose a metric to compare the wavelet spectra and
measure the degree of synchronization among countries. We test if that synchronization is statis-
tically significant by Monte Carlo simulations. With that metric, we fill a dissimilarity or distance
matrix which is used to map the countries into a two dimensional axis in terms of business cycle
synchronization. FEn passant, we show that business cycle dissimilarities are highly correlated with
geographical physical distances. Then, we use cross-wavelets, wavelet-phase and phase difference
analysis, to study in more detail when and at what frequencies each country is synchronized or not.
We also extend the analysis to a set of countries that have recently joined the European Union and,
in some cases, have adopted the Euro.

The paper proceeds as follows. In section 2, we present the continuous wavelet transform, discuss
some of its properties and the optimal characteristics of the Morlet wavelet. We also describe the
wavelet power spectrum, the cross-wavelet power spectrum, the wavelet coherency and the phase-
difference. Finally, we propose a metric for measuring business cycle synchronization. In section 3,
we apply these tools to study and test for business cycle synchronization across the EU-15. Section 4
extends part of the analysis to the new European Union members for which we could gather at least
15 years of data: Hungary, Poland, Cyprus, Romania, Slovakia, and the Czech Republic. Section 5
concludes.

2 Wavelets: frequency analysis across time?

2.1 The continuous wavelet transform

Wavelet analysis performs the estimation of the spectral characteristics of a time-series as a function

of time, revealing how the different periodic components of a particular time-series evolve over

'For a detailed review of wavelet applications to economic and financial data, the reader is referred to Crowley
(2007).

’The technical details related to wavelet analysis are thoroughly explained in Aguiar-Conraria and Soares
(2010). Associated with that paper, there is Matlab wavelet toolbox that we wrote. It is freely available at
http:/ /sites.google.com/site/aguiarconraria/joanasoares-wavelets.



time. While the Fourier transform breaks down a time-series into constituent sinusoids of different
frequencies and infinite duration in time,® a wavelet function drops towards zero. For most of the
applications, it is enough to require that the wavelet function, 1, called the mother wavelet, has zero
mean, i.e. ffooo ¥ (t) dt = 0, and satisties a decaying property. This means that the function has to
wiggle up and down the t—axis while it approaches zero; i.e. it must behave like a small wave that
loses its strength as it moves away from the centre. It is this property that allows, contrary to the
Fourier transform, for an effective localization in both time and frequency.

Given a time-series zy, its continuous wavelet transform (CWT) with respect to the wavelet

is a function of two variables, W, (7, s) :

W, (T,s):/mt [\/_%@ <t57>] i (1)

where the bar denotes complex conjugation, s is a scaling factor that controls the width of the

wavelet and 7 is a translation parameter controlling its location. Scaling a wavelet simply means
stretching it (if |s| > 1) or compressing it (if |s| < 1), while translating it simply means shifting its

position in time.*

2.1.1 The choice of the mother wavelet

There are several types of wavelet functions available with different characteristics, such as, Morlet,
Mexican Hat, Haar, Daubechies, etc. Since the wavelet coefficients W, (s,7) contain combined
information on both z; and v (t), the choice of the wavelet is an important aspect to be taken
into account, which depends on the particular application one has in mind. To study synchronism
between different time-series, one has to select a complex-valued wavelet, because its corresponding
transform contains information on both amplitude and phase. Among these, analytic wavelets
are ideal.® Analytic wavelets are ideal for the analysis of oscillatory signals, since the continuous
analytic wavelet transform provides an estimate of the instantaneous amplitude and instantaneous
phase of the signal in the vicinity of each time/scale location (7,s). In such case, reconstruction

formulas involving only positive values of the scale parameter s are available. In particular, if

0< Ky = OOO #df < 00, one can use the reconstruction formula, given by

2(t) = 2R [K%p /0 S, s)%} 0 )

The Morlet Wavelet became the most popular of the complex valued wavelets mainly because of
four properties. First, as we explain in Aguiar-Conraria and Soares (2010) there are three sensible
ways to convert wavelet scales into frequencies. One uses the peak frequency, the other uses the

energy frequency and, finally, the central instantaneous frequency. In the case of the Morlet Wavelet,

3The Fourier basis functions are sines and cosines.

In practice, we deal with a discrete time-series & = {x¢, t =0,...,T — 1} of T observations with a uniform time
step. The integral in (1) has to be discretized and is replaced by a summation over the 7' time steps.

S4(t) is analytic if its Fourier transform, ¢ (f), is such that ¢(f) = 0, for f < 0.

6Note that by adjusting the limits of the interval this reconstruction formula can be used as a band-pass filter.



these are all equal, facilitating the conversion from scales to frequencies. Second, the Morlet Wavelet
has optimal joint time-frequency concentration.” Third, the time radius and the frequency radius
are equal, and, therefore, this wavelet represents the best compromise between time and frequency
concentration. Finally, as long as it is conveniently parametrized, for numerical purposes, it is an

analytic wavelet. The Morlet Wavelet is given by
) 2
U (1) = /et 7 (3)

All our results are obtained with the particular choice wg = 6. For this parametrization of the
Morlet wavelet, there is an inverse relation between wavelet scales and frequencies, f ~ %, greatly
simplifying the interpretation of the empirical results. Thanks to this very simple one-to-one relation

between scale and frequency we can use both terms interchangeably.®

2.1.2 Wavelet tools

In analogy with the terminology used in the Fourier case, the (local) wavelet power spectrum

(sometimes called scalogram or wavelet periodogram) is defined as
(WPS)4(7,8) = [Wa(r,s)[. (4)

This gives us a measure of the variance distribution of the time-series in the time-scale/frequency
plane.?

The concepts of cross wavelet power, wavelet coherency and phase-difference are natural gener-
alizations of the basic wavelet analysis tools that enable us to deal with the time-frequency depen-
dencies between two time-series. The cross-wavelet transform of two time-series, z(t) and y(t), is
defined as

WIy (T7 3) =Wy (T7 5) Wy (7_7 5) ) (5)

where W, and W, are the wavelet transforms of z and y, respectively. We define the cross wavelet
power, as |W,,(7,s)|. The cross-wavelet power of two time-series depicts the local covariance
between two time-series at each time and frequency. When compared with the cross wavelet power,
the wavelet coherency has the advantage of being normalized by the power spectrum of the two

time-series. In analogy with the concept of coherency used in Fourier analysis, given two time-series

"By this we mean that the Heisenberg box area reaches its lower bound with this wavelet, i,e, the uncertainty
attains the minimum possible theoretical value.

8To our knowledge, every application of the continuous wavelet transform in Economics have used this choice.
Another important family of analytic wavelets, the so-called Generalized Morse Wavelets (GMWs), is also becoming
popular in physical sciences. GMWs are a two-parameter family of wavelets. As a robustness check we also tried
this wavelet for a range of reasonable parameter values, namely values that imply that the Heisenberg box area was
close to its lower bound (see Aguiar-Conraria and Soares, 2010). Depending on the parameters, the results were either
qualitatively similar or almost indistiguishable from the ones presented in the paper.

9Sometimes the wavelet power spectrum is averaged over time for comparison with classical spectral methods. When
the average is taken over all times, we obtain the global wavelet power spectrum, (GWPS).(s,7) = [ |Wa (7, )| dr.



x(t) and y(t) one defines their wavelet coherency:

[S (Way (1, 9))]|

Ryy (7,5) = ,
) VS ((Waw (1,8)]) S ([Wyy (7, 5)])

(6)

where S denotes a smoothing operator in both time and scale.!”

Although there is some work done on the theoretical distribution of the wavelet power and on
the distribution of cross wavelets, the available tests imply null hypotheses that are too restrictive to
deal with economic data. Therefore, we will rely on Monte Carlo simulations for statistical inference.

As we have discussed, one of the major advantages of using a complex-valued wavelet is that we
can compute the phase of the wavelet transform of each series and thus obtain information about
the possible delays of the oscillations of the two series as a function of time and scale/frequency, by
computing the phase difference. The phase difference can be computed from the cross wavelet

transform, by using the formula

%(ny(s,f))> | -

Fay(s,7) = tan” (aﬁe(Wzy(m))

and information on the signs of each part to completely determine the value of ¢, € [-m,7]. A
phase-difference of zero indicates that the time series move together at the specified frequency; if
byy € (0,%), then the series move in phase, but the time-series y leads z; if ¢,, € (—%,0), then it
is x that is leading; a phase-difference of m (or —) indicates an anti-phase relation; if ¢,, € (5, ),

then z is leading; time-series y is leading if ¢, € (—7,—%).

2.2 Wavelet spectra distance matrix

In this section, we propose a metric for measuring the distance between a pair of given wavelet
spectra. The measure can then be applied to each pair of spectra of all the countries in our dataset,
thus allowing us to fill in a distance/dissimilarity matrix, suitable for cluster analysis.

Comparing time-series based on their wavelet spectra is, in a sense, like comparing two images.
Direct comparison is not suitable because there is no guarantee that regions of low power will not
overshadow the comparison. It would be like comparing two pencil-drawing sketches based mainly
on the color of the paper, disregarding the sketches themselves. We build on the work of Rouyer
et al. (2008) and use the singular value decomposition (SVD) of a matrix to focus on the common
high power time-frequency regions. This method is analogous to Principal Component Analysis,
but while with the latter one finds linear combinations that maximize the variance, subject to some
orthogonality conditions, the method we use extracts the components that maximize covariances
instead. Therefore, the first extracted components correspond to the most important common
patterns between the wavelet spectra. With that information, we just need to define a metric to

measure the pairwise distance between the several extracted components

71 our codes we allow smoothing to be done with several types of windows, including Hanning, Hamming, Blackman
and Bartlett windows. The particular choice has no relevant impact in our results.



2.2.1 Leading vectors and leading patterns

Given two F' x T wavelet spectral matrices W, and W, let Cy, = WIW;{ , where Wf is the
conjugate transpose of Wy, be their covariance matrix.!! Performing an SVD of this matrix yields

Coy =USVH, (8)

where the matrices U and V are unitary matrices (i.e. UfU = VHV = 1), and ¥ = diag(o;) is
a diagonal matrix with non-negative diagonal elements ordered from highest to lowest, o1 > o9 >
...>20op>0.

The columns, uy of the matrix U and the columns vi of V' are known, respectively, as the
singular vectors for W, and Wy, and the o; are the singular values. The number of nonzero singular
values is equal to the rank of the matrix Cy,.

The singular vectors ug and vy satisfy an important variational property. For each k, they are
such that

H H
w; Coyvy, = Jmax {p Coyar} 9)

where S is the set of all vectors satisfying the following orthogonality conditions:

PEPJ = ngj = 5k,ja for ] = 1a ey kv (10)

with d, ; denoting the Kronecker delta symbol.
Let 1¥ and l’; be the leading patterns, i.e. the 1 x T vectors obtained by projecting each spectrum

W, and W, onto the respective k'® singular vector (axis):

1 .= ullw, and lz = viwW,. (11)

Note that 1* is a linear combination of the rows of W, whose weights are the conjugates of the

components of the k" singular vector uy (and similarly for llyf) Then, since
ujl Coyvi, = g W, Witvy = up Wo (vii W )H =15 (15)H (12)

we can conclude that the leading patterns are the linear combinations of the rows of W, and W, re-
spectively, that maximize their mutual covariance (subject to the referred orthogonality constraints).

Equation (8) can be written equivalently as
uto,, Vv =1x. (13)

By equating the diagonal elements of the matrices on each side of this equation, one gets that the

covariance of the k" leading patterns is given by

2 2
1k (1’;)H‘ = [l Cuyvi|* = 0. (14)

"Note that Cyy is a square F' X F' matrix.



On the other hand, the (squared) covariance of W, and W, is given by ||Cyyl|%,,, where ||| Fro is
the Frobenius matrix norm, defined by [|Al|pro := /3 _;; |ai;|*. Since this norm is invariant under a

unitary transformation, we have
F
||Cmy||%'ro = HUHCM,IVH%’TO = ||EH%'7"0 = 20-22
i=1

The (squared) singular values, O’i, are the weights to be attributed to each leading pattern and are
equal to the (squared) covariance explained by each pair of singular vectors.

If we denote by L, and L, the matrices whose rows are the leading patterns 1¥ and IZ, equation(11)
shows that L, = UEW, and L,= VH Wy, from where we immediately obtain

F F
We=UL,=> wli,  W,=VL,=Y i
k=1 k=1
In practice, we select a certain number K < F' (K usually much smaller than F') of leading patterns,

guaranteeing, for example, that the fraction of covariance (Zszl 0%) / (25:1 0%) is above a certain
threshold,'? and use

K K
~ k ~ k
Wem Y wlh, Wy x> will
k=1 k=1

2.2.2 Distance between two spectra

We have reduced the information contained in the two wavelet spectra to a few components: the K
most relevant leading patterns and leading vectors. Now, the idea is to define a distance between
the two spectra, by appropriately measuring the distances from these components. To do so, we
compute the distance between two vectors (leading patterns or leading vectors) by measuring the
angle between each pair of corresponding segments, defined by the consecutive points of the two
vectors, and take the mean of these values. This would be easy to perform if all the values were
real. In our case, because we use a complex wavelet, we need to define an angle in a complex vector
space. Unfortunately, not much guidance is available in the mathematical literature on angles in
complex vector spaces. Scharnhorst (2001) summarizes several possible definitions. We will consider
two possibilities.

Recall that, given two vectors a and b in the Euclidian vector space R"™, with the usual inner
product (a,b)g = a’b and norm ||a|| = \/(a, a)g, the angle between the two vectors, © = O (a,b),

can be found using the formula:

(a, b>R

€3 (0) = 2ol

© € [0, 7. (15)

Now, assume that a and b are vectors in the vector space C™. There are two reasonable approaches to

define a (real)-valued angle between a and b. The first one is to consider the natural isomorphism

12Tn our paper, we used K = 3. Three leading patterns were enough to guarantee a fraction above 90%. Using larger
values for K yields indistinguishable results.



¢ : C" — R?" given by é(a) = ¢ ((a1,...,a,)) = R(a1),S(a1),- -+, R(an), S(a,)) and simply
define the Euclidean angle between the complex vectors a and b as the angle (defined by using
formula (15)) between the real vectors ¢(a) and ¢(b).

The other approach is based on the use of the Hermitian inner product (a,b)c = af’b and
corresponding norm [|a|| = \/(a, a)c. We can then define the so-called Hermitian angle between the

complex vectors a and b, ©y(a,b), by the formula

|<aa b><C|

<03 (Om) = 2ol

T
O €0, 5] (16)
The measures are not equal, but they are related; see Scharnhorst (2001) for details. In all our
numerical computations, we use the Hermitian angle.

The distance between two vectors p = (p1,...,pm) and q = (q1, . .., qr) with M components in
C (applicable to the leading patterns and leading vectors) is simply defined by

1 M-1
dp.a) = 37— > On (57,57 (17)
=1

where the ith segment s is the two-vector sP := (i + 1,p;i1) — (4, p:) = (1, piv1 — Di)-
To compare the wavelet spectra of country x and country y, we then compute the following
distance:

K 52 [d (1%, 1%) + d
dlSt (W$7Wy) — Zkil Jk [ ( x) y) + (uk’vk)] , (18)

K
> k=1 U%

where cr% are the weights equal to the squared covariance explained by each axis.

The above distance is computed for each pair of countries and, with this information, we can

then fill a matrix of distances.

3 Business cycle synchronization in the Euro land

We analyze the cycles of the core of the Euro area looking both at the frequency content and phasing
of cycles. In our analysis, we first consider the EU-15. The 12 countries that first joined the Euro
— Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal and Spain — and the three countries that were part of the European Union in 1999, but
chose not to join the monetary union — United Kingdom, Sweden, Denmark.

For this type of purpose, to measure real economic activity, most studies use either real GDP
or an Industrial Production Index. We will use the Industrial Production Index because wavelet
analysis is quite data demanding, and to have monthly data is a bonus. Using the International
Financial Statistics database of the IMF, we gather non seasonally adjusted data from July 1975
until May 2010.' To derive an Euro-12 Industrial Production Index, we calculate a weighted average

of the industrial production of the 12 countries. As weights, we use each country’s GDP in year

13The Euclidian angle approach delivers similar results.
In a previous version of this paper, we have avoided using data affected by the current financial and economic
crisis. The results were qualitatively similar.



2000. We remove seasonal effects using the reconstruction formula 2.'° Because we want to focus
our analysis on business cycle frequencies, we estimate the wavelet power spectra between 1.5 and
8 years frequencies. !0

In Figure 1, we see the continuous wavelet power spectrum of the Euro-12 Industrial Production.
To save space, we omit the wavelet power spectra for the member countries. Not much information
is lost with this omission because the most notorious common patterns are also apparent when we
look at the FEuropean aggregate in Figure 1: first, with the exception of Greece, every country shows
a spike around the 6-years frequency. This spike is stronger in the 1980s for several countries (like
Ireland, Luxembourg, Germany, Belgium, Netherlands and Austria), while for others, like Portugal
and Finland, the high power region is situated between 1990 and 1995. Second, when we look at
3-year frequencies, we observe a spike in the 1990s that is common to several countries (although
not all of them). Finally, it is also apparent that after 2005, volatility increased at all frequencies

and across all countries.

(a) Industrial Production - Europe 12 (b) Wavelet Power Spectrum

Period

1 1 1 1 1 1 1 a2
1580 1835 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010

Figure 1: (a) Euro-12 Industrial Production Index. (b) Wavelet Power Spectrum — The cone of
influence, which indicates the region affected by edge effects, is shown with a black line. The color
code for power ranges from blue (low power) to red (high power). The white lines show the
maxima of the undulations of the wavelet power spectrum.

3.1 Business cycles geography

Although suggestive, the wavelet power spectrum is not the best tool to analyze business cycle
synchronization, because information about the phase, which depends on the imaginary part, is lost
when we take the absolute value. Therefore, even if two countries share a similar high power region,
one cannot be positive that their business cycles look alike. In the upper triangle of Table 1, we have
information on the physical distance between countries.!” In the lower triangle of Table 1, we can

find countries dissimilarities, based on formula (18) and computed with the whole dataset. Given

15Using different filters yields similar results. For example, had we used used the Baxter and King band pass filter,
the correlation between the distances shown in Table 1 and the alternative Table 1 would be above 88%.

5Tt is also common to consider that business cycle frequencies are between 3 and 8 years. Doing so yields similar
results.

'"To estimate the physical distance (in kilometers) between the capitals of these countries, we used the software
developed by Byers (2003).
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that we use the Hermitian angle, the highest value the distance can take is 7/2. As explained in
the previous section, this measure takes into account both the real and the imaginary part of the
wavelet transform. A value very close to zero means that two countries have a very similar wavelet
transform. This, in turn, implies that the two countries share the same high power regions and
also that their phases are aligned. This means that (1) the contribution of cycles at each frequency
to the total variance is similar between both countries, (2) this contribution happens at the same
time in both countries and, finally, (3) the ups and downs of each cycle occur simultaneously in
both countries. In this sense, we say that a value close to zero between countries means that their
business cycles are highly synchronized.

One can argue that what really matters for synchronization in the context of the euro area is
synchronization between each member state and the euro area aggregate minus its domestic output.
We compute that. In Table 1, in the last row, when we measure the distance between each country
and the Euro aggregate, that country is excluded from the aggregate, except, of course, for the
U.K., Sweden and Denmark, which are compared to the Euro-12. To assess if synchronization is

statistically significant, we rely on Monte Carlo methods.'®

Sp
Spain 503 2366 1480
Portugal 0.467 2849 3 1861
Greece 0.438 [0.733 - 2162 : 2097
Finland 0.448 [0.516 [ 0.457 1503 2. 1908
Netherlands | 0.416(0.393 |0.452 | 0.495 - 318 I 427 173
Luxembourg | 0.354 [0.452 [ 0.435 | 0.435 0199- 603 289 188 760
Ttaly 0.367 [0.519 [ 0.415 QkEN m- 1194 1121 1186 775
Germany 0.349 [ 0.506 [ 0.475 | 0.412 : 879 653 520 1: 935
France 0.473 | 0.410 | 0.441 | 0.372 0.273 - 261 1033 777 342
Belgium 0.410 | 0.474 | 0.470 | 0.358 ilL¥ m 0.272 0.281 - 913 773 322
Austria 0.335 [ 0.530 | 0.388 | 0.396 il u.igsm 0.172 - 1678 1235
Ireland 0.406 [0.375 [ 0.492 | 0.435 0.261 m - 460
UK 0.355 [ 0.397 [0.411 | 0.331 m 0.190
DK 0.328 [0.446 | 0.403 | 0.428 0.256 0.244 0.246 0.221 okEE
Sw 0.434 (0.714 [ 0.427 | 0.351

0.510 0.392 0.253 0.246 0.183 0.214 geiislaivEy 0.201

0.335

Table 1: Lower triangle — Business Cycle Dissimilarities. Upper triangle — Distance in Kms

From the lower triangle of Table 1, one can see that the tighter pair of countries is Germany
and Austria, followed by the United Kingdom and Ireland. The most dissimilar are Portugal and

"8We fit an ARMA(1,1) model and construct new samples by drawing errors from a Gaussian distribution, with
the same variance as the estimated error terms. For each pair of countries, we do this 5000 times and compute the
distance for each trial. From the computed distances, we extract the critical values at 1, 5 and 10%.
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Greece, and Portugal and Sweden.

Looking at pairwise distances and also at the distance between each country and the rest of
Europe, we are able to identify what we can call the European core. There are four countries whose
synchronism with the rest of Europe is significant at 1% level: France, Germany, Luxembourg and
Austria. In this latter case, the reason is that Austria is very close to Germany, a country with a
GDP that accounts for 30% of the European GDP. If we exclude Germany from the aggregate index,
then Austria is no longer synchronous at the 1% level. Therefore, it is fair to say that these results
identify Germany and France as the core countries of the Euro zone (Luxembourg is too small to
play that role).

Portugal, Greece, Finland and Ireland are four countries whose business cycle seem independent
of the rest of Euro zone. More than that, the only country with which Portugal is synchronized
with at the 10% level is Ireland and Greece is not statistically synchronized with any other country.
Finally, it is interesting to note that Ireland is synchronized at 1% with the UK (suggesting that
Ireland should be sharing the currency with it and not with Germany and France). The other
countries that have adopted the Euro have a business cycle synchronized with the rest of Europe at
5% significance.

Three countries could but did not adopt the Euro. Denmark chose so by referendum. The UK
decided not to join the Euro based on five tests, which included business cycle synchronization (HMT,
2003). The Swedish government, based on the Calmfors report, Calmfors et al. (1997), reached
similar conclusions for Sweden. According to our results, Sweden and the U.K. are synchronized at
10%, suggesting that on this regard, they would be in better position to be part of the Euro than
Portugal, Greece, Finland and Ireland; but not as good as the other member countries. Therefore,
our results lend some support to the decision of the British and Swedish governments. Denmark,
on its turn, could perfectly well have adopted the Euro. If it had, it would be in the Euro core, as
it is the second most synchronized country with the Euro-12. In fact, Denmark gave up on having
an independent monetary policy, by keeping a fixed exchange rate with the Euro.

To visualize Table 1, we follow Camacho et al. (2006). We reduce the dissimilarity matrix to
a two-column matrix. This new matrix, the configuration matrix, contains the position of each
country in two orthogonal axes. Therefore, we can position each country on a plane. We apply the
same procedure to the physical distances, using the information in the upper triangle of Table 1.
Naturally, this cannot be performed with perfect accuracy because distances are not Euclidean.'”

Figure 2 shows these maps. From the picture on the left, it is clear that there is an Euro land
core, formed by Germany, Austria, the Benelux countries, France, Spain, and, to a lesser extent,
Italy. Like Camacho et al. (2006), we also conclude that Portugal, Greece and Finland are the
countries exhibiting the less "European" cycles. It is comforting to observe that quite different

approaches lead to some overlapping results.

90n the one hand, the business cycle dissimilarity matrix is obviously not Euclidean. On the other hand, even the
physical distances are not Euclidean because of Earth’s curvature.
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Figure 2: Multidimensional scaling maps

This European business cycle map is not independent from geography. Looking at the map
based on physical distances (right picture) Finland, Portugal and Greece are the countries that are
further away from the core. Spain, Italy and Ireland cannot be considered central countries either.
Finally, the closest country to Ireland, on both measures, is the United Kingdom. Comparing the
business cycle map with the geographical map, the biggest surprise is Spain, which was able to cross
the Pyrenees. This eyeball procedure can be formally confirmed: the Spearman Rank Correlation
between physical and business cycle distances (i.e. between the upper and the lower triangle of Table
1) is 0.67 (p-value of 4 x 1071%).

3.2 Phase-difference and cross-wavelets

The phase-difference gives us information on the delay between oscillations of two time-series, the
coherency cross-wavelet transform will tell us if the correlation is strong or not. To perform the cross-
wavelet analysis we focus on the wavelet coherency, instead of the wavelet cross spectrum, because
there is some redundancy between both measures and the wavelet coherency has the advantage of
being normalized by the power spectrum of the two time-series. Regions of high coherency between
two countries are synonym of strong local correlation.

To assess if coherency is statistically significant, we follow the same method we used to test
for business cycle distances. The test for the phase difference is not straightforward. In fact, Ge
(2008) showed that under the null of no linear relation between two variables the phase angle will be
uniformly distributed. Hence it will be dispersed between -7 and 7. Because of that, Ge argues that
one should not use significance tests for the wavelet phase-difference. Instead, its analysis should
be complemented by inspection of the coherence significance. For reference, and without claiming
to be rigorous, we construct confidence intervals based on adding and subtracting two standard
deviations.

In Figure 3 we have, on the left, the coherency between each country’s industrial production and
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the rest of Europe. On the right, for each country, we present two graphs. On top, we have the
phase difference between the two time-series calculated for the 1.5-4.5 years frequency-band. In the
bottom, the analysis is performed in the longer run, 4.5-8 years frequency-band. A phase difference
between —/2 and 7/2 means that both series are in-phase: between zero and 7/2, Europe is leading;
between —7/2 and zero, it is the country that is leading.

One common feature to every country, with the exception of Portugal and the Netherlands, is
that there is a high coherency region in the last years of the 2000’s decade. This is not surprising.
With the global crisis hitting simultaneously several countries, they behave as if they were highly
synchronized.

Starting with the countries that we have identified as not belonging to the euro-cycle, Portugal,
Greece, Finland and Ireland. These countries, specially the first three, do not exhibit many regions
of high coherency, confirming the results we had already obtained. Ireland is a different case. Ireland
exhibits some regions of high coherency. This is not surprising. In fact, looking at Table 1, one can
see that Ireland is synchronized with some individual European countries (like Luxembourg or the
Netherlands).2? Finland exhibits some interesting dynamics. Between 1990 and 1994 it shows a
small region of high coherency at low frequencies but the phase difference calculated for the 4.5-8
year frequency band reveals that Finland was almost out of phase with the rest of Europe. After
1995, the phase difference analysis shows that the cycles became more synchronized and, after 2000,
the regions of high coherency extend across all frequencies. Therefore, there is evidence that the
Finish business cycle started approaching the European cycle after mid-1990s.

Looking at the European core, which we have identified as being formed by Germany and France,
one concludes, perhaps surprisingly, that France shows more regions of high coherency. On top of
that, while in the shorter run (1.5-4.5 frequencies) both France and Germany are very much in phase
with the rest of Europe, when one looks at longer-run frequencies (4.5-8 year frequency band) one
concludes that it is France, not Germany, that has been leading the European cycle. This result is
confirmed in Figure 4, when we directly compare France with Germany: at lower frequencies, France
has been leading the German cycle.

Spain, Italy and Belgium show more regions of high coherency after 1990 suggesting that it was
in that decade that they started approaching the core. In Figure 5, we estimate the coherency and
phase-difference between Spain and the two Euro core countries. It is clear that Spain, after 1990,
shows regions of strong coherency with Germany but specially with France, and that the longer run
cycle is particularly aligned with France. Therefore, one can infer that Spain has approached the
Euro core mainly because it has been getting closer to France. A similar analysis (not shown) would
lead to similar conclusions about Italy (although not as evident). In the case of Belgium, coherency
is stronger with Germany but, in spite of that, the Belgium phases seem more aligned with the

French phases.

20Tn a previous version of the paper, we found the Irish business cycle to be synchronized at 10% with Europe. Even
in that previous version, evidence for Ireland was mixed. So it is fair to say that our results for Ireland are not robust.
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Figure 3: On the Left: Wavelet Coherency — The cone of influence is shown with a black line. The
contour designates the 5% significance level. Coherency ranges from blue (low coherency) to red
(high coherency). On the right: Phase-difference (red line), plus or minus two standard deviations.

The shaded area may be affected edge effects.
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Finally, looking at the countries that are not in the Euro — the UK, Sweden and Denmark —,
it is clear that Denmark is the one that is the most synchronized with the Euro area. In particular,
note that the there are large coherency regions around the 6 year frequency, which we identified in

Figure 1 as being very relevant.

4 Which other countries could join the Euro?

We have already assessed the degree of synchronization of three countries that are in the European
Union but not in the Euro zone. In this section we extend the analysis for some other countries for
which we could gather a decent sample size: Hungary, Poland, Cyprus, Romania, Slovakia, and the
Czech Republic.?!

Hungary | Poland | Cyprus |Romania| Slovakia| Czech
Dissimilarity 0474 0571 0.453 0464 0.329 0.376
Critical Value {10%)] 0.339 0.314 0.299 0.290 0.258 0.257

Table 2: Business Cycle Dissimilarities between several countries and the Euro 12.

As before, we computed business cycle dissimilarities based on equation (18). At 10% significance,
no country is synchronized with the Euro-12 (Table 2).22 This information is complemented by
Figure 6. Again, most regions of high coherency are located after 2005. In Hungary and Czech
Republic, this high coherency region occurs at all frequencies.

Cyprus and Slovakia have already joined the Euro. In spite of that, these two countries don’t
show any signs of strong convergence. In the case of Cyprus there are not many relevant regions of
high coherency and, in the case of Slovakia, phases are not much aligned with the European ones.

The country that shows the strongest convergence to the Euro-12 cycle is the Czech Republic.
It is the country with the largest high coherency region after 2005. It is also clear that the phase-
differences are approaching zero (after 2005, they are almost zero), showing that the phases are

getting more aligned with the Euro area.

21For Lithuania, Latvia, Bulgaria, Estonia, Slovenia and Malta the data started somewhere between 1997 and 2005.
22These dissimilarities are not comparable between each other, because the sample sizes differ.
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Figure 6: On the Left: Wavelet Coherency — The cone of influence is shown with a black line. The
contour designates the 5% significance level. Coherency ranges from blue (low coherency) to red
(high coherency). On the right: Phase-difference (red line), plus or minus two standard deviations.
The shaded area may be affected edge effects.

5 Conclusions

Wavelet analysis is particularly well suited to study business cycles, because it estimates the spectrum
as a function of time, revealing how the different periodic components of the time-series change over
time. We used the wavelet tools to investigate business cycles synchronization among the countries
that have adopted, could have adopted and that, in the near future, may adopt the Furo.

We derived a Euro-core and a Euro-periphery in terms of business cycles synchronism. Our

results indicate that business cycle proximity is highly correlated with physical proximity. Nearby
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countries have more synchronized economic cycle. Not surprisingly, Germany and France form
the Euro-core around which the other countries gravitate. Perhaps surprisingly, it is France, not
Germany, which has been leading the European cycle. This result is confirmed when we directly
compare France with Germany.

Portugal, Greece, Ireland and Finland are in the Euro-periphery. Their cycles are not in sync
with the rest of Euro-12. In particular, Ireland is highly synchronized with the UK. One should also
note that Finland has been converging to the Euro core.

All the other Euro-12 countries are synchronized at 5% significance. Finally, looking at the EU-
15 countries that are not in the Euro, Denmark is highly synchronized with the Euro area, while
Sweden and the UK are in the limbo, with a synchronization that is significant at 10%.

Among the new member countries, Cyprus and Slovakia have already joined the Euro. These
countries business cycles are not very aligned with the Euro-12. Among the countries that have not

joined the Euro, the Czech Republic seems the most promising candidate to join it.
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