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Abstract

For sign patterns corresponding to directed or undirected cycles,
we identify conditions under which the patterns admit or require P0–
matrices.

1 Introduction

In qualitative and combinatorial matrix theory, the use of combinatorial

information such as the signs of the elements of a matrix is very often useful

in the study of some properties of matrices. A matrix all of whose entries

are chosen from the set {+,−, 0} is called a sign pattern matrix. Given an

n×m real matrix A = (aij), we denote by sign(A) the sign pattern matrix

obtained from A by replacing each one of its positive entries by + and each

∗
Research supported by Spanish DGI grant number MTM2007-64477

†
Research supported by CMAT – Centro de Matemática da Universidade do Minho,
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one of its negative entries by −. For an n × m sign pattern matrix P , we

define the sign pattern class C(P ) by

C(P ) =
�
A ∈ Rm×n : sign(A) = P

�
.

A sign pattern matrix P is said to require a certain property P referring

to real matrices if all real matrices in C(P ) have the property P, and is said

to allow that property P if some real matrix in C(P ) has the property P. In

the literature, one can find, in the last few years, an increasing interest in

problems that arise from the basic question of whether a certain sign pattern

matrix requires (or allows) a certain property (see, for instance, [2], [6], [7]

and [8]).

In this paper, we shall consider the class of P0–matrices. A P0–matrix is a

real square matrix all of whose principal minors are nonnegative. Our aim is

to determine which sign pattern matrices are admissible for this class of real

matrices. In other words, we shall focus on the question ‘which sign pattern

matrices allow the property of belonging to the class of P0–matrices?’.

For an n×nmatrix A, the submatrix of A lying in rows α and columns β,

α,β ⊆ {1, ..., n}, is denoted by A[α|β], and the principal submatrix A[α|α]
is abbreviated to A[α]. Hence, a real n × n matrix A is a P0–matrix if

detA [α] ≥ 0, for all α ⊆ {1, ..., n}.

In [8], the authors characterized the sign pattern matrices that admit N–

matrices, P–matrices and M–matrices. Some partial results related to the

description of the sign pattern matrices that allow the property of belonging

to the class of inverse M–matrices were also presented. Recall that an n×n

real matrix A is called an N–matrix if all of its principal minors are negative

while A is said to be a P–matrix if all of its principal minors are positive. If

Zn is the set of all square real matrices of order n whose off-diagonal entries

are non-positive, a matrix A ∈ Zn is an M–matrix if and only if A is a

P–matrix. A nonsingular matrix A is said to be an inverse M -matrix if A−1

is an M–matrix. See [1] and [5] for more information on these classes of

matrices. Since P0–matrices are defined by means of the signs of principal

minors, the natural question that arises now is of whether we are able to

give a conclusive answer to the similar problem referring to this particular

class of matrices.
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2 Notation and preliminaries

A natural way to describe an n × n sign pattern matrix P = (pij) is via

a loop-free graph G(P ) = (V (G), E(G)), where the set of vertices V (G) is

{1, . . . , n} and (i, j) is an edge or arc in E(G) if and only if pij �= 0 and

i �= j. A graph-theoretical approach will be quite useful in the study of the

problem addressed in the next section.

A sign pattern matrix P = (pij) is said to be combinatorially symmetric

if pij �= 0 if and only if pji �= 0, for all choices of i, j, i �= j, and not

combinatorially symmetric otherwise.

In this study we will use directed graphs, but in the case of combinatori-

ally symmetric sign pattern matrices we will treat the graphs as undirected

when convenient.

A path in a graph is a sequence of edges (i1, i2), (i2, i3), . . ., (ik−1, ik) in

which all vertices are distinct, except, possibly, the first and the last. The

length of a path is the number of edges in the path. A cycle is a closed path,

that is a path in which the first and the last vertices coincide.

The directed graph associated with a not combinatorially symmetric sign

pattern matrix is either acyclic (possessing no cycles) or cyclic (with at least

one cycle).

A permutation pattern is simply a sign pattern matrix with exactly one

entry in each row and column equal to + and the remaining entries equal to

0. A product of the form STPS, where S is a square permutation pattern

and P is a sign pattern matrix of the same order as S, is called a permu-

tation similarity. The directed graph of STPS is obtained by applying the

permutation corresponding to S to the vertex labels in the directed graph

of P .

If G is an acyclic directed graph, then under an appropriate permuta-

tion of the vertex labels, G has an upper triangular adjacency matrix. This

well-known result in combinatorial graph theory leads us to the following

result concerning sign pattern matrices: If P is a not combinatorially sym-

metric sign pattern matrix whose associated graph is acyclic, there exists

a permutation pattern Q such that the sign pattern matrix P̃ = QTPQ is

upper triangular. (see [4]).

If G is a directed n–cycle, it is also well-known that there exists a per-
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mutation similarity that transforms the adjacency matrix into the following

standard form: 



0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 0 0 . . . 0 1

1 0 0 0 . . . 0 0





.

When it comes to sign pattern matrices, we may, then, conclude that if P

is a sign pattern matrix whose associated graph is a directed n–cycle, then

there is a permutation similarity that transforms P into the following form:




0 p12 0 0 . . . 0 0

0 0 p23 0 . . . 0 0

0 0 0 p34 . . . 0 0
...

...
...

...
...

...

0 0 0 0 . . . 0 pn−1n

pn1 0 0 0 . . . 0 0





,

where pn1 �= 0 and pii+1 �= 0 for i = 1, . . . , n−1. Let Pβ denote the n×n sign

pattern matrix obtained by taking pn1 = β and pii+1 = + for i = 1, . . . , n−1

in the previous sign pattern matrix.

3 Results

In this section we will focus on the question of whether there exists a P0–

matrix A ∈ C(P ) for a given n × n sign pattern matrix P . Throughout we

will mainly consider sign pattern matrices with zero diagonal elements.

We begin by analyzing the existence of a P0–matrix in C(P ) where P is

a sign pattern matrix of the form
�

0 p12
p21 0

�

with p12, p21 ∈ {0,−,+}. Given a matrix A = (aij) ∈ C(P ), detA =

−a12a21. This means that there exists a P0–matrix in C(P ) if and only if

p12p21 ≤ 0 (where the operation of multiplication and the relations ‘≤’, ‘<’
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and ‘=’ in {0,−,+} are defined in a natural way). Moreover, if p12p21 = 0,

all matrices in C(P ) are P0–matrices. Note that if p12p21 �= 0 then P can

be described by a directed cycle of length 2. Motivated by these facts, we

introduce the following definition.

Definition 3.1. We say that a sign pattern matrix P = (pij) has the 2–

cycle property if pijpji < 0 whenever (i, j), (j, i) ∈ E(G), where G is the

graph describing P .

It is obvious that having the 2-cycle property is a necessary and sufficient

condition for the existence of a P0–matrix in C(P ) in case n = 2 with no zero

off-diagonal entries and diagonal entries equal to zero. This can be extended

for sign pattern matrices whose associated graphs are undirected cycles, as

the following theorem states.

Theorem 3.2. Let P = (pij) be an n× n sign pattern matrix, with pii = 0

for all i, whose associated graph G(P ) is an undirected cycle. There exists

a P0–matrix in C(P ) if and only if P has the 2–cycle property.

Proof. The necessary condition is obvious. Conversely, assume that P has

the 2–cycle property. We may assume, by permutation similarity, that P is

of the following form

P =





0 p12 0 . . . 0 p1n
p21 0 p23 . . . 0 0

0 p32 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 pn−1n

pn1 0 0 . . . pnn−1 0





.

Let D be the diagonal sign pattern matrix defined by

D = diag(1, p12, p12p23, p12p23p34, . . . , p12p23 · · · pn−1n).
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Given that pii+1pi+1i < 0 for i = 1, . . . , n− 1, it is easy to see that

DPD−1 =





0 + 0 . . . 0 −pn1

n−1�

i=1

pii+1

− 0 + . . . 0 0

0 − 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 +

pn1

n−1�

i=1

pii+1 0 0 . . . − 0





= Pβ − P T
β ,

with β = pn1

n−1�

i=1

pii+1. Let

A =





0 1 0 . . . 0 −x

−1 0 1 . . . 0 0

0 −1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1

x 0 0 . . . −1 0





,

with x ∈ R such that sign(x) = β.

If n is odd, detA = 0.

If n is even, of the form n = 2k, it is not difficult to prove that

detA = (−1)k detA [{1, 3, 5, . . . , 2k − 1} | {2, 4, 6, . . . , 2k}]×
× detA [{2, 4, 6, . . . , 2k} | {1, 3, 5, . . . , 2k − 1}]

= (−1)k(1− x)((−1)k + (−1)k+1x) = (1− x)2 ≥ 0.

To conclude that A is a P0–matrix in C(DPD−1) we still have to show

that detA[α] ≥ 0 for all α ⊂ {1, . . . , n}.
Let α ⊂ {1, . . . , n}. It is obvious that for |α| ≤ 2, detA[α] ≥ 0. Assum-

ing |α| > 2, we firstly address the case in which 1 �∈ α or n �∈ α. In this case
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A[α] is a submatrix of the (n− 1)× (n− 1) matrix





0 1 0 . . . 0 0

−1 0 1 . . . 0 0

0 −1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1

0 0 0 . . . −1 0





.

If the indexes in α are consecutive and |α| is odd, it is not hard to prove

that detA[α] = 0. If the indexes in α are consecutive and |α| is even, α is

of the form α = {i1, i1 + 1, i1 + 2, . . . , i1 + 2q − 1}. In that case, detA[α] =

(−1)2q = 1 > 0. If the indexes in α are not consecutive, then A[α] is a direct

sum of matrices A[α1], A[α2], . . . , A[αt] where α1,α2, . . . ,αt ⊂ {1, . . . , n},
α1∪α2∪ . . .∪αt = α, αi∩αj = ∅ and the indexes of each αi are consecutive.

Therefore, detA[αi] ≥ 0 and detA[α] ≥ 0.

Next we analyze the case in which 1, n ∈ α. Let j0α be the smallest

index j in {1, . . . , n} such that j �∈ α.

If j0α = 2, then detA[α] = x2 detA[α − {1, n}]. We have already seen

that detA[α− {1, n}] ≥ 0. These imply detA[α] ≥ 0.

If j0α = 3, we can write detA[α] = detA[α− {1, 2}]. We have also seen

that detA[α− {1, 2}] ≥ 0. Therefore detA[α] ≥ 0.

For j0α = 4, it is easy to prove that detA[α] = detA[α−{2, 3}]. Observe

that j0α−{2,3} = 2. Hence detA[α− {2, 3}] ≥ 0 and detA[α] ≥ 0.

For any j0α ≥ 4, we can write

detA[α] = detA [α− {j0α − 2, j0α − 1}] .

Note that j0α−{j0α−2,j0α−1} = j0α − 2. By induction, we have

detA [α− {j0α − 2, j0α − 1}] ≥ 0

and consequently detA[α] ≥ 0.

Since A is a P0–matrix in C(DPD−1), by using diagonal similarity, we

conclude that there exists a P0–matrix in C(P ).

Among the directed graphs associated with not combinatorially symmet-

ric sign pattern matrices, the acyclic graphs and the directed cycles play an

important role.
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The next theorem states that all sign pattern matrices whose associated

graphs are acyclic require the property of belonging to the class of P0–

matrices.

Theorem 3.3. If P = (pij) is an n×n sign pattern matrix, with pii ∈ {0,+}
for all i, whose associated graph G(P ) is acyclic, all matrices in C(P ) are

P0–matrices.

Proof. Since G(P ) is acyclic, there exists a permutation pattern Q such that

P̃ = QTPQ is upper triangular. Let B be the permutation matrix in C(Q).

Given A ∈ C(P ), it is easy to see that Ã = BTAB is an element of C(P̃ ).

Since Ã is upper triangular it is obvious that Ã is a P0–matrix. Hence,

A = BÃBT is also a P0–matrix.

We now focus on the case of directed cycles. Given a cycle (i1, i2), (i2, i3),

. . . , (ik−1, ik), (ik, i1) in a graph G(P ), where P = (pij) is a sign pattern

matrix, we define the sign of the cycle as 1 if pi1i2pi2i3 . . . pik−1,ikpik,i1 = +

and as −1 if pi1i2pi2i3 . . . pik−1,ikpik,i1 = −.

Theorem 3.4. Let P = (pij) be an n× n sign pattern matrix, with pii = 0

for all i, whose associated graph G(P ) is a directed cycle. Then the following

statements are equivalent:

1. The sign of the cycle is (−1)n+1
.

2. There exists a P0–matrix in C(P ).

3. All matrices in C(P ) are P0–matrices.

Proof. Without loss of generality, we may assume that any matrix A ∈ C(P )

is of the form

A =





0 a12 0 . . . 0 0

0 0 a23 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 an−1n

an1 0 0 . . . 0 0




,

where sign(aij) = pij for all choices of i and j. We have

detA = (−1)n+1a12a23 . . . an−1nan1.
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Let α ⊂ {1, . . . , n}. If 1 �∈ α or n �∈ α, A[α] is upper triangular with zero

diagonal elements. If j ∈ α and j + 1 �∈ α (j ≤ n − 2), all the components

of the jth–line of A[α] are zero. Hence detA[α] = 0. This implies A is a

P0–matrix if and only if the sign of the cycle is (−1)n+1.

4 Remarks

The general case where P is a sign pattern matrix whose associated graph is

cyclic is still open. Taking into account the necessary and sufficient condition

presented for directed cycles of length n, we expected that the generalization

of such condition given by

(*) the directed cycles of length k in G(P ) have sign (−1)k+1

would be a necessary condition for the admissibility of a sign pattern matrix

P , whose associated graph is cyclic, for the class of P0–matrices. But it is

not. In fact, the sign pattern matrix

P =





0 − 0 −
+ 0 − +

0 + 0 −
+ − + 0





is admissible for the class of P0–matrices, since

A =





0 −1 0 −1

1 0 −1 1

0 1 0 −1

2 −2 3 0





is a P0–matrix in C(P ). Still, the sign of the directed cycle (1, 2), (2, 4), (4, 1)

is −1 �= (−1)3+1.

It is not surprising, however, that the condition (*) is sufficient for the

admissibility of any sign pattern matrix P with zero diagonal entries and,

moreover, that all matrices in the class C(P ) are P0–matrices. In fact,

consider A ∈ C(P ) and recall

detA =
�

σ∈Sn

sign(σ)
n�

i=1

aiσ(i).
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Since all pii are zero, the summand corresponding to each permutation σ is

zero if σ does not satisfy σ(i) �= i, for all choices of i. Each permutation

σ for which the summand is nonzero corresponds to a product of directed

cycles C1, C2, . . . , Ck in G(P ) of length l1, l2, . . . , lk, respectively, where l1+

l2 + . . . + lk = n. From the condition on the directed cycles of length k,

we know that the sign of each one of the cycles Ci is (−1)li+1. Therefore,

for such a permutation σ, both sign(σ) and sign
��n

i=1 aiσ(i)
�
are equal to

(−1)l1+1(−1)l2+1 . . . (−1)lk+1. This means that the summand corresponding

to σ is positive. Hence, detA ≥ 0. Given α ⊆ {1, . . . , n}, if |α| = 1 then

detA[α] = 0 and if |α| ≥ 2 using the same reasoning as for detA we get

detA[α] ≥ 0. These allows us to assert that A is a P0–matrix.

Obviously, condition (*) is too strong. Yet, it is a necessary condition in

some very special cases. A sign pattern P = (pij) is said to be asymmetric

if pij �= 0 implies pji = 0, for all distinct i, j. It is not hard to check that

condition (*), besides being a sufficient condition for the admissibility of an

asymmetric sign pattern matrix with all diagonal entries zero for the class of

P0–matrices, it is also necessary for n = 2, 3, 4. However it is not necessary

for such sign pattern matrices in general. In fact,

P =





0 + + 0 0

0 0 + 0 −
0 0 0 + 0

0 + 0 0 +

− 0 0 0 0





is an asymmetric sign pattern matrix which is admissible for the class of

P0–matrices, since

A =





0 1 1 0 0

0 0 1 0 −1

0 0 0 1 0

0 1 0 0 1

−1 0 0 0 0





is a P0–matrix in C(P ). Still, the sign of the directed cycle (1, 2), (2, 3),

(3, 4), (4, 5), (5, 1) is −1 �= (−1)5+1.
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