FIG. 1. Analytical versus experimental compression stress-strain curves for series s4 with 30 kg/m3 (a) and 60 kg/m3 (b) of fibers
FIG. 2. Analytical versus experimental compression normalized stress-strain relationship for fibers 30/0.50 and with aspect-ratio of 60
FIG. 3. Setup of flexural test on notched beam (a) and schematic representation of fracture energy evaluation (b)
FIG. 4. Load-displacement relationship obtained in three-point bending tests of the notched beams of series s3 (a) and s4 (b)
FIG. 5. $\frac{G_f}{G_{fo}}$ relationship for specimens reinforced with ZP30/.50 (a) and ZX60/.80 (b) of fibers
FIG. 6. Parameters used to define the tensile stress strain diagram
FIG. 7. Cross section discretization and assumed strain and stress diagrams
Average layer strain equals the reinforcement yield strain at cracks.

FIG. 8. Tension stiffening diagram
FIG. 9. Numerical versus experimental (Kormeling et al. 1980) moment-curvature relationship
FIG. 10. Slab strip geometry, supports and load arrangement and details of instrumentation
FIG. 11. Typical crack patterns of the slab strips reinforced with wire mesh and 0 (a), 30 (b), 45 (c) and 60 (d) kg/m3 of fibers ZX60/.80
FIG. 12. Relationship between load and displacement at midspan, for the slab strips reinforced with wire mesh and different percentages of steel fibers ZX60/.80
FIG. 13. Moment-curvature relationship of slab strips reinforced with 0 (a), 30 (b), 45 (c) and 60 (d) kg/m³ of fibers.