Fibrous and composite materials for civil engineering applications

Edited by
R. Fangueiro
Contributor contact details
Woodhead Publishing Series in Textiles ix xiii

Part I Types of fibrous textiles and structures 1

1 Natural and man-made fibres: Physical and mechanical properties 3
 M. De Araújo, University of Minho, Portugal

1.1 Introduction 3

1.2 Natural fibres 5

1.3 Man-made fibres 6

1.4 Textile fibres for use in civil engineering applications: an overview 8

1.5 Natural textile fibres for use in civil engineering applications 12

1.6 Synthetic textile fibres for use in civil engineering applications 14

1.7 Fibre–matrix adhesion 26

1.8 Sources of further information and advice 26

1.9 References 27

2 Yarns: Production, processability and properties 29
 R. Alagirusamy and A. Das, Indian Institute of Technology, Delhi, India

2.1 Introduction 29

2.2 Synthetic filament yarns 30

2.3 Natural fibre yarns 36

2.4 Synthetic yarn manufacture 39

2.5 Natural fibre yarn manufacture 45

2.6 Yarn parameters on cement reinforcement 53

2.7 Conclusions 59

2.8 References 60
Contents

3 Textile structures 62
R. FANQUEIRO and P. SOUTINHO, University of Minho, Portugal
3.1 Introduction 62
3.2 Planar (2D) textile structures 67
3.3 Three-dimensional (3D) textile structures 75
3.4 Directionally oriented structures (DOS) 82
3.5 Hybrid structures 87
3.6 Sources of further information and advice 89
3.7 References 89

Part II Fibrous materials as a concrete reinforcement material 93
4 Steel fibre reinforced concrete: Material properties and structural applications 95
J. A. O. BARROS, University of Minho, Portugal
4.1 Introduction 95
4.2 The fundamentals of fibre reinforcement effectiveness 96
4.3 Mix design and steel fibre reinforced self-compacting concrete (SFRSCC) compositions 102
4.4 Fibre pullout 103
4.5 Characterization of the mechanical properties 108
4.6 Structural behaviour 133
4.7 FEM models for the analysis of laminar SFRC structures 137
4.8 Possibilities of steel-fibre reinforced concrete (SFRC) for underground structures 142
4.9 Acknowledgements 150
4.10 References 150

5 Natural fiber reinforced concrete 154
F. P. TORGAL and S. JALALI, University of Minho, Portugal
5.1 Introduction 154
5.2 Fiber characteristics and properties 155
5.3 Matrix characteristics 157
5.4 Properties 158
5.5 Durability 162
5.6 Future trends 163
5.7 References 164

6 The role of fiber reinforcement in mitigating shrinkage cracks in concrete 168
K. RAOUFI and J. WEISS, Purdue University, USA
6.1 Introduction 168
6.2 Restraint shrinkage cracking of fiber reinforced concrete 169

6.3 Cracking and damage development in concrete 171
6.4 Influence of the length of slabs on shrinkage cracking 173
6.5 Influence of the degree of restraint on shrinkage cracking 181
6.6 Examples of shrinkage cracking in fiber reinforced concrete slabs 182
6.7 Conclusions 185
6.8 References 185

Part III Fibrous materials based composites for civil engineering applications 189
7 Fibrous materials reinforced composites production techniques 191
A. T. MARQUES, University of Porto, Portugal
7.1 Introduction 191
7.2 Organic matrices 192
7.3 Fibres 195
7.4 Production techniques: general characteristics 195
7.5 Processing: materials and parameters 198
7.6 Strengthening of structures 210
7.7 Properties of composite material laminates 211
7.8 Conclusions 211
7.9 Bibliography 215

8 Fibrous materials reinforced composite for internal reinforcement of concrete structures 216
R. FANQUEIRO University of Minho, Portugal and C. G. PEREIRA, The Polytechnic Institute of Setubal, Portugal
8.1 Introduction 216
8.2 Raw materials for composite rods 217
8.3 Composite manufacturing processes 220
8.4 Mechanical performance of composite rods 226
8.5 Durability performance of composite rods 231
8.6 Composite rod/concrete bond behaviour 234
8.7 Self-monitoring composite rods 236
8.8 Applications of composite rods 243
8.9 Design and application recommendations 245
8.10 References 246

9 Fibrous materials reinforced composites for structural health monitoring 250
A. GUEMES, Technical University of Madrid, Spain and J. R. CASAS, Technical University of Catalonia, Spain
9.1 Introduction 250
9.2 Materials and systems: hardware and software 253

© Woodhead Publishing Limited, 2011
Contents

9.3 Applications 258
9.4 Future trends 266
9.5 Sources of further information and advice 267
9.6 References 268

10 Fibrous insulation materials in building engineering applications 271
X. Lu and M. Viljanen, Aalto University, Finland
10.1 Introduction 271
10.2 Raw materials and manufacturing process 272
10.3 Fibrous materials: characteristics and properties 277
10.4 Applications 288
10.5 Sources of further information and advice 295
10.6 References 298

11 Acoustic behaviour of fibrous materials 306
J. António, University of Coimbra, Portugal
11.1 Introduction 306
11.2 Sound absorbers 306
11.3 Sound absorption coefficient 307
11.4 Factors affecting the sound absorption of fibrous materials 310
11.5 Modelling sound-absorbing materials 315
11.6 Airborne sound insulation 316
11.7 Impact sound insulation 319
11.8 Conclusions 321
11.9 References 321

12 The use of textile materials for architectural membranes 325
J. Monjo-Carrillo, Politecnico University of Madrid, Spain
and J. Terheka, BAT (Buro Arquitectura Textil), Spain
12.1 Introduction 325
12.2 Typology 333
12.3 Support systems 347
12.4 Textile materials 357
12.5 Membrane manufacture and installation 371
12.6 Sources of further information and advice 386
12.7 References 387

Index 389

Contributor contact details

(*) = main contact

Editor
R. Figueiro*
Department of Textile Engineering
University of Minho
Azurém Campus
4800-058 Guimarães
Portugal
e-mail: rfigo@det.uminho.pt

Chapter 3
R. Figueiro*
Department of Textile Engineering
University of Minho
Azurém Campus
4800-058 Guimarães
Portugal
e-mail: rfigo@det.uminho.pt

Chapter 1
M. de Araújo
School of Engineering
University of Minho
Azurém Campus
4800-058 Guimarães
Portugal
e-mail: filipesoutinho@det.uminho.pt

Chapter 2
J. A. O. Barros
Institute for Sustainability and Innovation in Structural Engineering (ISISE)
Department of Civil Engineering
University of Minho
Portugal
e-mail: barros@civil.uminho.pt

R. Alagirusamy* and A. Das
Department of Textile Technology
Indian Institute of Technology – Delhi
Hauz Khas
New Delhi – 110016
India
e-mail: alajir@gmail.com;
apurbatextile.iitd.ernet.in;
apurbatextile.iitd.ernet.in

© Woodhead Publishing Limited, 2011
Chapter 5

F. Pacheco Torgal*
Sustainable Construction Group
C-TAC Research Unit
University of Minho
Azurém Campus
4800–058 Guimarães
Portugal
e-mail: f.pachecotorgal@gmail.com

Professor S. Jalali
Department of Civil Engineering
University of Minho
Azurém Campus
4800–058 Guimarães
Portugal
e-mail: said@uminho.pt

Chapter 6

K. Raoufi*
Materials Sensing Laboratory
School of Civil Engineering
Purdue University
550 Stadium Mall Drive
West Lafayette
Indiana
USA
e-mail: kraoufi@purdue.edu

J. Weiss
Pankow Materials Laboratory
School of Civil Engineering
Purdue University
550 Stadium Mall Drive
West Lafayette
Indiana
USA
e-mail: wjweiss@ecn.purdue.edu

Chapter 7

A. T. Marques
Department of Mechanical Engineering
Faculty of Engineering
University of Porto
Portugal
e-mail: marques@fe.up.pt

Chapter 8

R. Fagundes*
Department of Textile Engineering
University of Minho
Azurém Campus
4800–058 Guimarães
Portugal
e-mail: rfag@det.uminho.pt

C. Genilho Pereira
Fibrous Materials Research Group
Portugal
The Polytechnic Institute of Setubal
Setubal
e-mail: christina.pereira@estabarreiro.ipn.pt

Chapter 9

A. Guemes*
Department of Aeronautics
Polytechnic University of Madrid
28040 Madrid
Spain
e-mail: alfredo.guemes@upm.es

J. R. Casas
School of Civil Engineering
Technical University of Catalonia
08034 Barcelona
Spain
e-mail: joan.ramon.casas@upc.edu

Chapter 10

X. Lu* and M. Viljanen
Department of Civil and Environmental Engineering
School of Science and Technology
Aalto University
P.O. Box 12100
FI-00076 Aalto
Finland
e-mail: xiaoshu@cc.hut.fi;
marti.viljanen@hut.fi

Chapter 11

J. António
Department of Civil Engineering
University of Coimbra
Rua Luís Reis Santos – Pólo II da Universidade
3030–788 Coimbra
Portugal
e-mail: juliete@dec.uc.pt

Chapter 12

J. Monjo-Carrión*
Department of Construction and Technology in Architecture
Polytechnic University of Madrid
Avda. Juan de Herrera, 4
28040 Madrid
Spain
e-mail: juan.monjo@upm.es

J. Tejera
BAM, Buró Arquitectura Textil
Calle de San Andréis, 25
28004 Madrid
Spain
e-mail: tejera@bamspain.com
Woodhead Publishing Series in Textiles

1 Watson’s textile design and colour Seventh edition
 Edited by Z. Grosicki
2 Watson’s advanced textile design
 Edited by Z. Grosicki
3 Weaving Second edition
 P. R. Lord and M. H. Mohamed
4 Handbook of textile fibres Vol 1: Natural fibres
 J. Gordon Cook
5 Handbook of textile fibres Vol 2: Man-made fibres
 J. Gordon Cook
6 Recycling textile and plastic waste
 Edited by A. R. Horrocks
7 New fibres Second edition
 T. Hongs and G. O. Phillips
8 Atlas of fibre fracture and damage to textiles Second edition
 J. W. S. Hearle, B. Lomas and W. D. Cooke
9 Ecotextile ’98
 Edited by A. R. Horrocks
10 Physical testing of textiles
 B. P. Saville
11 Geometric symmetry in patterns and tilings
 C. E. Horne
12 Handbook of technical textiles
 Edited by A. R. Horrocks and S. C. Anand
13 Textiles in automotive engineering
 W. Fung and J. M. Hardcastle
14 Handbook of textile design
 J. Wilson
15 High-performance fibres
 Edited by J. W. S. Hearle
16 Knitting technology Third edition
 D. J. Spencer
17 Medical textiles
 Edited by S. C. Anand

© Woodhead Publishing Limited, 2011
18 Regenerated cellulose fibres
 Edited by C. Woodward
19 Silk, mohair, cashmere and other luxury fibres
 Edited by R. R. Franck
20 Smart fibres, fabrics and clothing
 Edited by X. M. Tao
21 Yarn texturing technology
 J. W. S. Hearle, L. Hollick and D. K. Wilson
22 Encyclopedia of textile finishing
 H-K. Rowette
23 Coated and laminated textiles
 W. Fung
24 Fancy yarns
 R. H. Gong and R. M. Wright
25 Wool: Science and technology
 Edited by W. S. Simpson and G. Crawshaw
26 Dictionary of textile finishing
 H-K. Rowette
27 Environmental impact of textiles
 K. Slater
28 Handbook of yarn production
 P. R. Lord
29 Textile processing with enzymes
 Edited by A. Cavaco-Paulo and G. Gubitz
30 The China and Hong Kong denim industry
 Y. Li, L. Yao and K. W. Yeung
31 The World Trade Organization and international denim trading
 Y. Li, Y. Shen, L. Yao and E. Newton
32 Chemical finishing of textiles
 W. D. Schindler and P. J. Hauser
33 Clothing appearance and fit
 J. Fan, W. Yu and L. Hunter
34 Handbook of fibre rope technology
 H. A. McKenna, J. W. S. Hearle and N. O’Hear
35 Structure and mechanics of woven fabrics
 J. Hu
36 Synthetic fibres: nylon, polyester, acrylic, polyolefin
 Edited by J. E. McIntyre
37 Woollen and worsted woven fabric design
 E. G. Gilligan
38 Analytical electrochemistry in textiles
 P. Westbroek, G. Prinistakis and P. Kiekens
39 Balsa and other plant fibres
 R. R. Franck
40 Chemical testing of textiles
 Edited by Q. Fan
41 Design and manufacture of textile composites
 Edited by A. C. Long

42 Effect of mechanical and physical properties on fabric hand
 Edited by Hassan M. Behery
43 New millennium fibres
 T. Hong, M. Takiyama and G. O. Phillips
44 Textiles for protection
 Edited by R. A. Scott
45 Textiles in sport
 Edited by R. Shihou
46 Wearable electronics and photonics
 Edited by X. M. Tao
47 Biodegradable and sustainable fibres
 Edited by R. S. Blackburn
48 Medical textiles and biomaterials for healthcare
 Edited by S. C. Anand, M. Miraflah, S. Rajendran and J. F. Kennedy
49 Total colour management in textiles
 Edited by J. Xin
50 Recycling in textiles
 Edited by Y. Wang
51 Clothing biosensory engineering
 Y. Li and A. S. W. Wong
52 Biomechanical engineering of textiles and clothing
 Edited by Y. Li and D. X.-Q. Dui
53 Digital printing of textiles
 Edited by H. Ujiue
54 Intelligent textiles and clothing
 Edited by H. R. Mattila
55 Innovation and technology of women’s intimate apparel
 W. Yu, J. Fan, S. C. Harlock and S. P. Ng
56 Thermal and moisture transport in fibrous materials
 Edited by N. Pan and P. Gilson
57 Geosynthetics in civil engineering
 Edited by R. W. Sarsby
58 Handbook of nonwovens
 Edited by S. Russell
59 Cotton: Science and technology
 Edited by S. Gordon and Y.-L. Hsieh
60 Ecotextiles
 Edited by M. Miraflah and A. R. Horrocks
61 Composite forming technologies
 Edited by A. C. Long
62 Plasma technology for textiles
 Edited by R. Shihou
63 Smart textiles for medicine and healthcare
 Edited by L. Van Langenhove
64 Sizing in clothing
 Edited by S. Ashdown
65 Shape memory polymers and textiles
 J. Hu
Part I

Types of fibrous textiles and structures
Steel fibre reinforced concrete:
Material properties and structural applications

J. A. O. BARROS, University of Minho, Portugal

Abstract: Short and randomly distributed steel fibres are often used for concrete reinforcement since they offer resistance to crack initiation and, mainly, to crack propagation. In steel fibre reinforced concrete (SFRC) of low fibre volume content, the fibre reinforcement effectiveness is only significant after matrix cracking, since fibres crossing the crack guarantee a certain level of stress transfer between the faces of the crack, providing to the concrete a residual strength, the magnitude of which depends on the fibre, matrix and fibre-matrix properties. The mechanical performance of SFRC is also highly influenced by the fibre dispersion, since the effectiveness of fibre reinforcement depends on the orientation and arrangement of the fibres within the cement matrix.

Key words: steel fibre reinforced concrete, steel fibre reinforced self-compacting concrete, tensile behaviour, flexural behaviour, shear and punching behaviour, façade panels, inverse analysis, finite element method.

4.1 Introduction
The use of discrete steel fibres as a reinforcement system for cement-based materials is now a current practice for several applications (di Prisco et al. 2004). The resulting material is designated steel fibre reinforced concrete (SFRC). The post cracking residual strength can be much higher in SFRC than in the homologous (same strength class) plain concrete (PC), due to fibre reinforcement mechanisms provided by fibres bridging the cracks (Barros et al. 2005b). In consequence, SFRC allows high level of stress redistribution, providing a significant deformation capacity of a structure between crack initiation and its failure, which increases the structural safety. This is especially relevant in structures of redundant number of supports (Barros and Figueiras 1998). The level of the post-cracking residual strength depends on several factors, such as: fibre geometric characteristics, fibre material properties, concrete properties, and method of SFRC application. When well conceived, fibre reinforcement can replace totally, or partially, conventional steel reinforcement for the flexural and shear resistance of concrete elements (Casanova 1995; Casanova et al. 2000; Roshani 1996). The percentage of this replacement depends on the type of element, support and loading conditions.