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ABSTRACT 8 

The application of Carbon Fiber Reinforced Polymer (CFRP) strips according to the Near Surface Mounted 9 

(NSM) technique has proven to be a promising shear strengthening strategy for RC beams, in terms of 10 

effectiveness and executability. Nevertheless, several aspects concerning the underlying resisting 11 

mechanisms and their mechanical interpretation still need to be clarified and organized in a comprehensive 12 

model. By a critical overview of the relevant research findings available to date in the analytical modeling 13 

domain, it emerges that most of the efforts carried out are mainly devoted to quantify parameters related to 14 

the NSM debonding failure mechanism, on the basis of test set-ups whose geometry often greatly differs 15 

from the actual conditions met in a common T-cross section beam. To give some contribution for the 16 

discussion of these subjects, an experimental program was carried out, on T-beams of quasi-real scale and 17 

with a given ratio of existing steel stirrups. The main results are presented and analyzed in the present work. 18 

In the second part of this work, a new analytical predictive model is proposed. It assumes as possible failure 19 

mechanisms: debonding, tensile rupture of the strip and the concrete tensile fracture and allows the 20 

interaction between strips to be accounted for. The comparison between the results determined by the 21 

application of the proposed model and those obtained from experimental research reveals the high predictive 22 

accuracy of this model. 23 
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INTRODUCTION 27 

The possibilities of a technique, designated as Near Surface Mounted (NSM), for the shear strengthening of 28 

reinforced concrete (RC) beams was started being explored at the beginning of this century 1. This technique 29 

consists on fixing, with epoxy adhesive, fiber reinforced polymer (FRP) bars into grooves opened in the 30 

concrete cover of the beam lateral faces. In this exploratory work round bars were used but, recently, the 31 

higher effectiveness of square bars was proved 2. To assess the effectiveness of the NSM technique for the 32 

shear strengthening of RC beams, using carbon FRP (CFRP) strips of rectangular cross section, Barros and 33 

Dias 3 carried out an experimental program to analyze the influences of the strips’ inclination, beam depth 34 

and longitudinal tensile steel reinforcement ratio on the effectiveness of the externally bonded reinforcement 35 

(EBR) and NSM strengthening techniques. Amongst the CFRP strengthening techniques, the NSM with 36 

strips at 45º resulted to be the most effective, not only in terms of shear resistance increment but also in 37 

terms of deformation capacity at failure of the beams. The NSM was also faster and easier to apply than the 38 

EBR technique. To simulate the contribution of the NSM strips for the shear strengthening of tested beams, 39 

those authors applied the debonding-based formulation proposed by Nanni et al. 4, with some adjustments in 40 

order to take into account the specificities related to the use of strips instead of round bars 5. The predictive 41 

performance of this model can be found elsewhere 5. Despite the improvements introduced, the existing 42 

Debonding-based analytical predictive Model (DM) systematically provided an overestimation, the higher 43 

the smaller the spacing, of the experimentally recorded shear strengthening contribution by NSM CFRP 44 

strips. Such overestimation, as further confirmed by experimental evidence, can be ascribed to the erroneous 45 

assumption that the expected failure mechanism is debonding, regardless of the influence of concrete tensile 46 

strength, interaction between consecutive strips, and existing stirrups/strips interaction. 47 

The analysis of the failure modes of the beams of the experimental programs carried out by Barros and Dias 3 48 

and Dias and Barros 6, has made clear that it is not possible to extend the debonding-based analytical 49 

predictive models to NSM. In fact, in the beams with smaller strip spacing the lateral concrete cover of the 50 

web separated from the beam concrete core, indicating that the concrete tensile strength plays a paramount 51 

role, by limiting the contribution of these systems to the shear strengthening of RC beams. To give some 52 

contribution for the discussion of these subjects, an experimental program was carried out, with T-beams of 53 

quasi-real scale and with a given ratio of existing steel stirrups. The main results are presented and analyzed 54 

in the present work. At the same time a new model is proposed in this work, able of capturing the essential 55 
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phenomena involved in this strengthening technique, namely: debonding; interaction between strips; 56 

concrete tensile fracture; tensile rupture of the strips. This model is described in this work and its 57 

performance is assessed taking the obtained experimental results. 58 

 59 

EXPERIMENTAL PROGRAM 60 

Test series, strengthening technique, test setup and material properties 61 

The T-cross section of the twelve RC beams composing the experimental program is represented in Fig. 1. 62 

The reinforcement was designed to activate shear failure for all tested beams. To have shear failure in only 63 

one half-span, a non-symmetric three point load configuration with two different shear spans was chosen and 64 

high transverse reinforcement (steel stirrups of 6 mm diameter spaced at 75 mm - 6@75mm) was placed in 65 

the larger beam span Lr, as Fig. 2 shows. The monitored shorter beam span (Ll) where shear failure should 66 

occur, had a “shear span-to-depth” ratio of Ll/d=2.5, where d is the beam effective depth (Fig. 1). 67 

The experimental program (see Table 1) was composed of one beam with no shear reinforcement (C_R 68 

beam), one beam with steel stirrups 6@300mm (2S_R beam, with stirrups ratio fw  = 0.10%), one beam 69 

with steel stirrups 6@130mm (6S_R beam, fw  = 0.24%), and nine beams of 6@300mm with different 70 

CFRP strengthening arrangements on the Ll beam span: three different CFRP ratios (
fw
ρ ) and, for each 71 

CFRP ratio, three different strips angles (  , angle between CFRP fibers direction and beam axis, Fig. 6) 72 

namely, 90º, 45º and 60º. The CFRP shear strengthening ratio 
fw
ρ  (see Table 2) was obtained from 73 

 2 . . . . .100fw f f w fa b b s sin   where af = 1.4 mm and bf = 10 mm are the strip cross section 74 

dimensions, bw = 180 mm is the width of the beam’s web, and sf is the strips spacing. For the three series of 75 

beams with different strips angles, the maximum fw  in each series was evaluated to ensure that the beams 76 

presented a maximum load similar to the 6S_R reference beam, reinforced with the highest sw  77 

(  . .100fw sw w wA b s  , where Asw is the cross sectional area of the two arms of a steel stirrup and sw is the 78 

stirrups spacing). In the evaluation of the maximum fw  it was assumed that CFRP works at a stress level 79 

corresponding to 0.5% strain, which is a compromise between the value 0.4% recommended by ACI 7 for 80 

EBR and the 0.59% value obtained in pullout bending tests on NSM bars 8. For the intermediate and 81 
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minimum fw , the spacing sf for beams with   equal to 90º, 60º and 45º was evaluated to obtain a similar 82 

strips contribution for each fw . With reference to Fig. 1, the strips were distributed along the AB line, 83 

where A is the beam support at the “test side” and B was obtained assuming a 45º load transfer. To avoid 84 

concrete spalling at A, a confinement system made from wet lay-up CFRP sheets (three layers, with fibers 85 

aligned with the beam axis) was applied, as shown in Fig. 1. The strengthening procedures are detailed 86 

elsewhere 3. 87 

Three point beam bending tests (see Fig. 1) were carried out using a servo closed-loop control equipment, 88 

taking the signal read in the linear variable differential transducer (LVDT) placed at the loaded section to 89 

control the test at a deflection rate of 0.01 mm/s. 90 

The concrete compressive strength was evaluated at 28 days and at the age of the beam test, carrying out 91 

direct compression tests on cylinders of 150 mm diameter and 300 mm height, according to EN 206-1 92 

Standard 9. Deformed steel bars of 6, 12, 16 and 25 mm diameter were used in the tested beams. The main 93 

properties were obtained from uni-axial tensile tests performed according to the recommendations of EN 94 

10002 10. The tensile properties of the S&P strips, CFK 150/2000, were characterized by uni-axial tensile 95 

tests carried out according to ISO 527-5 11. These strips had a cross section of 10×1.4 mm2. Table 2 lists the 96 

mean values obtained from these experimental tests. 97 

 98 

Main results and discussion 99 

Table 3 includes the values of the RS
maxmax

FF  2  and RS6
maxmax

FF   ratios, where 2
max max max

S RF F F    , 100 

and 
max

F , RS
max

F 2  and RS
max

F 6  represent, respectively, the load carrying capacity of a tested beam, of the 101 

2S_R and of the 6S_R reference beams. 102 

 The force-deflection relationships at the loading point of the tested beams are depicted in Fig. 3. If RS
max

F 2  is 103 

used as a basis of comparison, Table 3 and Fig. 3 show that, apart from the 2S_3LV beam, all adopted CFRP 104 

strengthening configurations provided an increase in the beam load carrying capacity, for any 
fw
ρ  and  . 105 

The load decay observed in the 2S_R reference beam, when a shear crack formed, did not occur in CFRP 106 

shear strengthened beams, revealing that strips delayed the formation of the shear failure crack. The 107 

strengthening arrangements with the lowest 
fw
ρ  presented the smaller increments in terms of beam load 108 
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carrying capacity: 0.3%, 4.1% and 18.7% for the beams strengthened with strips at 90º, 45º and 60º, 109 

respectively, see Fig. 3a. However, the increment in the beam load capacity that these strengthening systems 110 

provided for deflections above the one corresponding to the formation of the shear failure crack in the 2S_R 111 

reference beam was appreciable, even for 2S_3LV beam. 112 

The strengthening configurations of strips at 90º, 45º, and 60º, for intermediate 
fw
ρ , provided an increase in 113 

the maximum load of 13.3%, 21.9% and 24.4%, respectively (see Fig. 3b and Table 3). Amongst the beams 114 

strengthened with the highest 
fw
ρ , the strengthening configuration with   =  60º was the most effective in 115 

terms of peak load: a 28.9% increase was obtained, while increments of 25.7% and 21.3% were recorded for 116 

  = 90º and   = 45º, respectively. 117 

As mentioned above, the highest 
fw
ρ  for each strengthening arrangement was designed to achieve a peak 118 

load close to that of the 6S_R reference beam. The obtained experimental results show that, in general, this 119 

was attained, since the maximum load of the beams with   = 90º, 45º and 60º reached 97%, 93% and 99%, 120 

respectively, of the maximum load of the 6S_R reference beam (see Fig. 3c and Table 3). The most notable 121 

aspect is, however, the larger load-carrying capacity of the strengthened beams with respect to the 6S_R 122 

reference beam, after shear crack initiation of the 2S_R beam (see Fig.3c). This improved performance of the 123 

strengthened beams can be ascribed to the stiffness contribution provided by the strips. 124 

It is worth pointing out that in the beams strengthened with higher strips’ shear strengthening ratio, a layer of 125 

concrete, approximately as thick as the cover, and containing the glued strips, progressively detached from 126 

the core of the beam web (see Figs. 4e and 4f). 127 

Moreover, the effective strain, exp
f , i.e. the average of the strains recorded along the monitored strip for each 128 

beam, presented a general tendency to increase by increasing the spacing between strips, '
fs , measured 129 

orthogonally to their inclination (see Fig. 5). Further details about both the observed failure modes and the 130 

strains measured in the monitored steel stirrups and CFRP strips can be found elsewhere 6,12. 131 

 132 

 133 

 134 
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NEW MODEL 135 

Model physical fundamentals 136 

By searching the technical literature available to date, the analogy arises between the NSM technique and the 137 

fastening technology to concrete by means of adhesive anchors 13,14,15,16. This latter consists in fixing anchors 138 

into holes drilled in the soffit of whatever RC structure by different kinds of structural adhesives. As for the 139 

NSM strips, the stress transfer of anchors strongly relies on the bond characteristics. The experimental 140 

evidence in the field of fastening technology reported three possible failure modes: tensile rupture of the 141 

anchor, debonding and another failure mode designated as “concrete cone failure” 14,15. This latter is 142 

characterized by a cone-shaped spalling of the concrete surrounding the anchor originating at a certain point 143 

of the embedded length of the anchor and propagating towards the external surface of the concrete 5. This 144 

failure occurs when the applied force is such as to induce, in the surrounding concrete, principal stresses 145 

exceeding its tensile strength. The resulting concrete fracture conical surface, envelope of the tension 146 

isostatics, shows, at its vertex, an angle of about 45° with the anchor axis. 147 

In the case of NSM strips, the critical diagonal crack can be schematized like a plane slicing the web of the 148 

beam in two parts sewn together by the crossing strips that can be regarded as fastenings (see Fig. 6a). The 149 

strips may fail along their “available bond length” (is the shorter length on either side of the crossing crack 5) 150 

by: debonding, tensile rupture or concrete tensile fracture. The different and asymmetric geometrical features 151 

support the assumption that, in the case of the strips glued into thin slits in the concrete web face, the 152 

concrete fracture surface, envelope of the principal tensile stresses induced in the surrounding concrete, has a 153 

semi-conical shape propagating from the inner tip of the strip embedded length. The concrete average tensile 154 

strength, ctmf , is distributed throughout each of the resulting semi-conical surfaces orthogonally to them in 155 

each point (see Fig. 6b). 156 

The NSM shear strength contribution, fV , can be calculated by adding the contribution ascribed to each 157 

strip, p
fiV , parallel to its orientation, and projecting the resulting force orthogonally to the beam axis, 158 

according to the following formula: 159 

1

2 . sin .
fN

p
f fi

i

V V


   (1)
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where fN  is the number of the strips crossing the shear crack. The contribution provided by each strip, p
fiV , 160 

can be assumed as the minimum among the three possible contributions ascribed respectively to debonding, 161 

,p db
fiV , tensile rupture of the strip, ,p tr

fiV , or concrete tensile fracture, ,p cf
fiV , i.e.: 162 

 , , ,min ; ;p p db p tr p cf
fi fi fi fiV V V V  (2)

The debonding-based term, ,p db
fiV , ascribed to the i-th strip and parallel to its orientation can be computed 163 

like follows: 164 

 , ( ) .2 . . b f f
p db

f ffi L LV a b    (3)

where ( )b fL  is the length-dependent value of the average bond strength. The adopted relationship between 165 

average bond strength (in MPa) and bond length (in mm) is the following (Fig. 7) 17,18: 166 

   -0.60233

19.28                                            0 40

0.355 174.613 .                  40f

f

b

f f

L
L

L L


  
 

 (4)

The tensile rupture-based term, ,p tr
fiV , ascribed to each strip and parallel to its orientation is equal to: 167 

, . .p tr
f f fufiV a b f  (5)

where fuf  is the tensile strength of the adopted CFRP strips. The concrete fracture-based term, ,p cf
fiV , 168 

ascribed to each strip and parallel to its orientation, can be calculated distributing the component of the 169 

concrete average tensile strength parallel to the strip, i.e., sinctm fif  , throughout the resulting relevant semi-170 

conical surface and integrating, according to the following formula (Fig. 6b): 171 

 
 

,

;

. sin .

fi fi fi

p cf
ctm fi fifi

C L

V f dC



   
(6)

where  ;fi fi fiC L  concisely denotes the semi-conical surface associated to the i-th strip and fi  is the angle 172 

between the generatrices and the axis of the semi-cone attributed to the i-th strip. 173 

The angle between the axis of the semi-conical surface and its generatrices, f , calibrated on the basis of the 174 

interpretation of some experimental results available to date 5,18, ranges approximately between 20° and 30° 175 

and shows a length-dependency on the available bond length, fL , but, in this respect, further investigations 176 
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are required. The relationship between the angle, fi  (in degrees), and the available bond length, fiL  (in 177 

mm), assumed in the present work is the following: 178 

32.31                          for    0 30

33.973 0.0587 .             30 < 150 

25.17                                       150

fi

fi fi fi

fi

L

L L

L



  
  
 

 (7)

Further details can be found elsewhere 5. If attention is focused on one strip only, in the case in which it 179 

results to be orthogonal to the crack plane and in complete absence of interaction with the contiguous ones, 180 

the shear strength contribution parallel to its orientation p
fiV  can be calculated by: 181 

  2 2( ) . ;min 2 . . . ; . . .
2b fi fi

p
f f f f fu ctm fi fifi L LV a b a b f f tg L

 
     

  
 (8)

that, for the materials regarding the experimental program presented in the companion paper, is plotted in 182 

Fig. 8. It arises that: for a value of the available bond length up to 200 mm the prevailing failure mode is the 183 

concrete semi-conical fracture; for a value between 200 and 310 mm the failure mode is debonding, and for 184 

an available bond length higher than 310 mm the strips are expected to fail by tensile rupture. Due to the 185 

interaction between contiguous strips, the curve regarding the concrete tensile fracture opens downwards or 186 

upwards (when strips spacing decreases and increases, respectively) thus changing the range of length values 187 

in correspondence of which debonding is expected to be the commanding failure mode. The terms ,p tr
fiV  and 188 

,p db
fiV , based on the phenomenon of tensile rupture and debonding of the strip, respectively, are intrinsically 189 

independent of the interaction between subsequent strips that, on the contrary, affects the concrete fracture-190 

based term, ,p cf
fiV . As the spacing between subsequent strips is reduced, their semi-conical fracture surfaces 191 

overlap and the resulting envelope area progressively becomes smaller than the mere summation of each of 192 

them (see Fig. 9a). This detrimental interaction between strips can be easily taken into account by calculating 193 

the resulting semi-conical surface ascribed to each strip accordingly. For very short values of the spacing, the 194 

resulting concrete failure surface is almost parallel to the web face of the beam, which is in agreement with 195 

the failure mode observed experimentally, consisting in the detachment of the concrete cover from the 196 

underlying core of the beam (see Figs. 4e and 4f). Since the position of those semi-conical surfaces is 197 

symmetric with respect to the vertical plane passing through the beam axis, the horizontal outward 198 

components of the tensile strength vectors distributed throughout their surfaces are balanced only from an 199 
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overall standpoint but not locally (see Fig. 9b). This local unbalance of the horizontal tensile stress 200 

component orthogonal to the beam web face justifies the outward expulsion of the concrete cover in both the 201 

uppermost and lowermost parts of the strengthened sides of the web. The post-test photographic 202 

documentation (see Figs. 4e and 4f) clearly spotlights this local occurrence. 203 

 204 

Analytical formulation 205 

In Eq. (6), the operation of integrating the component of the concrete tensile strength parallel to the strip, 206 

sinctm fif  , throughout the relevant semi-conical surface is equivalent to projecting the surface on a plane 207 

orthogonal to the strip and multiplying it by the absolute value of the concrete average tensile strength 11 i.e.: 208 

. sinfi fi fid dC    (9.1)

Introducing (9.1) in (6) results: 209 

 
   

 ,

; ;

. sin . . . ;

fi fi fi fi fi fi

p cf
fi fi ctm ctm fi ctm fi fi fifi

C L L

V dC f f d f L

 

 


       
(9.2)

where  ;fi fi fiL   is the area, function of both the available bond length fiL  and the angle fi , obtained by 210 

projecting the semi-conical surface on a plane orthogonal to the strip (see Fig. 10). 211 

Since the intersection of each semi-conical surface with the crack plane is constituted by a semi-ellipse, that 212 

becomes a semi-circle in the particular case in which the strip is orthogonal to the crack plane, the above area 213 

 ;fi fi fiL   can be evaluated by calculating the area of the semi-ellipse and then projecting this latter on the 214 

plane orthogonal to the strip (see Fig. 10). Hence, the main point of the calculation of the contribution 215 

ascribed to the i-th strip parallel to its length, ,p cf
fiV , is reduced to the evaluation of the area underlying the 216 

relevant semi ellipse, i.e.: 217 

 
 

,

;

sin .

fi fi fi

p cf
ctm fifi

E L

V f dE



     
(10)

where  ;fi fi fiE L  is the equation of the semi-ellipse, intersection of the i-th semi-conical surface with the 218 

assumed shear crack plane. This simplification is extremely powerful from a computational standpoint since 219 

allows the interaction between strips to be easily accounted for. In function of the main geometrical 220 

parameters wh , wb , fs , fiL  and  fi fiL , see Fig. 6, that interaction can be either mono-directional, 221 
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longitudinal or transversal, or bi-directional. The longitudinal interaction can occur when, due to the reduced 222 

spacing with respect to the height of the web, the semi-cones associated to adjacent strips located at the same 223 

side of the web, and consequently their relevant semi-ellipses, overlap along their major semi-axis (see for 224 

instance the semi-ellipses 5 and 6 of the example of Fig. 11). The transversal interaction can occur when, for 225 

slender beam cross sections of high w wh b  ratio, the semi-ellipses symmetrically placed on the opposite sides 226 

of the web, intersect each other along their minor semi-axis (see the semi-ellipse 1 of Fig. 11). In this latter 227 

case, the area of the i-th semi-ellipse is limited, upwards, by the line 2wY b , i.e. the trace, on the shear 228 

crack plane, of the vertical plane passing through the beam axis. In the most general case, in which 229 

bidirectional interaction might occur, the area on the shear crack plane associated to the i-th strip, would be 230 

composed of two terms: one, nlin
fi , limited upwards by the non-linear branch of the relevant semi-ellipse 231 

 iY X  and another, lin
fi , limited by the line 2wY b  (see the semi-ellipses 1, 6 and 7 of Fig. 11). Hence, 232 

due to the bi-directional interaction, the area of the semi-ellipse associated to the i-th strip is calculated as 233 

follows: 234 

 
 

;fi fi fi

nlin lin
fi fi fi

E L

dE



     
(11)

Ultimately, the equation (1) can be re-written as follows: 235 

        
1

2 . sin . min 2 . . . ; . . ; . sin .
fN

nlin lin
f f f fi b fi f f fu i i ctm

i

V a b L L a b f f   


       (12)

In the following, the model is developed taking into consideration the three geometrical configurations, for 236 

1,2,3k   (see Fig. 12). Three different configurations of the strips with respect to the assumed crack origin 237 

are considered in order to get a general approach for the relative position between the shear failure crack and 238 

the intersected strips. More details can be found elsewhere 5. 239 

The configuration is reflected by the digit after comma present in the subscript of each configuration-240 

dependent quantity. 241 

 242 

Input Data 243 

The input parameters taking part in the developed analytical model are the following (see Fig. 6): 244 
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 wh , the height of the web in the case of a T cross section beam. For a rectangular cross section beam, wh  245 

is the vertical component of the strip length, i.e., sinw fh L  , where fL  is the strip length; 246 

 wb , the width of the web of the beam cross section in the case of a T beam. For a rectangular cross 247 

section beam, wb  is the cross section width; 248 

  , the inclination of the strips with respect to the beam axis; 249 

 fs , the spacing of the strips along the beam axis; 250 

  , the assumed crack angle; 251 

  fi fiL , the relationship between the angle, formed by the axis and the generatrices of the i-th semi-252 

conical surface, and the available bond length of the strip; 253 

 ctmf , the concrete average tensile strength; 254 

 fa , the thickness of the strip cross section; 255 

 fb , the width of the strip cross section; 256 

 fuf , the strip tensile strength; 257 

 ( )b fL  relationship between the average bond strength and the available bond length of the strip. 258 

The formulation requires the use of the following two Cartesian reference systems (see Fig. 6): 259 

 oxyz  global reference system whose origin is placed in the assumed crack origin and whose plane oxy  260 

lies on the intrados of the prism schematizing the beam web; 261 

 OXYZ  the crack plane reference system whose origin is placed in the assumed crack origin and whose 262 

plane OXY  lies on the plane schematizing the crack. 263 

 264 

Definition of the geometric quantities in oxyz  265 

The output of this block of calculation is composed of two matrices summarizing the prominent geometrical 266 

quantities defined in the global reference system: 267 
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 x  is a 3 2  dimension matrix, the first column of which stores the position of the first strip with respect to 268 

the assumed crack origin, for the three possible strips’ configurations, 1,f kx , see Fig. 12, while the second 269 

column includes the corresponding number of strips crossing the shear failure crack, ,f kN ; 270 

 F  is a 3fN   dimension matrix. For a generic k-th configuration, the first column of kF  includes the 271 

position of the strips ,fi kx , the second column stores the available bond length of the strips, ,fi kL , and the 272 

third column includes the values of the angle ,fi k . In the present model, the i  char in the subscript of any 273 

symbol refers the i-th strip and its associated semi-ellipse. For the generic k-th configuration it is 274 

,1,......, f ki N . 275 

The pair 1, ,( ; )f k f kx N can assume the following values, as function of 3,2,1k : 276 

 

,int

,
1, , ,

,
,

;

( 1)sin ( )
( ; ) ;

2 sin 2

( 1)
cot cot ;

2 2

. .

. .

l
f f

f f ev
f k f k f f ev

f oddw
f f odd

s N

L N
x N s N

Nh
s N

 


 


 


 


  
 
 
 
   

 (13)

The above three pairs include, respectively: the possibility for the strips to attain the minimum total available 277 

bond length (Fig. 12a); the possibility that an even number of strips be disposed symmetrically with respect 278 

to the intersection point between the longitudinal axis of the beam’s web and the shear crack plan (point P in 279 

Fig. 12b); the case in which one strip has the maximum length i.e., it intersects the crack at its mid-length 280 

(Fig. 12c). 281 

The position of each strip along the assumed x-axis is (see Fig. 12): 282 

 , 1, ,1 .        for         1;......;fi k f k f f kx x i s i N     (14)

and its available bond length, i.e. the shorter length on either side of the crossing crack, is obtained by: 283 

1, ,

,

1, ,

sin
[ ( 1) . ] .          for      . (cot cot )     

sin( ) 2

sin
[ ( 1) . ] .     for      . (cot cot )

sin( ) 2

w
f k f fi k

fi k
w

f f k f fi k

h
x i s x   

L
h

L x i s x  


 

 


 

 

   




    








 (15)

 284 

Definition of the geometric quantities in OXYZ  285 
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To easily determine the equations of the semi-ellipses in the crack plane reference system, the prominent 286 

geometrical quantities, for each i-th strip, are stored in the corresponding i-th row of the kG  matrix, that is, 287 

the G  matrix in the k-th configuration, of , 8f kN   dimensions. The first column of the kG  matrix has the 288 

position of each strip singled out along the OX  axis of the crack plane reference system, fiX  (see Fig. 13). 289 

For a generic i-th strip, ,fi kX  can be evaluated by: 290 

   , 1,
sin

. 1 .
sinfi k f k fX x i s


 

    
 (16)

The second column includes the length of the major semi-axis of the semi-ellipse, a . For a generic i-th strip, 291 

,i ka  can be determined from: 292 

   
,

, ,
, ,

1 1
. sin

2 sin sin

fi k
i k fi k

fi k fi k

L
a 

     

 
  
     

 (17)

The third column stores the values of the position, along the OX  axis, of the center of the i-th ellipse oX . 293 

For a generic i-th semi-ellipse, ,oi kX  can be calculated from: 294 

 
   

 
     

,
, , , ,

,

,
, , , ,

,

sin
.       for  . cot cot  

2sin

sin
. . cot cot  for  . cot cot  

sin 2sin

fi k w
oi k fi k i k fi k

fi k

fi kw w
oi k w fi k i k fi k

fi k

h
X x a x

h h
X h x a  x

 
 

  

 
   

   

            


               

 
(18.1) 

(18.2)

The fourth column includes the values of the abscissa, in the local reference system of the i-th semi-ellipse 295 

1 2 3i i ioe e e  of an auxiliary point P  necessary to write the equation of the relevant ellipse, 1Pie . For a generic i-296 

th ellipse of the k-th configuration, 1 ,Pi ke can be calculated from: 297 

1 , , ,Pi k fi k oi ke X X   (19)

The fifth column stores the values of the ordinate, in the local reference system of the semi-ellipse, 1 2 3i i ioe e e , 298 

of an auxiliary point P  necessary to write the equation of the relevant ellipse, 2Pie . For a generic i-th ellipse 299 

of the k-th configuration, 2 ,Pi ke  can be calculated from: 300 

2 , , ,. tanPi k fi k fi ke L   (20)
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The sixth column includes the values of the length of the minor semi-axis of the semi-ellipse, b . For a 301 

generic i-th semi-ellipse ,i kb  can be calculated from: 302 

 
2 2
, 2 ,

, 2 2
, 1 ,

.i k Pi k
i k

i k Pi k

a e
b

a e



 (21)

The seventh column includes the values of the position, along the OX  axis, of the leftward vertex of the 303 

semi-ellipse along its major axis, 1v . For a generic i-th semi-ellipse 1 ,i kv  can be calculated from: 304 

1 , , ,i k oi k i kv X a   (22)

The eight column includes the values of the position, along the OX  axis, of the rightward vertex of the 305 

semi-ellipse along its major axis, 2v . For a generic i-th semi-ellipse 2 ,i kv  can be calculated from: 306 

2 , , ,i k oi k i kv X a   (23)

 307 

Determination of the coefficients of the semi-ellipses 308 

The equation of a generic i-th semi-ellipse of the k-th configuration, in the crack plane reference system has 309 

to be determined i.e.: 310 

 
 2

1, 3, 4,

,
2,

. .i k i k i k

i k
i k

E X E X E
Y X

E

 
    (24)

For this purpose, the coefficients of the semi-ellipses are stored in the E  matrix that, for the k-th 311 

configuration ( kE ) has , 4f kN   dimensions. The first to fourth columns of the E  matrix store the values of 312 

the coefficients of the semi-ellipses. For a generic i-th semi-ellipse of the k-th configuration, these 313 

coefficients can be calculated from: 314 

2
1, ,i k i kE b ; 2

2, ,i k i kE a ; 2
3, , ,2 . .i k i k oi kE b X  ; 2 2 2 2

4, , , , ,. .i k i k oi k i k i kE b X a b   (25)

 315 

Determination of the auxiliary matrices of integration points 316 

It is worth determining, even if they are not strictly necessary for the implementation of the algorithm, some 317 

auxiliary matrices i.e. 1p
kX , 2p

kX , q
kX , e

kY , kM , kN , 
k

Q  since they condense some operations that, 318 
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otherwise, should be repeated several times. 1pX  and 2pX  are two f fN N  dimensions symmetric matrices 319 

containing, respectively, the abscissa of the first, 1p
ijX , and second, 2p

ijX , intersection points, if actually 320 

existing, between the i-th and j-th semi-ellipses. For the k-th configuration, the generic terms 1
,

p
ij kX  and 2

,
p

ij kX  321 

of the 1p
kX  and 2p

kX  matrices are determined, respectively, from Eq. (27.1) and (27.2) if the following 322 

conditions, Eqs. (26.1-2), are satisfied: 323 

 1, 2, 1, 2,. . 0j k i k i k j kE E E E   (26.1)

2
, 2, 3, 3, 2, 1, 2, 1, 2, 2, 3, 2, 3,. . 4 . . . . . . 0ij k i k j k i k j k j k i k i k j k i k j k j k i kE E E E E E E E E E E E                  (26.2)

 324 

 
 

2, 3, 2, 3, ,1
,

1, 2, 1, 2,

. .

2 . . .

i k j k j k i k ij kp
ij k

j k i k i k j k

E E E E
X

E E E E

   



 (27.1)

 
 

2, 3, 2, 3, ,2
,

1, 2, 1, 2,

. .

2 . .

i k j k j k i k ij kp
ij k

j k i k i k j k

E E E E
X

E E E E

   



 (27.2)

Otherwise, if the following condition is satisfied: 325 

 1, 2, 1, 2,. . 0j k i k i k j kE E E E   (28)

the i-th and j-th semi-ellipses are intersecting in only one point, and the abscissa in the OX axis is given by: 326 

 
 

2, 4, 2, 4,1
,

2, 3, 2, 3,

. .

. .

i k j k j k i kp
ij k

i k j k j k i k

E E E E
X

E E E E


 


 (29)

In this case a “non-value”, represented by an asterisk, is assigned to the corresponding cell of the 2p
kX  327 

matrix, i.e.: 328 

2
, *p

ij kX   (30)

Note that a “non-value” term is not zero since this latter has a physical meaning representing the position, in 329 

OXZ , of the assumed crack origin. The general term 1/ 2
,

p
ij kX  (represents both 1

,
p

ij kX  and 2
,

p
ij kX ) calculated as 330 

above specified, will be stored in the j-th column of the i-th row of the relevant auxiliary matrix 1/ 2p
kX  if it is 331 

such as to satisfy the following condition: 332 
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   21/ 2 1/ 2
1, 3, 4,, ,

2,

. .
0

p p
i k i k i kij k ij k

i k

E X E X E

E

       (31)

If for the general solution 1/ 2
,

p
ij kX , neither the conditions of Eqs. (26 and 31) nor Eqs. (28 and31) are satisfied, 333 

the corresponding cell of the relevant matrix 1/ 2p
kX  has to be filled with a “non value”, e.g., an asterisk. 334 

Throughout the following calculations, each time neither the existence nor acceptance conditions of a real 335 

value are fulfilled, the corresponding cell has to be filled with a “non-value”. qX  is a 2fN   dimensions 336 

matrix containing, in each i-th row, the abscissa of the left 1
q
iX  and right 2

q
iX  intersection, if actually 337 

existing, of the relevant i-th semi-ellipse with the straight line 2wY b . For the general k-th configuration, 338 

the first column term of the i-th row, 1,
q
i kX , and the second column one, 2,

q
i kX , of the q

kX  matrix are 339 

calculated, respectively, from the following Eqs.: 340 

 2 2
3, 3, 1, 2, 4,

1,
1,

4 . . 4

2 .

i k i k i k i k w i kq
i k

i k

E E E E b E
X

E

   
  (32.1)

 2 2
3, 3, 1, 2, 4,

2,
1,

4 . . 4

2 .

i k i k i k i k w i kq
i k

i k

E E E E b E
X

E

   
  (32.2)

if the following condition is satisfied: 341 

 2 2
, 3, 1, 2, 4,4 . . 4 0i k i k i k i k w i kE E E b E      (33)

eY  is a 2fN   dimensions matrix containing, in each i-th row, the ordinate assumed by the i-th semi-ellipse 342 

in correspondence of 0X  , and in correspondence of dX L , if the semi-ellipse actually passes through 343 

those abscissa values. For the generic k-th configuration, the first term 1,
e

i kY  of the i-th row of the e
kY  matrix 344 

is a real number, indicating that the relevant semi-ellipse effectively passes through 0X   if the following 345 

condition is satisfied: 346 

4,

2,

0i k

i k

E

E
   (34)

and in that case the corresponding value 1,
e

i kY  is equal to: 347 
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4,
1,

2,

i ke
i k

i k

E
Y

E
    (35)

Likewise, the second term 2,
e

i kY  of the i-th row of the matrix e
kY  is constituted of a real value, meaning that 348 

the relevant i-th semi-ellipse of the k-th configuration effectively passes through dX L  if the following 349 

condition is satisfied: 350 

 2
4, 3, 1,

2,

. .
0

i k i k d i k d

i k

E E L E L

E

 
   (36)

and the corresponding value 2,
e

i kY  is determined by the following expression: 351 

 2
1, 3, 4,

2,
2,

. .i k d i k d i ke
i k

i k

E L E L E
Y

E

 
    (37)

M , N , Q  are f fN N  dimensions matrices containing, respectively, the coefficients ijM , ijN  and ijQ  with 352 

, 1,...., fi j N . For the generic k-th configuration, the general terms ,ij kM , ,ij kN , ,ij kQ  of the kM , kN  and 
k

Q  353 

matrices are calculated as follows: 354 

1,1,
,

2, 2,

j ki k
ij k

i k j k

EE
M

E E

  
       

; 3,3,
,

2, 2,

j ki k
ij k

i k j k

EE
N

E E

  
       

; 4,4,
,

2, 2,

j ki k
ij k

i k j k

EE
Q

E E

  
       

 (38)

where 1,i kE , 2,i kE , 3,i kE , 4,i kE  and 1,j kE , 2,j kE , 3,j kE , 4,j kE  are, respectively, the coefficients of the i-th and 355 

j-th semi-ellipses in the k-th configuration stored in the relevant rows of the kE  matrix. 356 

 357 

Determination of the integration points in the non linear range nlin
kX  358 

nlinX  is a nlin
fN n  dimensions matrix containing, in the i-th row, the couples of abscissa values constituting 359 

limits of the integration intervals for the relevant i-th semi-ellipse equation  iY X . For the k-th 360 

configuration, the matrix nlin
kX  has ,

nlin
f k kN n  dimensions where nlin

kn  is the maximum number of real values 361 

of integration limits amongst all the ,f kN  ellipses of that configuration (an even number). To evaluate nlin
kX , 362 

five other auxiliary matrices 1nlin
kX , 2nlin

kX , 3nlin
kX , 4nlin

kX , 5nlin
kX  have to be determined, based on both the 363 
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auxiliary ones 1p
kX , 2p

kX , q
kX , e

kY , kM , kN , 
k

Q , output of the previous block of calculations, and the 364 

matrix of the semi-ellipses geometrical properties, kG . 365 

1nlinX  and 2nlinX  are two f fN N  dimensions matrices containing, in the i-th row, the abscissa values, 366 

amongst those already calculated and stored in the corresponding i-th row, respectively, of the auxiliary 367 

matrices 1pX  and 2pX , that, according to the acceptance conditions hereafter specified, effectively constitute 368 

useful integration limits for the relevant i-th semi-ellipse equation. For the k-th configuration, the general j-th 369 

term 1/ 2
,

nlin
ij kX  of the i-th row of the 1/ 2nlin

kX  matrix is set equal to the corresponding term 1/ 2
,

p
ij kX  of the 370 

corresponding auxiliary matrix 1/ 2p
kX , i.e.: 371 

1/ 21/ 2
, ,

pnlin
ij k ij kX X  (39)

if 1/ 2
,

p
ij kX  is such as to satisfy, for the i-th semi-ellipse, the following acceptance conditions: 372 

 
   
 

 
   

1/ 2 1/ 2
,, ,

21/ 2 1/ 2
, , , ,, ,

1/ 2
,

1/ 2
, ,

21/ 2 1/ 2
, , ,, ,

0 and
2

. . 0       for   1

0 and

0 < and
2

. . 0  1

p p w
d i kij k ij k

p p
ih k ih k ih k f kij k ij k

p
dij k

p w
i k ij k

p p
ih k ih k ih k fij k ij k

b
X L Y X

M X N X Q h ....N

X X L

b
Y X X

M X X N X X Q h ....N

  

   

   

  

        

 
 
   

 

,

1/ 2
,

1/ 2
, ,

21/ 2 1/ 2
, , , ,, ,

1/ 2 1/ 2
,,

and

or

0 and

0 < and
2

. . 0  1 and

with 1,....., 1

k

p
dij k

p w
i k ij k

p p
ih k ih k ih k f kij k ij k

p nlin
ig kij k

h i

X X L

b
Y X X

M X X N X X Q h ....N h i

X X g j







  

       

          

  
























 (40)

in which the term X  indicates an infinitesimally small length along the OX  axis. If at least one of the 373 

above conditions is not fulfilled by the auxiliary value 1/ 2
,

p
ij kX , the corresponding effective term 1/ 2

,
nlin
ij kX  has 374 

to be set equal to “non-value”. 3nlinX  is a 2fN   matrix containing, in the first and second column of the i-th 375 

row, 3
1
nlin
iX  and 3

2
nlin
iX , the abscissa values of the left and right intersection points of the relevant semi-ellipse 376 

with the straight line 2wY b  that result effective for the integration of the corresponding equation  iY X . 377 
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For the k-th configuration, the term 3
1,
nlin
i kX  of the i-th row of the 3nlin

kX  matrix is set equal to the 378 

corresponding term 1,
q
i kX , i.e.: 379 

3
1, 1,

qnlin
i k i kX X  (41)

if 1,
q
i kX  is such as to satisfy the following acceptance conditions: 380 

   
 
 
   

1,

2

, , , ,1, 1,

1,

, 1,

2

, , , ,1, 1,

0

. . 0    for   1,......,

0

2

. . 0 1,.....,

q
di k

q q
ij k ij k ij k f ki k i k

q
di k

q w
i k i k

q q
ij k ij k ij k f ki k i k

X L

M X N X Q j N

X X L

b
Y X X

M X X N X X Q j N j i


  

     


  

   

          


 (42)

Likewise, the term 3
2,
nlin
i kX  is set equal to the corresponding auxiliary term 2,

q
i kX , i.e.: 381 

3
2, 2,

qnlin
i k i kX X  (43)

if 2,
q
i kX  meets the following acceptance condition: 382 

   
 
 

   

2,

2

, , , ,2, 2,

2,

, 2,

2

, , , ,2, 2,

0

. . 0       1,....,

0

2

. . 0 1,....,

q
di k

q q
ij k ij k ij k f ki k i k

q
di k

q w
i k i k

q q
ij k ij k ij k f ki k i k

X L

M X N X Q j N

X X L

b
Y X X

M X X N X X Q j N j i


  

     


   

   

          


 (44)

4nlinX  is a 2fN   dimensions matrix containing, in the first cell of the i-th row, the null abscissa value, 383 

4
1 0nlin
iX  , and the dL  value in the second cell, 4

2
nlin
i dX L , if those values result to be effective integration 384 

limits for the relevant semi-ellipse  iY X . For the generic k-th configuration, the first column term of the i-th 385 

row, 4
1,
nlin
i kX , of the 4nlin

kX  matrix has to be set equal to zero, i.e.: 386 

4
1, 0nlin
i kX   (45)
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if the ordinate value, 1,
e

i kY , contained in the corresponding cell of the e
kY  matrix satisfies the following 387 

conditions: 388 

 

   

1,

, ,

,

2
, , , ,

0
2

0      1,. ,

0
2

. . 0 1,. ,

e w
i k

ij k f k

w
i k

ij k ij k ij k f k

b
Y

Q j .... N

b
Y X

M X N X Q j .... N j i

  


  

   



       

 (46)

Likewise, the second column term of the i-th row, 4
2,
nlin
i kX , of the 4nlin

kX  matrix has to be set equal to dL , i.e.: 389 

4
2,
nlin
i k dX L  (47)

if the ordinate value, 2,
e

i kY , contained in the corresponding cell of the e
kY  matrix satisfies the following 390 

conditions: 391 

 

   

2,

2
, , , ,

,

2
, , , ,

0
2

. . 0      1,.....,

0
2
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
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


         

 (48)

5nlinX  is a 2fN   dimensions matrix containing the abscissa of the vertices of the major semi-axis of the 392 

semi-ellipse that constitute effective integration extremities for the ellipses. 393 

For the k-th configuration, the first column term of the i-th row, 5
1,
nlin
i kX , of the 5nlin

kX  matrix has to be set 394 

equal to the term 7,i kG , stored in the seventh column cell of the corresponding i-th row of the matrix kG  395 

i.e.: 396 

5
1, 7,
nlin
i k i kX G  (49)

if 7,i kG  satisfies the following conditions: 397 
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 (50)

Likewise, the second column term of the i-th row, 5
2,
nlin
i kX , has to be set equal to the term 8,i kG , stored in the 398 

8-th column cell of the i-th row of the previously determined kG  matrix i.e.: 399 

5
2, 8,
nlin
i k i kX G  (51)

if 8,i kG  satisfies the following conditions: 400 
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


   

          

 (52)

nlinn  is a 1fN   vector containing, in the i-th row, the maximum number of real abscissa values constituting 401 

effective integration limits for the relevant i-th semi-ellipse equation (the integrand function is nonlinear in 402 

the X variable). For the k-th configuration, the general i-th term, ,
nlin
i kn , of the nlin

kn  vector is equal to the 403 

number of real values present amongst all the terms stored in the corresponding i-th row of all the auxiliary 404 

matrices, i.e.: 405 

 1 2 3 4 5
, , , , , ,real numbers ; ; ; ;nlin nlin nlin nlin nlin nlin

i k i k i k i k i k i kn X X X X X  (53)

The number of columns of the nlin
kX  matrix, nlin

kn , is equal to the maximum number of effective values 406 

among all the semi-ellipses for the k-th configuration, i.e.: 407 

 , ,max  with  1;...;nlin nlin
k i k f kn n i N   (54)

The nlin
kX  matrix  is then built by joining, for each i-th row corresponding to the i-th semi-ellipse, the 408 

effective terms, discarding the “non-values”, present in the corresponding i-th row of the auxiliary matrices 409 
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1nlin
kX , 2nlin

kX , 3nlin
kX , 4nlin

kX , 5nlin
kX  and sorting them in increasing order. For instance, the transpose 410 

 Tnlin
kX  of the final nlin

kX  matrix for the example of Fig. 11 is as follows (see also Fig. 14): 411 

     
   

1 1
4 4 5 512 21 65 72

1 1
2 2 4 412 56 61

*

*

q p p q
T o onlin

k p p q
o o d

X X X a X a X X
X

X X a X a X X L

  
 
    

 (55)

Determination of the integration points in the linear range lin
kX  412 

linX  is a lin
fN n  dimensions matrix containing, in the i-th row, the couples of abscissa values constituting 413 

limits of the integration intervals, in correspondence of the i-th semi-ellipse, of the equation 2wY b . For 414 

the generic k-th configuration, the matrix lin
kX  has ,

lin
f k kN n  dimensions where lin

kn  is the maximum number 415 

of real values of integration limits amongst all the ,f kN  semi-ellipses of that configuration (an even number). 416 

To evaluate lin
kX , four other auxiliary matrices 1lin

kX , 2lin
kX , 3lin

kX , 4lin
kX  have to be determined, based on the 417 

auxiliary ones 1p
kX , 2p

kX , q
kX , e

kY , kM , kN , 
k

Q , already built. 1linX  and 2linX  are two f fN N  dimensions 418 

matrices containing, in the i-th row, the abscissa values, amongst those already calculated and stored in the 419 

corresponding i-th row of the auxiliary matrices 1pX  and 2pX , respectively, that, according to the acceptance 420 

conditions hereafter specified, effectively constitute useful integration limits for the linear range ascribed to 421 

the relevant i-th semi-ellipse. For the k-th configuration, the general j-th term 1/ 2
,

lin
ij kX  of the i-th row of the 422 

1/ 2lin
kX  matrix is set equal to the corresponding term 1/ 2

,
p

ij kX  of the corresponding auxiliary matrix 1/ 2p
kX , i.e.: 423 

1/ 21/ 2
, ,

plin
ij k ij kX X  (56)

if 1/ 2
,

p
ij kX  is such as to satisfy, for the i-th semi-ellipse, the following acceptance conditions: 424 
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 (57)

Note that 1/ 2
,

p
ij kX  in Eq. (57) represents the two possible solutions, 1

,
p

ij kX  and 2
,

p
ij kX . 3linX  is a 2fN   matrix 425 

containing, in the first and second columns of the i-th row, 3
1
lin
iX  and 3

2
lin
iX , respectively, the abscissa values 426 

of the left and right intersection points of the relevant semi-ellipse with the straight line 2wY b  that result 427 

effective for the integration of the corresponding equation 2wY b . For the k-th configuration, the first 428 

column term of the i-th row, 3
1,
lin
i kX , of the 3lin

kX  matrix is set equal to the corresponding term 1,
q
i kX of the 429 

auxiliary matrix q
kX , i.e.: 430 

3
1, 1,

qlin
i k i kX X  (58)

if 1,
q
i kX  satisfies the following conditions: 431 
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

 (59)

Likewise, the second column term of the i-th row 3
2,
lin
i kX  is set equal to the corresponding auxiliary term 432 

2,
q
i kX , i.e.: 433 
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3
2, 2,

qlin
i k i kX X  (60)

if 2,
q
i kX  meets the following acceptance condition: 434 
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 (61)

4linX  is a 2fN   dimensions matrix containing, in the first cell of the i-th row, the null abscissa value, 435 

4
1 0lin
iX  , and the dL  value in the second cell, 4

2
lin
i dX L , if those values result to be effective integration 436 

limits for the linear range ascribed to the relevant i-th semi-ellipse. For the generic k-th configuration, the 437 

first cell of the i-th row, 4
1,
lin
i kX , of the 4lin

kX  matrix has to be set equal to zero, i.e.: 438 

4
1, 0lin
i kX   (62)

if the ordinate value, 1,
e

i kY , contained in the corresponding cell of the e
kY  matrix satisfies the following 439 

conditions: 440 
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 (63)

Likewise, the second column term of the i-th row, 4
2,
lin
i kX , of the 4lin

kX  matrix has to be set equal to dL , i.e.: 441 

4
2,
lin
i k dX L  (64)

if the ordinate value, 2,
e

i kY , contained in the corresponding cell of the matrix e
kY  satisfies the following 442 

conditions: 443 
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 (65)

linn  is a 1fN   vector containing, in the i-th row, the maximum number of real abscissa values constituting 444 

effective integration limits for the corresponding i-th semi-ellipse in the linear ranges (the integrand function 445 

is independent of the X variable). For the k-th configuration, the general i-th term, ,
lin
i kn , of the lin

kn  vector is 446 

equal to the number of real values present amongst all the terms stored in the corresponding i-th row of all 447 

the auxiliary matrices, i.e.: 448 

 1 2 3 4
, , , , 1,realnumbers ; ; ;lin lin lin lin lin

i k i k i k i k i kn X X X X  (66)

The number of columns of the lin
kX  matrix, lin

kn , is equal to the maximum number of effective values among 449 

all the semi-ellipses for the k-th configuration, i.e.: 450 

 , ,max  with  1;...;lin lin
k i k f kn n i N   (67)

The lin
kX  matrix  is then built by joining, for each i-th row corresponding to the i-th semi-ellipse, the 451 

effective terms, discarding the “non-values” present in the corresponding i-th row of the auxiliary matrices 452 

1lin
kX , 2lin

kX , 3lin
kX , 4lin

kX , and sorting them in increasing order. For instance, the transpose  Tlin
kX  of the 453 

final matrix lin
kX  for the example of Fig. 11 is as follows (see also Fig. 15): 454 

 
1

61 76

1
12 67 72

0 * * * *

* * * *

q pTlin
k q p q

X X
X

X X X

 
  
  

 (68)

 455 

Determination of the areas k  456 

  is a 1fN   dimension vector containing, in the i-th cell, the area ascribed to the i-th semi-ellipse. For the 457 

k-th configuration, the term ,i k  of the k matrix is equal to: 458 
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, , ,
nlin lin

i k i k i k      (69)

where ,
nlin
i k  is determined by the following equation: 459 

     
 

 ,2, 4,

1, 3,
1 ,

, , , ,. . ..... .

nlin
nlinnlin nlin i n kki k i k

nlin nlin nlin
i k i k nlini n kk

X
X X

nlin
i k i k i k i k

X X X

Y X dX Y X dX Y X dX

  
 

       (70)

For the sake of brevity, the expression of the exact integration of the equation of the semi-ellipse is omitted 460 

but it can be found elsewhere 5. The term ,
lin
i k  can be obtained from: 461 

 

 ,2, 4,

1, 3,
1 ,

, . . ..... .
2 2 2

lin
linlin lin i n kki k i k

lin lin lin
i k i k lini n kk

X
X X

lin w w w
i k

X X X

b b b
dX dX dX

  
 

       (71)

Note that in the above Eqs. (70) and (71) the abscissa values, already stored in the corresponding i-th row of 462 

nlin
kX  and lin

kX , respectively, have to be considered integration limits by pairs in sequence. 463 

 464 

Determination of the shear strength contributions p
kV  and V  465 

pV  is a 1fN   dimension vector containing, in the i-th cell, the shear strength contribution ascribed to the i-466 

th strip and parallel to its orientation. For the k-th configuration, the general i-th term, ,
p
fi kV , of the p

kV  vector 467 

is calculated by the following equation: 468 

      ,, min 2 . . . ; . . ; . . sinp
f f fi b fi f f fu i k ctmfi kV a b L L a b f f       (72)

V  is a 1k   dimension vector containing, in the k-th cell, the NSM shear strength contribution ,f kV  469 

corresponding to the k-th configuration. The k-th term is equal to: 470 

,

, ,
1

2 . sin .
f kN

p
f k fi k

i

V V


   (73)

 471 

ASSESSMENT OF THE MODEL PERFORMANCE 472 

The Proposed Model (PM) was used to predict the NSM contribution for the shear resistance of the beams of 473 

the experimental program. The average tensile strength of the concrete of the tested beams was estimated 474 
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from the concrete average compressive strength at the age of the beam tests, and using the expressions 475 

proposed by the CEB-FIP model code 1993 19, resulting ctmf  = 2.45 MPa. The results are listed in Table 4. 476 

For each beam of the experimental program, the values obtained from the developed mode (PM) are 477 

compared to the experimentally recorded shear strengthening contribution of the distinct strips’ 478 

arrangements, exp

fV , with the corresponding ranges of possible analytical values. For the analysis of Table 4, 479 

the analytical values were obtained assuming for the shear crack angle,  , the values measured in the tested 480 

beams, exp , and also listed in Table 4. The model performance was also assessed by means of the ratios: 481 

 exp
,min

PM
ffV V  of the experimental recording to the minimum value obtained by means of the PM; 482 

 exp
,max

PM
ffV V  of the experimental recording to the maximum value obtained by means of the PM; 483 

The performance of the PM is absolutely satisfactory. In fact, for the series of beams with vertical strips the 484 

average of the ratios exp
,min

PM
ffV V  and exp

,max
PM
ffV V  (see Table 4) are respectively 0.99 and 0.56 meaning that, 485 

on average, the recorded values fall just on the lower bound of the analytical range ,min ,max;PM PM
f fV V   . For the 486 

series of beams with strips at 60° the average value of the above two ratios are respectively 1.01 and 0.77 487 

meaning that, on average, the experimental recordings fall in between the lower and upper bound of the 488 

analytical values. For the series of beams with strips disposed at 45° the average value of the ratio 489 

exp
,min

PM
ffV V  results to be less than unity because, the experimental value obtained in 2S_8LI45 beam was 490 

probably affected by some disturbance that did not allow the shear strengthening contribution of this NSM 491 

configuration to be fully mobilized. In fact, provided that, due to the interaction between subsequent strips 492 

the rate exp
f fV s   decreases by diminishing fs , it is unrealistic that passing from fs  of 220 mm 493 

(2S_5LI45 beam) to 138 mm (2S_8LI45 beam) the shear strength contribution decreases from 41.40 to 40.20 494 

kN. At most, it should assume the same value of 41.40 kN. 495 

 496 

CONCLUSIONS 497 

The purposely intended experimental program on NSM-strengthened beams, spotlights the possibility that a 498 

failure mechanism, other than debonding, occurs, i.e. the separation of the concrete cover from the beam 499 

core. Besides, it emerges that the effectiveness of the NSM shear strengthening system may be strongly 500 
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influenced by the mutual position between steel stirrups and strips. Despite the improvements introduced, the 501 

existing debonding-based model systematically provides an overestimation, the higher the smaller the 502 

spacing, of the experimentally recorded shear strengthening contribution by NSM CFRP strips. Such 503 

overestimation, as further confirmed by experimental evidence, can be ascribed to the erroneous assumption 504 

that the expected failure mechanism is debonding, regardless of the influence of both concrete tensile 505 

strength and existing stirrups/strips interaction. 506 

A new predictive model, originated from the need for a rational explanation to the features of the above 507 

failure mechanism affecting the behavior at ultimate of RC beams shear strengthened by NSM CFRP strips, 508 

was proposed. This model assumes as possible failure mechanisms: debonding, tensile rupture of the strips 509 

and the concrete tensile fracture and allows the interaction between strips to be accounted for. The 510 

comparisons with the debonding-based model showed that the proposed model provided a better estimation 511 

of the experimentally recorded NSM shear strength contribution. 512 

 513 
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Table 1. Shear reinforcement and strengthening systems in the tested beams. 583 

Beam label 
Age at beam test 

[days] 

Shear reinforcement/strengthening in the smaller shear span (Ll) 

Reinforcement/ 
Strengthening 

Quantity (ratios sw  and fw ) 
Spacing 

[mm] 

Angle 

[º] 

C_R 65 - - - - 

2S_R 61 Steel stirrups 26 with two legs (0.10) 300 90 

6S_R 62 Steel stirrups 66 with two legs (0.24) 130 90 

2S_3LV 72 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x3 strips with 1.4x10 mm2 (0.06) 267 90 

2S_5LV 71 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x5 strips with 1.4x10 mm2 (0.10) 160 90 

2S_8LV 70 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x8 strips with 1.4x10 mm2 (0.16) 100 90 

2S_3LI45 66 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x3 strips with 1.4x10 mm2 (0.06) 367 45 

2S_5LI45 64 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x5 strips with 1.4x10 mm2 (0.10) 220 45 

2S_8LI45 68 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x8 strips with 1.4x10 mm2 (0.16) 138 45 

2S_3LI60 71 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x3 strips with 1.4x10 mm2 (0.06) 325 60 

2S_5LI60 67 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x5 strips with 1.4x10 mm2 (0.10) 195 60 

2S_7LI60 68 
Steel stirrups 26 with two legs (0.10) 300 90 

CFRP strips 2x7 strips with 1.4x10 mm2 (0.16) 139 60 

   100dbAρ wswsw   (stirrups ratio);  2 . . . . .100fw f f w fa b b s sin  . 

 584 

 585 

Table 2. Material properties. 586 

Concrete 
Compressive strength 

fcm = 26.0 MPa  
(at 28 days) 

fcm = 31.1 MPa  
(at 70 days - age of beam tests) 

Steel 

Tensile strength 6 12 16 25 

fsym * 533 MPa 446 MPa 447 MPa 444 MPa 

fsum ** 592 MPa 564 MPa 561 MPa 574 MPa 

CFRP strips 
Tensile strength Young’s Modulus Maximum strain *** Thickness 

ffum = 2952 MPa ** Efm = 166.6 GPa εfum = 1.77% 1.4 mm 
* Mean value of the yield stress; ** Mean value of the maximum stress; *** Obtained from Hooke’s law. 

 587 

Table 3. Summary of relevant results of the tested beams. 588 
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Beam 

label 
max

F  

[kN] 

RS2
maxmax

FF   

[%] 

RS6
maxmax

FF 

C_R 243 - 0.59 

2S_R 315 0.0 0.77 

6S_R 410 30.2 1.00 

2S_3LV 316 0.3 0.77 

2S_5LV 357 13.3 0.87 

2S_8LV 396 25.7 0.97 

2S_3LI45 328 4.1 0.80 

2S_5LI45 384 21.9 0.94 

2S_8LI45 382 21.3 0.93 

2S_3LI60 374 18.7 0.91 

2S_5LI60 392 24.4 0.96 

2S_7LI60 406 28.9 0.99 

 589 

Table 4. Values of fV  obtained from the developed model ( ,
PM
f kV ) and experimental recordings ( exp

fV ) for the 590 
experimental program by Dias & Barros 12. 591 
Beam label fs    exp  ,1

PM
fV  ,2

PM
fV  ,3

PM
fV  ,min

PM
fV  ,max

PM
fV  exp

,min
PM
ffV V  exp

,max
PM
ffV V

 [mm] [°] [°] [kN] [kN] [kN] [kN] [kN] [ ] [ ] 

2S_3LV 267 90 40 20.88 13.61 49.28 13.61 49.28 1.63 0.45 

2S_5LV 160 90 40 48.80 46.38 51.78 46.38 51.78 0.54 0.49 

2S_7LV 100 90 36 65.41 61.71 66.76 61.71 66.76 0.79 0.73 

average         0.99 0.56 

2S_3LI45 367 45 45 32.62 22.96 49.83 22.96 49.83 1.28 0.59 

2S_5LI45 220 45 45 47.69 47.11 62.06 47.11 62.06 0.88 0.67 

2S_8LI45 138 45 36 83.41 83.16 88.63 83.16 88.63 0.48 0.45 

average         0.88 0.57 

2S_3LI60 325 60 33 42.16 29.36 44.20 29.36 44.20 1.21 0.80 

2S_5LI60 195 60 36 47.21 47.20 60.04 47.20 60.04 0.98 0.77 

2S_7LI60 139 60 37 72.36 65.35 74.18 65.35 74.18 0.84 0.74 

average         1.01 0.77 

592 
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Fig. 1. Beam prototype: geometry, steel reinforcements, load and support conditions. 617 
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 619 

Notes: The monitored strip is in the opposite face of the represented one; Apart from beams 2S_5LI45 and 2S_5LI60, in the remaining ones, the 620 
lateral face where the two strain gauges were installed on the leg of the steel stirrup (see Fig. 1) is the same where the monitored strip was fixed. 621 
Fig. 2. Tested beams: position of steel stirrups (thick line) and strips (dashed line). 622 
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(c)  

Fig. 3. Force vs. deflection at the loaded-section of the beams strengthened with: (a) minimum; (b) 623 
intermediate; and (c) maximum CFRP shear strengthening ratio. 624 
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(d) 2S_3LI60 (e) 2S_8LV (f) 2S_8LI45 
Fig. 4. Some details of the failure zones: beam (a) 2S_R; (b) 2S_3LV; (c) 2S_3LI45; (d) 2S_3LI60. And 625 
observed failure mechanisms: beams (e) 2S_8LV;(f) 2S_8LI45. 626 
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Fig. 5. Influence of the CFRP percentage on the recorded effective strain. 630 
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Fig. 6. Main features of the proposed model: a) crack plane crossed by strips and their semi-conical fracture surfaces; b) 634 

detail of the semi-conical fracture surface and the distribution of the average tensile strength. 635 
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 638 
Fig. 7. Average bond strength vs. bonded length 17,18. 639 
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 642 

Fig. 8. Expected failure mode as function of the available bond length. 643 

 644 

 645 
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a)  b)  

Fig. 9. Interaction between strips and outward expulsion of the strengthened concrete cover: a) inside view of the 646 

fracture surface resulting from the overlapping of semi-conical fracture surfaces on one side of the web; b) local 647 

unbalance of the components of the concrete tensile strength orthogonal to the web faces on a section parallel to the 648 

crack plane. 649 

 650 

 651 

 652 

Fig. 10. Projection of the semi-conical surface on a plane orthogonal to the strip. 653 

 654 

 655 
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 656 

Fig. 11. Definition of half crack plane and linear and non-linear range of integration for each ellipse. 657 
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(a) 660 
 661 

 662 
(b) 663 
 664 
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 665 
(c) 666 
Fig. 12. The (a) first, (b) second and (c) third considered configurations for the strips 5. 667 
 668 

 669 

 670 

 671 

Fig. 13. Definition of the geometrical quantities in OXY  and the ellipse local reference system 1 2i i io e e . 672 
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 675 

Fig. 14. Determination of the effective matrix of the integration points in the non-linear range nlin
kX . 676 

 677 

 678 

 679 

Fig. 15. Determination of the effective matrix of the integration points in the linear range lin
kX . 680 


