Sputtered Highly Ordered TiO$_2$ Nanorod Arrays and Their Applications as the Electrode in Dye-Sensitized Solar Cells

Lijian Meng1,2,3,*, Aifeng Ma1, Pinliang Ying1, Zhaochi Feng1, and Can Li1,*

1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
2Departamento de Física, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
3Centro de Física, Universidade do Minho, 4800-058 Guimarães, Portugal

For the first time, the TiO$_2$ nanorod arrays have been prepared on ITO substrates at room temperature by dc reactive magnetron sputtering technique. These TiO$_2$ nanorods have a preferred orientation along the (220) direction and are perpendicular to the ITO substrate. Both the X-ray diffraction and Raman scattering measurements show that the highly ordered TiO$_2$ nanorod arrays have an anatase crystal structure. The diameter of the nanorod varies from 30 nm to 100 nm and the nanorod length can be varied from several hundred nanometers to several micrometers depending on the deposition time. The TiO$_2$ nanorod arrays with about 3 micrometers length have been used as an electrode for dye-sensitized solar cell (DSSC). Short-circuit photocurrent density, open-circuit voltage, fill factor and light-to-electricity conversion efficiency at 100 mW/cm2 light intensity are estimated to be 12.76 mA/cm2, 0.65 V, 0.63 and 5.25%, respectively, for the DSSC made of the TiO$_2$ nanorods.

Keywords: TiO$_2$, DSSC, Nanorod, Sputtering.

1. INTRODUCTION

One-dimensional inorganic nanostructures (nanotubes, nanorods and nanowires) are very interesting as they exhibit a wide range of electrical and optical properties that depend on both size and shape.1 As an n-type wide band-gap semiconductor material, nanocrystalline TiO$_2$ has attracted much interest in recent years due to its applications in dye-sensitized solar cells (DSSC) and photocatalysts. DSSC is a promising alternative to the conventional p--n junction solar cell as they are candidates for low-cost and high energy conversion efficiency photovoltaic devices.2,3 This kind of the solar cells consist of a dye adsorbed on a nanoporous TiO$_2$ film, an electrolyte as a hole transport layer containing redox couples and opposite electrode. The dyes on the surface of the film absorb light and inject electrons into the conduction band of the TiO$_2$. The original state of the dye is subsequently restored by electrolyte. It is well known that DSSC devices are a very complicated system including the processes in such as light absorption, charge separation, charge transport, charge collection, and electrolyte diffusion. Therefore, there are many factors which can influence the light to electricity conversion efficiency. TiO$_2$ nanorod, nanowire, and nanotube arrays have been used in DSSC devices as they can increase the surface area which is favorable for the dye adsorption.$^{4-9}$ In addition, the highly crystalline nanorod is one of the most promising routes to high conversion efficiency as the barrier effect of intercrystalline titania is greatly decreased by using long highly crystalline nanorods instead of a porous TiO$_2$ film.4 Both the nanorods and nanotubes mentioned in these works are prepared by chemical methods. Colloidal chemistry is almost a routine method for preparing nanostructured TiO$_2$ films for photovoltaic applications.10,11 However, the randomly porous structure of TiO$_2$ electrode prepared by this technique also causes several problems, such as low conductivity and charge density. Moreover, in such conventional wet processes, it is difficult to produce uniform TiO$_2$ films with a large area.

Reactive magnetron sputtering is a promising technique for the large scale uniform coatings to produce high quality...
film with strong adhesion to substrate. Another attractive point is that reactive magnetron sputtering does not need a stage of heat treatment at high temperatures as that for colloidal chemistry method, therefore the use of conducting polymer substrates is possible. In addition, the TiO$_2$ films prepared by reactive magnetron sputtering have a better electronic transport than that prepared by colloidal method.12 In the beginning of this century, Gomez et al. published several papers on DSSC devices based on TiO$_2$ electrode prepared by dc reactive magnetron sputtering method.$^{12–16}$ They obtained a conversion efficiency about 4% for 10 μm TiO$_2$ film.14 In recent two years, there are some works published for TiO$_2$ films prepared by magnetron sputtering technique as electrode for DSSC devices, but the efficiency is not over 4% which has been obtained by Gomez et al. before.$^{17–19}$ All the works reported in the literature focused on the (101) oriented anatase phase. In this work, we firstly prepared the (220) oriented TiO$_2$ nanorod arrays by dc reactive magnetron sputtering technique. The prepared TiO$_2$ nanorod arrays have been used as the electrode for DSSC devices and a conversion efficiency of 5.25% has been achieved for a 3 μm thickness TiO$_2$ nanorod arrays without any extra treatment.

2. EXPERIMENTAL DETAILS

The TiO$_2$ nanorod arrays were prepared on commercial ITO (sheet resistance of 20 Ω per square and 100 nm thickness) substrates by dc reactive magnetron sputtering technique using a commercial sputtering system equipped with a turbo molecular pumping system. A titanium metal disk (60 mm in diameter and 3 mm in thickness) with a purity of 99.99% was used as the target. After pumping down to 1×10^{-3} Pa, the oxygen and argon gases (99.99% purities) were introduced into the chamber through the mass flow controllers. The oxygen partial pressure and the total sputtering pressure were 0.25 Pa and 2.0 Pa, respectively. The flat TiO$_2$ film was prepared at 0.5 Pa sputtering pressure. The sputtering was carried out using a constant current mode. The sputtering current was kept at 0.56 A and the sputtering power was about 235 W. In order to remove surface contaminants of the target, pre-sputtering was done for 20 minutes with a shutter covering the substrate. The deposited TiO$_2$ films were sensitized with N719 (Ru(II)2(NCS)2:2TBA, where L = 2,2' -bipyridyl-4,4'-dicarboxylic acid) dye by soaking the films in an ethanolic solution of N719 dye (0.5 mM) of for 24 hours at room temperature. The counter-electrode was made by sputtering Pt on an FTO glass and the electrolyte is composed of 0.1 M LiI, 0.1 M Li$_2$I, 0.6 M 1-hexyl-3-methylimidazolium iodide, and 0.5 M 4-tert-butylpyridine in 3-methoxypropionitrile. The photocurrent–voltage measurements were carried out with a Princeton 2273 applied research electrochemical system, a 500 W Xenon lamp under AM 1.5 G illumination with a water filter was used. The light intensity was adjusted to 100 mW/cm2. Cells with an active area of 0.15 cm2 were tested.

3. RESULTS AND DISCUSSION

The field emission scanning electron microscopy (FE-SEM) images of a prepared TiO$_2$ film indicate that the nanorod arrays are formed on the ITO substrate as shown in Figure 1. For comparing, a surface image of the flat TiO$_2$ film is also given in Figure 1(e). The dimension of the nanorods varies from 30 to the 100 nm and the average dimension is about 65 nm. It also can be seen that the big dimension is formed with some small nanorods which are bunched together. From Figures 1(b and c), it can be seen clearly that the nanorods are very well-aligned and perpendicular to the substrate surface. In addition, these well-aligned nanorods grow throughout whole film without any rupture. Figure 1(d) shows some separate nanorods which are about 50 nm in diameters and 1000 nm in length. Figure 1(e) shows the flat TiO$_2$ film has...
a dense structure. Figure 2 shows the transmission electron microscopy (TEM) images of some spread nanorods and the surface structure of a nanorod. Figure 2(b) shows clearly that the surface of these nanorods is quite rough which is favorable for the dye adsorption. Generally, the sputtered films are quite dense as the energy of the sputtered atoms arriving at the substrate is relatively high comparing to the other kind of deposition techniques as shown in Figure 1(e). However, as the nanorod arrays are prepared at a high sputtering pressure (about 2 Pa) and a large substrate-target distance (about 80 mm), the sputtered atoms will be scattered several times before they arrive at the substrate, so the sputtered atoms arrive at the substrate with a quite low energy. With this low energy, the formed adatoms on the substrate surface are difficult to migrate and results in this 1-D growth. The formation of the 1-D nanorods can be explained qualitatively by the Thornton structure zone model. According to this model, at high sputtering pressures, owing to low adatom mobility (slow surface diffusion), a columnar microcrystals with voids structure are formed. Nanorods may be formed as the adatom mobility decreases further. It is quite clear that the deposition parameters need to be optimized carefully in order to get the 1-D nanorods. The flat TiO$_2$ film prepared at low sputtering pressure has a dense structure as shown in Figure 1(e). It agrees well with this growth model.

The XRD patterns (Fig. 3) of the TiO$_2$ nanorods and a flat TiO$_2$ film show that both the as-deposited TiO$_2$ nanorods and flat TiO$_2$ film have a polycrystalline anatase structure. The flat TiO$_2$ film has a strong (101) diffraction peak and TiO$_2$ nanorods have a very strong (220) diffraction peak. This suggests that the TiO$_2$ nanorods are formed along the [110] direction. Column structures which develop during low-temperature film growth often have a common crystallographic axis oriented perpendicular to the plane of the substrate. For example, fcc, bcc and hcp films are frequently formed with their most densely populated planes, (111), (110) and (001), respectively, parallel to the substrate surface. The minimization of surface energies and the variation in condensation coefficients on different crystal faces have been used to explain the observed textures. In the latter case, the fast-growing crystal surfaces will grow out of existence if the adatom mobility is insufficient to overcome the difference in condensation coefficients. In addition, the growth behavior of the crystal is mainly determined by the structure of a given crystal and is affected by growth conditions too. Wu et al. have prepared TiO$_2$ nanorods on Si and fused silica substrates by MOCVD method at high temperatures. They have proposed the fast deposition rate along the [110] crystal faces and then a preferred orientation along the (220) direction. By analyzing the results of XRD and SEM measurements, it can be concluded that, for the sputtered TiO$_2$ nanorods in this work, the fast growth rate is along the [110] crystal plane. The average crystalline dimension along the [110] crystal plane has been estimated from the

Fig. 2. TEM images of TiO$_2$ nanorods. (a): spread nanorods; (b): detailed surface view of one nanorod.

Fig. 3. X-ray diffraction patterns of a flat TiO$_2$ film (a) and a TiO$_2$ nanorod arrays (b).
Delivered by Ingenta to: University of Rochester

Fig. 4. Raman spectra of a flat TiO2 film (a) and a TiO2 nanorod arrays (b).

half-width of the (220) diffraction peak using Scherrer’s equation. The calculated grain size along the (220) direction of the TiO2 nanorod arrays is about 10 nm.

The Raman spectra of the sputtered TiO2 nanorods and the flat TiO2 film are shown in Figure 4. Raman bands at 144, 195, 396, 513 and 637 cm−1 are assigned to anatase phase of TiO2.23 Both the TiO2 nanorod and flat TiO2 film show a similar Raman spectra. However, considering the thicknesses of the flat TiO2 film (650 nm) and the TiO2 nanorod (2850 nm), the Raman peak intensity of the flat TiO2 film is much stronger than that of the nanorod. It means that the porous [110] direction oriented TiO2 nanorod structure will result in the decrease of the lattice vibration intensity.

Figure 5 gives the transmittance of the sputtered TiO2 nanorod arrays and the flat TiO2 film. Although the transmittance of the TiO2 nanorod is lower comparing to the flat TiO2 film, this transmittance (about 65% in the visible region) for the 3 μm thickness TiO2 nanorod is a relatively high transmittance comparing to the TiO2 films prepared by chemical methods. This is an advantage of the sputtering technique over other techniques, specially chemical methods in the preparation of TiO2 films. For example, Kao et al., got less than 60% transmittance for the 2 μm thickness TiO2 films prepared by a chemical method.24 The refractive index of the nanorod TiO2 and Flat TiO2 have been obtained by fitting the transmittance as shown in Figure 6. The flat TiO2 film has a dense structure and then a high refractive index. The porosity of the flat TiO2 film and TiO2 nanorod can be estimated using the Eq. (28)

\[n_f = n_s (1 - q) + n_v q \]

where \(q \) is the porosity, \(n_s \) is the refractive index of the TiO2 void filling material and \(n_v \) is the refractive index of bulk TiO2 material. If we assumed that all the voids are filled with air, then \(n_v = 1 \). For anatase TiO2 bulk material, \(n_s = 2.57 \). Using these data, the porosities of the flat TiO2 film and the TiO2 nanorod have been calculated. The porosities are 1% and 11% for the flat TiO2 film and TiO2 nanorod using data at 500 nm, respectively. Later it will be seen that these differences of the porosity will influence greatly the conversion efficiency of the DSSC.

The optical band gap energy can be estimated from the transmittance by using the following equation for a semiconductor:

\[\alpha h v = A (h v - E_g)^m \]

where \(\alpha \) is the absorption coefficient, \(h \) is the Plank’s constant, \(A \) is a constant, \(E_g \) is the band gap, and \(m \) is equal to 0.5 or 2 for a direct or an indirect transition.25 The band gap can be estimated from a plot of \((\alpha h v)^2\) or \((\alpha h v)^{1/2}\) versus photon energy \((h v)\). The intercept of the tangent to the plot can give a good approximation of the band gap energy for the direct or indirect band gap materials.

As TiO2 is an indirect transition band gap material, we have plotted \((\alpha h v)^{1/2}\) versus photon energy \((h v)\) for the
nanorod TiO$_2$ and the flat TiO$_2$ film as shown in Figure 7. The optical bandgaps are about 3.15 eV and 3.35 eV for the nanorod TiO$_2$ and the flat TiO$_2$ film, respectively. The reported band gap value of anatase phase in bulk material is 3.2 eV.26 The difference of the structure may result in the difference of the bandgap.

The photocurrents (I) and photovoltages (V) of the DSSCs made from the sputtered TiO$_2$ nanorod arrays with different thickness were measured and the conversion efficiencies were calculated based on these measurements. A relative high current density has been obtained for a 3 μm thickness TiO$_2$ nanorod arrays, as shown in Figure 8, comparing to the results obtained by sputtering technique in the literature.$^{12-19}$ A short-circuit photocurrent density (J_{sc}) of 12.76 mA/cm2, an open-circuit voltage (V_{oc}) of 0.65 V, a fill factor (FF) of 0.63 and a photoelectron conversion efficiency (η) of 5.25% are obtained for the DSSC using this nanorod arrays as an electrode material. It is the highest conversion efficiency until now has been obtained for TiO$_2$ films prepared by sputtering technique without any post-deposition treatments. For comparing, the efficiency of the DSSC using the flat TiO$_2$ film as electrode is also given in Figure 8. As the flat TiO$_2$ film is quite dense, it is difficult to absorb the dye molecules, so the efficiency is very low as shown in the figure. Many parameters can influence the conversion efficiency of the DSSC. Two of them have been improved by our TiO$_2$ nanorod arrays. Firstly, the TEM images (Fig. 2(b)) shows that the TiO$_2$ nanorod made by dc reactive magnetron sputtering has a very rough surface. More dye molecules can be adsorbed on the TiO$_2$ surface and results in an increase of the amount of the electrons generated by photon, and then an increase of the current density; Secondly, 1-D nanorod may improve the electron transport through the photoelectrode which is controlled by diffusion coefficient of electron and phonon relaxation in which, electrons usually lose their energy through electron–phonon interaction. These improvements result in the high light-to-electron conversion efficiency. The amount of the anchored dye molecules on the TiO$_2$ nanorod arrays has been determined qualitatively by measuring the transmittance after soaking it in dye solution as shown in Figure 9. The evident band due to the adsorbed dye at 500 nm indicates that large amount of dye has been anchored on the TiO$_2$ nanorod surface. The inset of the Figure 9 is the photograph of the flat TiO$_2$ film and nanorod TiO$_2$ after soaking them in the N719 dye solution for 24 hours. It can be seen that for flat TiO$_2$ film, it is almost no color, it means the absorbed dye molecules

![Fig. 7. The determination of the band gap energy for a flat TiO$_2$ film (a) and a TiO$_2$ nanorod arrays (b), from the plot of ($a\nu$)$^{1/2}$ versus the excitation energy, ν.](image)

![Fig. 8. The J–V curves for DSSC prepared using a flat TiO$_2$ film (a) and a TiO$_2$ nanorod arrays (b).](image)

![Fig. 9. Transmittance of TiO$_2$ nanorod arrays before and after dye-sensitized (Inset is the photograph of a flat TiO$_2$ film and a TiO$_2$ nanorod arrays after dye sensitized).](image)
Sputtered Highly Ordered TiO₂ Nanorod Arrays and Their Applications as the Electrode in DSSC

Meng et al.

4. CONCLUSIONS

In summary, the TiO₂ thin films mainly composed by nanorod arrays have been prepared onto ITO substrates by dc reactive magnetron sputtering technique at room temperature. These TiO₂ nanorod arrays are in anatase phase and show an excellent orientation along the (220) direction. The nanorod arrays are well-aligned and are perpendicular to the substrate. The nanorods have a very rough surface which is favorable for the dye adsorption. The DSSC has been made using the TiO₂ nanorod arrays as photoelectrode material and a conversion efficiency as high as 5.25% has been achieved. This is the highest efficiency until now has been reported for TiO₂ electrode prepared by sputtering technique without any post-deposition treatment. Further work is going on for increasing the efficiency.

Acknowledgment: This work was done during Lijian Meng’s sabbatical stay in DICP (SRHI/BSAB/862/2008, FCT, Portugal) and was supported by the Solar Energy Action Project of the Chinese Academy of Sciences. The authors thank Mr. Xuming Wei, Mr. Shishan Sheng and Miss Jingying Jiang from the State Key Laboratory of Catalysis, DICP for their assistances in SEM, XRD and TEM characterizations.

References and Notes

Received: 23 December 2009. Accepted: 26 March 2010.