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Multiary sequent terms were originally introduced as a tool for proving termination of permuta-

tive conversions in cut-free sequent calculus. This work develops the language of multiary sequent
terms into a term calculus for the computational (Curry-Howard) interpretation of a fragment

of sequent calculus with cuts and cut-elimination rules. The system, named generalised mul-

tiary λ-calculus, is a rich extension of the λ-calculus where the computational content of the
sequent calculus format is explained through an enlarged form of the application constructor.

Such constructor exhibits the features of multiarity (the ability of forming lists of arguments) and

generality (the ability of prescribing a kind of continuation). The system integrates in a modular
way the multiary λ-calculus and an isomorphic copy of the λ-calculus with generalised application

ΛJ (in particular, natural deduction is captured internally up to isomorphism). In addition, the
system: (i) comes with permutative conversion rules, whose role is to eliminate the new features

of application; (ii) is equipped with reduction rules — either the µ-rule, typical of the multiary

setting, or rules for cut-elimination, which enlarge the ordinary β-rule. This paper establishes the
meta-theory of the system, with emphasis on the role of the µ-rule, and including a study of the

interaction of reduction and permutative conversions.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Proof theory; Lambda calculus and related systems

General Terms: Languages, Theory

Additional Key Words and Phrases: intuitionistic sequent calculus, lambda-calculus, Curry-
Howard isomorphism, generalised application, multiary application, permutative conversions

1. INTRODUCTION

Motivation. It is well-known that two intuitionistic sequent calculus derivations
determine the same natural deduction proof when they are inter-permutable [Zucker
1974; Pottinger 1977], that is, when they differ only by certain permutations in the
order of application of inference rules. In [Dyckhoff and Pinto 1999] this idea is made
precise for cut-free sequent calculus by the identification of a basic set of permutative
conversion rules and the definition of a confluent and weakly normalising rewriting
system whose normal forms are in 1-1 correspondence with the normal natural
deductions.

Schwichtenberg proved in [Schwichtenberg 1999] that a variant of the rewriting
system of [Dyckhoff and Pinto 1999] is strongly normalising. This variant has the
characteristic of being “multiary”. Multiarity has a meaning at the level of the proof
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system, and at the level of the language of proof annotations (the so-called multiary
sequent terms). At the level of the proof system, it means that the left introduction
rule allows in a single inference the introduction of A1 ⊃ ... ⊃ Ak ⊃ B from k + 1
premises (k of them relative to the Ai’s and a last one relative to B)1. In fact,
one has a family of rules, indexed by k ≥ 1. At the level of annotations, it means
that one needs an auxiliary class of expressions, named “paths” in [Schwichtenberg
1999], to collect the k annotations of the k premisses relative to the Ai’s mentioned
before.

The starting point of this work is a new attitude towards the language of mul-
tiary sequent terms. While this language is regarded in [Schwichtenberg 1999] as
a technical tool in order to achieve a certain termination result, here it is consid-
ered as the basis for a computational interpretation of (some suitable fragment)
of sequent calculus, along the lines of the Curry-Howard isomorphism. A sub-
sidiary motivation for this work is the possibility of an alternative implementation
of the multiarity feature, in the style of Herbelin’s proof system LJT and the cor-
responding λ-calculus [Herbelin 1995]. In LJT one does not have a family of left
introduction rules, but instead an auxiliary kind of sequents with a “stoup” for-
mula; and in λ one does not speak of “paths” but instead of lists of terms2. The
sharing of syntactic ingredients between multiary sequent terms and λ-terms gave
an extra motivation for developing the former as some variant of the λ-calculus.

The λJm-calculus. In this paper we extend the proof system of [Schwichtenberg
1999] with a special form of cuts and cut-elimination rules, and, accordingly, we
adapt the language of multiary sequent terms and equip it with reduction rules. The
result, presented as a typing system for some extension of the λ-calculus, is as good
as could be expected, from the point of view of both a smooth extension of the cut-
free fragment, and of the obtention of a meaningful computational interpretation.
Indeed, the cut-free multiary sequent terms consisted of variables, λ-abstractions,
and a third construction, written here as y(u, l, (x)v) (with the function expression
y a variable), corresponding to left introductions. Our extension simply means
to enlarge this construction (the function expression is allowed to be an arbitrary
term) so that cuts are encompassed, and to interpret the resulting construction as
a form of application, named generalised multiary application (or gm-application),
and written thus:

t(u, l, (x)v) . (1)

Here t represents the left premiss of a cut, whereas (u, l, (x)v) represents its
right premiss, which is necessarily a multiary left introduction. The cut-formula,
necessarily an implication, is both the type of t and the formula left introduced
by (u, l, (x)v). Without surprise, cuts of this form resemble an elimination rule of
natural deduction, and indeed our cuts may be seen as a multiary extension of von
Plato’s concept of general elimination [von Plato 2001].

1In this paper, contrary to [Schwichtenberg 1999], we only deal with implication ⊃.
2Curiously, while in [Herbelin 1995] an interpretation for lists as “applicative contexts” is sketched,

here we will regard lists as such (and more precisely, the possibility of forming functional appli-

cation with lists of arguments) as a direct and literal manifestation, at the term level, of the
multiarity feature of the proof-system.
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In the computational reading, t is the function expression and (u, l, (x)v) is the
gm-argument of the gm-application. This consists of the first argument u, a list
l of extra arguments and the formal parameter x and the body v of an explicit
substitution. The availability of list l qualifies the application as multiary; the
availability of a kind of “continuation” (x)v qualifies the application as generalised,
the terminology used in the ΛJ-calculus [Joachimski and Matthes 2003]3.

Moreover, and this is the main point of the computational interpretation, the
reading of t(u, l, (x)v) as an enlarged notion of application induces a transparent,
coherent functional reading for the cut-elimination rules. For instance, there is
a reduction rule for eliminating cuts as above where the left premiss t ends with
a right introduction (is a λ-abstraction), which reads as a rich β-rule comprising
the consumption of the first argument, the management of the list of extra argu-
ments and, possibly, feeding the continuation with some result (in the latter case
in accordance with the β-rule of the ΛJ-calculus).

The purpose of this paper is to define, explain and develop the meta-theory
of λJm, a rich system worthwhile studying because: (i) λJm comprises permuta-
tive conversions, allowing the extension of the studies [Dyckhoff and Pinto 1999;
Schwichtenberg 1999] to a setting with cuts; (ii) λJm comprises reduction rules,
corresponding to cut-elimination, which, when combined with permutative con-
versions, offer new strategies for the obtention of λ-terms in β-normal form; (iii)
λJm gives a computational interpretation to sequent calculus based on an enriched
concept of application, an interpretation that differs from the mainstream inter-
pretations, usually given in terms of pattern matching [Cerrito and Kesner 2004]
or explicit substitutions [Sørensen and Urzyczyn 2006]; (iv) λJm has several in-
teresting subsystems, some of which capture internally natural deduction (up to
isomorphism).

A summary of the contents of the paper follows.
Subsystems and natural deduction. One can isolate, inside our system of

generalised multiary application, three classes of terms determined by imposing
on the concept of application a trivial form to the feature of multiarity (which
means imposing l = [] in (1)) and/or to the feature of generality (v = x in (1)).
These classes are (essentially) closed for reduction, determining the subsystems of
generalised application λJ (where multiarity is trivial), of multiary application λm

(where generality is trivial), and of simple application λ (where both features are
trivial).

The multiary subsystem λm corresponds to a system named λPh in [Esṕırito Santo
2002a; 2002b]. The subsystems λJ and λ, where multiarity is trivial, are isomor-
phic copies, inside the sequent calculus world, of systems of natural deduction -
the ΛJ-calculus and the ordinary λ-calculus (named Λ in this paper), respectively.
The diagram in Figure 1 illustrates the situation4. The isomorphism G (or its slight
extension G′) is a mapping that: (i) at the logical level, translates between elimina-
tion and appropriate combinations of cut and left introduction (an idea going back
to Gentzen); and (ii) at the term language level, makes a mere notational translit-
eration. Overall, G and G′ go from a system of natural deduction, where one or

3ΛJ is the type-theoretic counterpart to von Plato’s natural deduction system.
4The dots symbolise the “frontier” between the sequent calculus and natural deduction worlds.
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Fig. 1. λJm and other systems

both of the new features of application are non-existent, to the corresponding twin
where the features are just trivial.

Permutative conversions. As just seen, we are led to the study of the rela-
tionship with natural deduction, when one analyses the subsystems of λJm. At the
same time, we are led to the same study, when one analyses permutative conver-
sions in the sequent calculus [Dyckhoff and Pinto 1999; Schwichtenberg 1999] (this
becomes clear simply by recalling the permutability results cited at the start of this
introduction). There is here a triangulation (permutative conversions / subsystems
/ natural deduction), so the following fact is no big surprise: λJm is equipped with
permutative conversions (permutations for short) whose purpose is to reduce gm-
application to its simpler forms, where the features of multiarity and generality are
trivialised, thereby inducing mappings from λJm into its subsystems.

More precisely, there are two kinds of permutations: p-permutations (inspired
by [Schwichtenberg 1999]) and q-permutations (specific to this work), each kind
dedicated to the elimination of one feature - generality and multiarity, respectively.
Although the two kinds of permutations can be studied separately, it is only their
combination which induces a rewriting system playing a role here similar to the role
of the system in [Schwichtenberg 1999]: its normal forms are in 1-1 correspondence
with (ordinary) natural deductions. The induced rewriting system is confluent and
terminating and the usual permutability results hold.

Notice that permutations in λJm do not seek a correspondence with normal
natural deductions. That would require a combination of concerns: permutation
and reduction (cut-elimination). This separation (necessary in the cut-free setting
of [Dyckhoff and Pinto 1999; Schwichtenberg 1999]) was here a deliberate choice.
However, one can consider the combination of permutations and reductions into
hybrid rewriting relations. For more on this see Subsection 4.6 and Section 5.

Reduction. In addition to a β-rule, already described above, λJm is equipped
with two further reduction rules: the π-rule, corresponding to the rule with the
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same name in ΛJ - or rather its multiary extension; and the µ-rule, corresponding
to the rule with the same name in [Schwichtenberg 1999]- or rather its extension to
the setting of λJm where cuts are allowed. The βπ-normal forms are those terms
where applications have the form x(u, l, (y)v), with function expression necessarily
a variable, corresponding to the multiary sequent terms of [Schwichtenberg 1999].
By further imposing µ-normality, one recovers what Schwichtenberg calls “multiary
normal forms”.

Strong normalisation is proved, as well as confluence, the former for typable
terms, the latter for the various combinations of rules. Conservativeness and preser-
vation of strong normalisation over the subsystems also hold, obtained after study-
ing how the mappings between λJm and its subsystems preserve reduction. This
subsumes a study of the correspondence between cut-elimination in λJm and nor-
malisation, ordinary or generalised, given that natural deduction may be seen as a
subsystem of λJm.

Particularly important is the connection between λJm and its multiarity-free
subsystem λJ, through which λJm benefits from the properties previously proved
for ΛJ [Joachimski and Matthes 2000; 2003]. But rarely the benefit is won through
a routine extension of matters to the multiary setting, because of the presence of
rule µ, the rule typical of that setting, which poses new problems relatively to what
is known of ΛJ , but whose properties are part of the solutions.

Organisation of the paper. Section 2 introduces the system λJm; Section 3
studies the subsystems of λJm and the relationship with natural deduction; Sec-
tion 4 is devoted to the study of the rewriting properties of λJm; Section 5 concludes
the paper. Appendix A gives the proof transformations associated with reduction
and permutation rules. Appendix B compares λJm with Herbelin’s λ. Appendix C
includes proofs of the main results on permutative conversions for rewriting system
→pq, and complements these with results for →p and →q.

Previous work on λJm. This paper is based on [Esṕırito Santo and Pinto 2003;
2004], where the development of the meta-theory of λJm began. We present here
both new results and new proofs of known results. We also state results whose only
known proofs: have already been given in [Esṕırito Santo and Pinto 2003; 2004];
or are just small modifications of results in [Esṕırito Santo and Pinto 2003]. We
provide, in the latter case, the adjusted proofs in appendix.

The presentation and development of λJm is here more detailed in several as-
pects, particularly in the explanations of λJm as a sequent calculus; of the proof
transformations associated to reduction rules and permutative conversions; of the
subsystems; of the connections with natural deduction. The new results are: the
properties of µ; preservation of reduction by the mappings into the subsystems; con-
servativeness over subsystems; preservation of strong normalisation of reduction;
the properties of the combined systems of reduction and permutations. Although
not new, strong normalisation and confluence of reduction receive here new proofs
that profit from the above new results; in particular, these new proofs depend only
on the properties of the mappings into the subsystems, precisely the mappings that
calculate the normal forms w.r.t. permutative conversions (whereas the original
[Esṕırito Santo and Pinto 2004] proofs of strong normalisation and confluence of
reduction depended on the properties of other mappings).
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2. λJm: THE GENERALISED MULTIARY λ-CALCULUS

In this section we introduce the expressions and typing system of λJm, explaining
why the latter is a sequent calculus. Next we introduce and discuss reduction and
permutation rules.

2.1 Expressions and typing rules

The generalised multiary λ-calculus λJm is a term calculus for intuitionistic implica-
tional logic, corresponding to an extension with cuts of Schwichtenberg’s multiary
cut-free sequent calculus presented in [Schwichtenberg 1999]. In λJm, formulas
(=types) A, B, C, ... are built up from propositional variables using just ⊃ (for
implication). In the following, V denotes the set of variables and x, y, w, z range
over V.

Definition 2.1. The terms of λJm are described in the following grammar:

(terms of λJm) t, u, v ::= x | λx.t | t(u, l, (x)v)
(lists of λJm) l ::= t :: l | []

The sets of λJm-terms and λJm-lists are denoted by T Jm and LJm respectively.
A term of the form t(u, l, (x)v) is called a generalised multiary application (gm-
application for short) and t is called the head of such term. The list [] is called
the empty list and lists of the form t :: l are called cons-lists. In terms λx.v and
t(u, l, (x)v), occurrences of x in v are bound 5.

Informally a generalised multiary application t(u, l, (x)v) can be thought of as
the application of a function t to a list of arguments, whose head is u and tail
is l, application which is the actual parameter for the explicit substitution for x
in term v. Multiarity is the capability of applying a function to more than one
argument and generality is the capability of specifying the term v where the result
of applying t to its arguments is going to be used. Such reading of a generalised
multiary application agrees with the typing and reduction rules established in the
sequel for λJm.

Contexts Γ are finite sets of variable : formula pairs, associating at most one
formula to each variable. x 6∈ Γ means x :A ∈ Γ for no A. The notation Γ, x :A
abbreviates Γ ∪ {x :A}, a set which we always assume to be a context. Sequents
of λJm are of one of the following two forms Γ ` t :A, or Γ;B ` l :C, called term
sequents and list sequents respectively. The distinguished position in the LHS of
list sequents is called the stoup. Read a list sequent Γ;B ` l :C as “list l leads the
formula B to its instance C in context Γ”. C is an instance of B if B is of the form
B1 ⊃ ... ⊃ Bk ⊃ C, for some k ≥ 0.

5We adopt for λJm and all the other term calculi defined in the paper the usual variable conven-
tion.
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Definition 2.2. The typing rules of λJm are as follows:

x :A,Γ`x :A
Axiom

x :A,Γ` t :B
Γ`λx.t :A ⊃ B Right

Γ` t :A ⊃ B Γ`u :A Γ;B` l :C x :C,Γ`v :D

Γ` t(u, l, (x)v) :D
gm-Elim

Γ`u :A Γ;B` l :C
Γ;A ⊃ B`u :: l :C

Lft
Γ;C` [] :C

Ax

with the proviso that x 6∈ Γ in Right and in gm-Elim. An instance of rule gm-Elim
is called a generalised multiary elimination (or gm-elimination, for short).

In a typing derivation, if a formula occurs in the stoup, then this occurrence is
“main” and “linear”. This is so for two reasons. Firstly, both Ax and Lft — the
only rules whose conclusion is a list sequent — “introduce” the formula in the stoup
of their conclusions. Secondly, in the case of Ax, the formula in the stoup is not
introduced through weakening; in the case of Lft, the formula in the stoup of the
conclusion is introduced without contraction.

This typing system may be regarded as an extension of the simple typing sys-
tem for the λ-calculus, with rules Axiom and Right for typing variables and λ-
abstractions, and an elimination rule gm-Elim for typing applications, where the
latter depends on auxiliary rules Ax and Lft. On the other hand, there is a log-
ical view of the system as a sequent calculus. There are two axiom rules Axiom
and Ax (this alternative is available because of the possibility of placing the left
axiom formula in the stoup). Right is the usual right introduction rule. Lft is a
constrained left introduction rule, where the main formula A ⊃ B is introduced
without contraction and the right active formula B is required to be in the stoup.
Finally, there is gm-Elim, which we regard as a combination of a form of cut with a
form of left introduction more general than Lft. Actually, as a logical system, λJm

may be defined as an extension, with cuts of a certain form, of Schwichtenberg’s
cut-free, multiary, sequent calculus of [Schwichtenberg 1999]. We make this claim
more precise in the following subsection.

We end this subsection with two basic properties of the typing system.

Proposition 2.3 Admissibility of weakening and strengthening.
The following rules are admissible in λJm:

Γ` t :A
Γ, x :B` t :A W ;

Γ, x :B` t :A
Γ` t :A S if x /∈ t .

Proof. Each of these is proved by routine simultaneous induction with an anal-
ogous property for list sequents.

2.2 λJm as a multiary sequent calculus

Multiarity. The sequent calculus of [Schwichtenberg 1999] is multiary because it
contains, for each k ≥ 0, a rule

Γ ` A Γ ` B1 . . . Γ ` Bk Γ, x :C ` D
Γ ` D Leftk ,

(2)
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8 · J. Esṕırito Santo and L. Pinto

with provisos y :A ⊃B1⊃ . . .⊃Bk ⊃C ∈ Γ and x 6∈ Γ. Instances of this rule are
named k+1-ary left inferences. The case k = 0 gives the traditional unary left rule

Γ ` A Γ, x :C ` D
Γ ` D Left0 ,

where y :A ⊃ C ∈ Γ.
In a typing system like that of Definition 2.2, multiarity can be implemented by

means of a single rule

Γ ` A Γ;B`C Γ, x :C ` D
Γ ` D m-Left ,

(3)

where y :A⊃B ∈ Γ. Instances of this rule are called multiary left inferences. This
is so because derivability of a sequent Γ;B`C forces either B = C or the existence
of k > 0 and of formulas B1, . . . , Bk such that B = B1 ⊃ . . .⊃Bk ⊃ C and each
Γ ` Bi is derivable. Now (3) is of course derivable in λJm as

Γ ` y :A⊃B Axiom
Γ ` A Γ;B`C Γ, x :C ` D
Γ ` D gm-Elim .

(4)

It is in this sense that λJm is a multiary system.
Cuts. We now explain how we interpret gm-elimination as a specific form of cut.

In order to do that, we present some inference rules that are missing as primitive
in our system, but that make perfect sense in any system with an auxiliary sort of
stoup sequents and expressions. Our gm-eliminations will then be interpreted as a
combination of such inferences.

In a calculus featuring sequents with a stoup, a variant of (3) may be defined
such that the formula A ⊃ B being introduced is placed in the stoup, therefore
allowing for no contraction of the introduced formula. A linear variant of m-Left is
thus obtained, whose instances are called linear multiary left inferences:

Γ ` A Γ;B`C Γ, x :C ` D
Γ;A⊃B`D lm-Left .

(5)

This rule may be seen as a generalisation of Lft, for the latter is obtained as the
particular case of lm-Left where C = D and the rightmost premiss is an instance
of Axiom.

The presence of stoup sequents allows also for variant formulations of the cut rule.
Whether the cut-formula on the right premise is at the stoup or not distinguishes
the following two variants:

Γ ` A Γ, x :A ` B
Γ ` B mid-cut

Γ ` A Γ;A`B
Γ ` B head-cut .

After [Herbelin 1995] we call the former mid-cut (m-cut for short) and the latter
head-cut (h-cut for short).

We interpret each gm-elimination as a combination of inferences of the following
form:

Γ ` A ⊃ B
Γ ` A Γ;B`C Γ, x :C ` D

Γ;A ⊃ B`D lm-Left

Γ ` D head-cut
(6)
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A gm-elimination is thus seen as a particular form of cut: a head-cut whose cut-
formula in the right premiss is main in a linear, multiary left-introduction.

According to (4), gm-eliminations whose leftmost premiss is the conclusion of an
axiom represent m-Left introductions. So, although we interpret gm-eliminations
as cuts (6), gm-eliminations of the form (4) are not to be eliminated. In λJm, at
the level of derivations, a cut is a gm-elimination whose leftmost premiss is not
the conclusion of an axiom. Accordingly, at the level of expressions, we distinguish
between gm-applications t(u, l, (x)v) where the head term t is a variable, and call
them m-Left introductions, and those where t is not a variable, calling them cuts.
In λJm, cut-elimination is about the elimination of cuts in this sense. A cut-free
derivation or term is one without occurrences of cut. Therefore cut-free terms are
generated by the following grammar.

t, u, v ::= x | λx.t | x(u, l, (y)v)
l ::= u :: l | [] (7)

The cut-free fragment and the cut-free terms of λJm correspond to multiary sequent
calculus and multiary sequent terms of [Schwichtenberg 1999]. Bear in mind that

y(u, l, (x)v) is written there as vx{y, ~L}, where ~L is the list u :: l. Notice this ~L is non-
empty as required in [Schwichtenberg 1999]. The t(u, l, (x)v) notation emphasises
the reading of this construction as an application, where t is the function and
(u, l, (x)v) is the “gm-argument”. The vx{y, ~L} notation emphasises the explicit

substitution reading, where v, x and y, ~L are respectively the scope, the formal
parameter and the actual parameter of the substitution.

Admissible rules. In λJm some (but not all) forms of cut are primitive. There
is no primitive mid-cut construction - and this is what is missing for having a
direct simulation of LJ with cuts inside λJm. The mid-cut is admissible and, at
the term level, corresponds to a meta-level operation of substitution s(t, x, v), called
generalised multiary substitution (gm-substitution for short), and defined as follows:

s(t, x, x) = t
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v, l, (y)v′)) = s(t, x, u)(s(t, x, v), s′(t, x, l), (y)s(t, x, v′))

s′(t, x, []) = []
s′(t, x, v :: l) = s(t, x, v) ::s′(t, x, l)

Proposition 2.4 Admissibility of mid-cut. The following rules are admis-
sible in λJm, with the proviso x 6∈ Γ.

Γ` t :A x :A,Γ`v :B

Γ`s(t, x, v) :B

Γ` t :A x :A,Γ;C` l :B
Γ;C`s′(t, x, l) :B

(8)

Proof. By simultaneous induction on v and l.

The second rule corresponds to the first of the two following auxiliary kinds of cuts
existing in the system of [Herbelin 1995]:
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Γ ` A x : A,Γ;C ` B
Γ;C ` B aux-mid-cut

Γ;C ` A Γ;A ` B
Γ;C ` B aux-head-cut

On the other hand, a particular form of this auxiliary head cut, where the cut
formula in the right premiss is main in a Lft inference, is admissible in λJm. This
requires the append operation a(l, u′, l′) defined thus:

a([], u′, l′) = u′ :: l′

a(u :: l, u′, l′) = u ::a(l, u′, l′) .

Proposition 2.5. The following rule is admissible in λJm:

Γ;C` l :A1 ⊃ A2 Γ`u′ :A1 Γ;A2` l′ :B
Γ;C`a(l, u′, l′) :B

.
(9)

Proof. By induction on l.

Think of a(l, u′, l′) as the append of lists l and u′ :: l′. We interpret (9) as a
left-permutable cut of the form

Γ;C ` A1 ⊃ A2

Γ ` A1 Γ;A2 ` B
Γ;A1 ⊃ A2 ` B

Lft

Γ;C ` B aux-head-cut
(10)

We end this subsection indicating some basic properties holding of the substitu-
tion and append operations and required throughout: (i) s(t, x, u) = u, if x 6∈ u;
(ii) s(t, x, s(u, y, v)) = s(s(t, x, u), y, s(t, x, v)), if y /∈ t, and x 6= y (substitution
lemma); and (iii) a(a(l, u, l′), u′, l′′) = a(l, u,a(l′, u′, l′′)) (append associativity).

2.3 Reduction rules

In λJm reduction rules do mostly cut-elimination and are introduced now.

Definition 2.6. The reduction rules for λJm are as follows6:

(β1) (λx.t)(u, [], (y)v) → s(s(u, x, t), y, v)
(β2) (λx.t)(u, v :: l, (y)v′) → s(u, x, t)(v, l, (y)v′)
(π) t(u, l, (x)v)(u′, l′, (y)v′) → t(u, l, (x)v(u′, l′, (y)v′))
(µ) t(u, l, (x)x(u′, l′, (y)v)) → t(u,a(l, u′, l′), (y)v), if x 6∈ u′, l′, v

Let β = β1 ∪ β2. The notation →βπµ stands for the compatible closure of β ∪
π ∪ µ and the notations →=

βπµ, →+
βπµ, →∗βπµ and ↔∗βπµ stand for the reflexive, the

transitive, the reflexive-transitive and the equivalence closure of→βπµ respectively.
Notice that the compatible closure of →βπµ defines two relations —one on terms
and the other on lists— by simultaneous induction. The reflexive, the transitive
and the reflexive-transitive closures apply then separately to each of these relations.
Normal forms w.r.t. →βπµ are called βπµ-normal forms or βπµ-nfs for short. If

6The names π and µ come from [Joachimski and Matthes 2003] and [Schwichtenberg 1999], re-
spectively.
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A calculus of multiary sequent terms · 11

t has a unique βπµ-nf, this is denoted ↓βπµ (t). In the sequel we use similar
conventions and notations for other reduction relations.

The βπ-normal forms are exactly the cut-free terms given by grammar (7) above:
t is a βπ-normal form iff t ∈(7). The “if” statement follows by induction on t ∈(7),
whereas the “only if” statement (progress lemma) follows by induction on t. A βπµ-
normal form t is a βπ-normal form such that for each occurrence of x(u, l, (y)v) in
t, if v = y(u′, l′, (z)v′) then y must occur either in u′, l′ or v′. The βπµ-normal
forms correspond to Schwichtenberg’s “multiary normal forms”.

Here are some intuitions about the reduction rules. The reduction rules β1, β2,
π aim at making the head of a gm-application a variable. The β-rules cover the
case where the head of a gm-application is a lambda-abstraction; they perform
function application to arguments. In β2, since the top argument is consumed, a
new argument occupies the top position; in β1 the last argument is consumed and
the explicit substitution executed7. The π-rule has the effect of permuting gm-
applications, simplifying the head of the outer application. Reduction rule µ was
already considered in [Schwichtenberg 1999]. In a µ-redex t(u, l, (x)x(u′, l′, (y)v)),
because of the proviso x 6∈ u′, l′, v we can anticipate that, after all arguments of u :: l
are consumed and explicit substitution executed, computation will continue with
application to a new list u′ :: l′ of arguments. The term is simplified by appending
the two lists of arguments.

Proposition 2.7 Subject reduction. If t →βπµ t
′ and Γ` t :A is derivable,

then so is Γ` t′ :A.

Proof. Proved together with the analogue property for list sequents (if l→βπµ l
′

and Γ;B ` l :A is derivable, then so is Γ;B ` l′ :A), by simultaneous induction on
t→βπµ t

′ and l→βπµ l
′. The inductive cases are routine. The essence of the proof

are the base cases, which associate a proof transformation to each reduction rule,
showing how to map a derivation with endsequent Γ` t :A to one with endsequent
Γ ` t′ : A (and similarly for lists). These proof transformations are described in
Appendix A.

The proof transformations referred to in the proof of subject reduction, and
spelled out in the Appendix A, explain the reduction rules as steps of cut-elimination,
according to the sequent calculus view of λJm introduced in the previous subsec-
tion.

We end this subsection observing that reduction is compatible with the operations
of substitution and append in the expected way, namely for R ∈ {β, π, µ}: (i) if
u →R u′ then s(u, x, v) →∗R s(u′, x, v) and s(v, x, u) →R s(v, x, u′); (ii) if u →R u′

then a(l, u, l′) →R a(l, u′, l′) and if l →R l′′ then a(l, u, l′) →R a(l′′, u, l′) and
a(l′, u, l)→R a(l′, u, l′′).

7One might expect that the β-rule of a “multiary” system consumed an entire list of arguments

in one single step, as in e.g.

(λx1.λx2.t)(u1, u2 :: u3 :: l, (y)v)→ s(u2, x2, s(u1, x1, t))(u3, l, (y)v) .

Let us call this latter kind of β-reduction simultaneous. We did not adopt this kind of β-rule
because it does not express (as β1 and β2 do) the ordinary transformations in the process of
cut-elimination. In addition, simultaneous β-reduction is derivable from β1β2-reduction.
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12 · J. Esṕırito Santo and L. Pinto

2.4 Permutative conversions

In λJm one has permutative conversions, related to the fact that, in sequent cal-
culus, one may sometimes permute the order of inferences and have essentially the
“same” derivation. However, as in [Schwichtenberg 1999], “conversion” will never
mean in the present paper a form of equality, but rather an oriented transforma-
tion on expressions or derivations, generated by permutative conversion rule(s),
which induce rewriting systems. As in [Schwichtenberg 1999] (and also [Dyckhoff
and Pinto 1999]), the reason for this approach is that these rewriting systems have
good properties and interesting normal forms.

In λJm we have two kinds of permutative conversions (permutations for short):
p-permutations and q-permutations. On the one hand, p-permutations aim at con-
verting every gm-application to the form t(u, l, (x)x), that is, a form that makes
no real use of the generality feature. This form characterises the terms of λm,
a subsystem of λJm to be introduced in the next section. On the other hand,
q-permutations eliminate all occurrences of the construction u :: l by converting
every gm-application to the form t(u, [], (x)v), that is, a form that makes no use of
the multiarity feature. This form characterises the terms of another subsystem of
λJm named λJ. Only pq-nfs correspond to λ-terms: see Theorem 4.1.

The p-permutation rules are:

(p1) t(u, l, (x)y) → y, x 6= y
(p2) t(u, l, (x)λy.v) → λy.tLu, l, (x)vM
(p3) t1(u1, l1, (x)t2(u2, l2, (y)v)) →

t1Lu1, l1, (x)t2M(t1Lu1, l1, (x)u2M, t1Lu1, l1, (x)l2M, (y)v) if x 6∈ v,

where:

tLu, l, (x)vM =

{
t(u, l, (x)v) if x ∈ v
v if x /∈ v

tLu, l, (x)[]M = []
tLu, l, (x)u′ :: l′M = tLu, l, (x)u′M :: tLu, l, (x)l′M

. (11)

The unique q-permutation rule is

(q) t(u, v :: l, (x)v′)→ t(u, [], (y)y)(v, l, (x)v′) .

Two basic properties of p-permutations needed in the sequel are:

Lemma 2.8. For all t, u, v ∈ T Jm and l ∈ LJm:

(1 ) if x /∈ v then t(u, l, (x)v)→p v;

(2 ) t(u, l, (x)v)→=
p tLu, l, (x)vM.

Proof. Part 1 follows by case analysis on v and makes use of all p-permutations.
Part 2 is a consequence of part 1.

So, in particular, the transformation of t(u, l, (x)v) into v, when x /∈ v, that we
call a garbage collection step, is performed with one p-step; moreover t(u, l, (x)v)
and tLu, l, (x)vM differ at most by a garbage collection step.

In the Appendix A we explain what are the proof transformations associated to
permutations and how these transformations relate to traditional conversions for
the exchange in the order of inferences in cut-free sequent calculus derivations.
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Proposition 2.9 Subject permutation. If Γ` t :A and t→pq t
′ then Γ` t′ :A.

Proof. Proved together with the analogue property for list sequents (if l→pq l
′

and Γ;B ` l :A is derivable, then so is Γ;B ` l′ :A), by simultaneous induction on
t→pq t

′ and l→pq l
′. The essence of the proof is the transformation of derivations

that can be associated with each permutation rule, as shown in the Appendix A.

Comparison with other systems of permutative conversions. We con-
sidered in [Esṕırito Santo and Pinto 2003], in addition to the q-permutation rule of
this paper, three slightly different p-permutation rules, that here we call p′1, p′2 and
p′3. The p′1-permutation is exactly p1, whereas p′2 and p′3 read as follows:

(p′2) t(u, l, (x)λy.v) → λy.t(u, l, (x)v)
(p′3) t(u, l, (x)t′(u′, l′, (z)v)) →

t(u, l, (x)t′)(t(u, l, (x)u′), t(u, l, (x)l′), (z)v) if x 6∈ v,

where the auxiliary operation t(u, l, (x)l′) is given by

t(u, l, (x)[]) = []
t(u, l, (x)u′ :: l′) = t(u, l, (x)u′) :: t(u, l, (x)l′) .

Notice that, when comparing p′2, p′3 with p2, p3, the “new” gm-applications and
the calls to t(u, l, (x)l′) generated in the contracta of the former are replaced, in the
contracta of the latter, by calls to the operations (11). Thus, given Lemma 2.8, one
immediately sees that, for i ∈ {2, 3}, pi is p′i possibly followed by garbage collection
steps. As garbage collection can be performed with p′-permutations 8, we have
→p⊆→+

p′ . It was (resp. will be) proved that →p′ (resp. →p) terminates and is
confluent. Hence, →p′ and →p calculate the same normal form for each expression
of λJm.

Tiny as it may seem, the difference between p-permutations and p′-permutations
(some garbage collection steps are built in) has dramatic effects when combin-
ing permutations and reductions. Indeed, whereas →βp′ is not strongly normalis-
ing, as shown in [Esṕırito Santo et al. 2006], →βp is strongly normalising (Section
4.6). This was the motivation for adopting in this paper the new formulation of
p-permutations.

We consider now the permutations of [Schwichtenberg 1999]. Let us recall them9,
more precisely rules (1), (2), (3), and (5) of Definition 3.1. in op. cit.10, which are
as follows in our notation:

w(u, l, (x)v) → v (1)
w(u, l, (x)y(u′, l′, (z)v)) → y(µ[w(u, l, (x)u′)], µ[w(u, l, (x)l′)], (z)v) (2)
w(u, l, (x)x(u′, l′, (z)v)) → w(u,a(l, µ[w(u, l, (x)u′)], µ[w(u, l, (x)l′)]), (z)v) (3)

w(u, l, (x)λy.v) → λy.µ[w(u, l, (x)v)] (5)

8One proves t(u, l, (x)v)→+
p′ v (x /∈ v) and t(u, l, (x)l′)→∗

p′ l
′ (x /∈ l′) by simultaneous induction

on v and l′.
9Notice that in [Schwichtenberg 1999] π is used for naming permutation relations, e.g. →π .
10Rule (4) of [Schwichtenberg 1999] deals with the pairing constructor and is therefore omitted.

Also omitted is the case of rule (5) of [Schwichtenberg 1999] where λ-abstraction corresponds to
introduction of universal quantification.
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14 · J. Esṕırito Santo and L. Pinto

The provisos are: (1) x /∈ v; (2) x 6= y, x /∈ v, x ∈ u′ or x ∈ l′; (3) x /∈ v, x ∈ u′ or
x ∈ l′. The notation µ[· · ·] denotes µ-normal form.

These rules relate to our p and p′-permutation rules. They also have the purpose
of trivialising the use of the generality feature (see Lemma 3.5 in [Schwichtenberg
1999] on the characterisation of normal forms). We took from (2), (3) the idea of
requiring x 6∈ v in rules p3 and p′3, which is crucial in guaranteeing termination.
The observation in [Schwichtenberg 1999] that these permutations correspond to
steps for explicit execution of substitution also applies to p and p′-permutations
insofar gm-applications are read as explicit substitutions.

The outstanding difference is that the permutations of [Schwichtenberg 1999] live
in the cut-free fragment. For a more precise comparison, we spell out the particular
cases of the p′-permutation rules when the redexes are cut-free:

(p′′1) w(u, l, (x)y) → y
(p′′2) w(u, l, (x)λy.v) → λy.w(u, l, (x)v)
(p′′3) w(u, l, (x)y(u′, l′, (z)v)) →

w(u, l, (x)y)(w(u, l, (x)u′), w(u, l, (x)l′), (z)v) if x 6∈ v

Permutation p′′1 is a particular case of (1), while the latter, in turn, being a garbage
collection rule, is derivable from p′′-permutations. Permutation p′′2 differs from (5)
only because the contracta of the latter (as all contracta of Schwichtenberg’s rules)
is forced to be a µ-normal form. As to p′′3 , we do not have to require x ∈ u′ or
x ∈ l′ from the LHS (as is required of (2) and (3) to avoid clash with (1)), since
this LHS is never a p′′1 -redex. For the purpose of comparison with (2) and (3), let
us admit that the proviso on x holds. Depending on x 6= y or x = y, the LHS is
either a (2)- or (3)-redex, respectively. The RHS of p′′3 is a π-redex (hence a cut)
and thus requires further treatment in the cut-free setting. If x 6= y, the RHS of p′′3
p′′1 -permutes to

y(w(u, l, (x)u′), w(u, l, (x)l′), (z)v) ,

which is the (2)-contractum before µ-normalisation. If x = y, we apply to the RHS
of p′′3 the auxiliary reduction rule h, defined in Figure 2, to get

w(u,a(l, w(u, l, (x)u′), w(u, l, (x)l′)), (z)v) ,

which is the (3)-contractum before µ-normalisation. This term may be seen as
obtained from the RHS of p′′3 by first contracting this RHS as a π-redex, and
immediately contracting the µ-redex thus generated, as illustrated in Figure 211.

In [Schwichtenberg 1999] a permutation like q to deal with multiarity was not
necessary because, in the cut-free fragment, p-permutations are enough in the sense
that p-normal forms are in bijective correspondence with normal terms of the λ-
calculus. In λJm, however, many p-normal forms correspond to the same λ-term12

11By the way, the triangle shown in this figure is interesting on its own. It shows the different
ways available in λJm of expressing the application of t to u and to at least one more argument
u′. This is explored in [Esṕırito Santo et al. 2006].
12A permutation similar to q is first pointed out in [Esṕırito Santo 2002a] in the context of the
system λPh, a subsystem of λJm presented in Subsection 3.1 and renamed λm.
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t(u, l, (x)x)(u′, l′, (y)v)
h

- t(u,a(l, u′, l′), (y)v)

t(u, l, (x)x(u′, l′, (y)v))

µ

-

π
-

Fig. 2. Auxiliary reduction rule h

λJm (terms T Jm, lists LJm)

gm-application

t(u, l, (x)v)

� -

λm (terms T m, lists Lm)

m-application

t(u, l, (x)x)

Abbreviation: t(u, l)

λJ (terms T J, lists LJ)

g-application

t(u, [], (x)v)

Abbreviation: t(u, (x)v)

�-

λ (terms T , lists L)

application

t(u, [], (x)x)

Abbreviation: t(u)

Fig. 3. Subsystems of λJm determined by restrictions of gm-application

3. SUBSYSTEMS AND NATURAL DEDUCTION

In the previous section, we showed how λJm extends the system in [Schwichtenberg
1999]. In this section we explain the links with three other systems (two of them
systems of natural deduction), captured up to isomorphism as the subsystems λm,
λJ, and λ (recall Figure 1). In a final subsection we introduce mappings from λJm

to its subsystems. These mappings will play a central role in the development of
the meta-theory of λJm.

3.1 Subsystems of λJm

Several subsystems of λJm are defined by constraining the construction t(u, l, (x)v),
as illustrated in Figure 3. Each subsystem consists of a subset of the expressions of
λJm, over which we define a typing system and reduction and permutation rules.

Actually, we provide two definitions. First, the subsystem is defined officially,
through the typing, reduction, and permutation rules of λJm. Second, an alterna-
tive, direct definition is proposed, where no mention of the rules of λJm is made. In
addition, the use of the abbreviations introduced in Figure 3 makes evident how the
subsystem, when defined in the direct way, is a transliteration of a known system.
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The equivalence between the two definitions is given later in Proposition 3.8.
λJ: the generalised λ-calculus.

Definition 3.1. The terms of λJ are described in the following grammar:

(λJ− terms) t, u, v ::= x | λx.t | t(u, l, (x)v)
(λJ− lists) l ::= []

where x ranges over the set V of variables. T J and LJ are used to denote the sets
of λJ-terms and λJ-lists respectively.

Hence, the sets T J and LJ are the subsets of T Jm and LJm, respectively, obtained
by forbidding the construction u :: l. A gm-application of the form t(u, [], (x)v) is
called a generalised application (or g-application, for short).

In the official definition of λJ, the predicates “Γ ` t :A in λJ” and “t →R t′ in
λJ” are defined through λJm. Observe that T J is closed for R ∈ {β1, π, p1, p2, p3},
that is, if t ∈ T J and t →R t′ in λJm, then t′ ∈ T J. This follows from direct
inspection of the rules. Additionally, the case R = β1 requires the fact that T J is
closed for gm-substitution. For R ∈ {β2, µ, q}, observe that β2-redexes, µ-contracta
and q-redexes fall outside T J (for R = µ notice that a([], u′, l′) is a cons-list).

Definition 3.2. (i) For t ∈ T J, we say Γ` t :A in λJ when Γ` t :A in λJm. (ii)
For R ∈ {β1, π, p1, p2, p3} and for t, t′ ∈ T J, we say t→R t

′ in λJ when t→R t
′ in

λJm.

The alternative definition of the typing predicate and of the reduction and per-
mutation relations of λJ is as follows. We re-define Γ` t :A and t →R t′ directly,
through λJ’s own rules and not through λJm. We systematically use the abbrevi-
ation t(u, (x)v), standing for t(u, [], (x)v). The λJ-terms can simply be given by:

t, u, v ::= x | λx.t | t(u, (x)v) .

The typing rules for λJ are the obvious Axiom and Right rules (analogous to those
in Definition 2.2), plus the rule:

Γ` t :A ⊃ B Γ`u :A x :B,Γ`v :C

Γ` t(u, (x)v) :C
g-Elim ,

(12)

with proviso x :B does not belong to Γ. The reduction rules for λJ are

(β1) (λx.t)(u, (y)v) → s(s(u, x, t), y, v)
(π) t(u, (x)v)(u′, (y)v′) → t(u, (x)v(u′, (y)v′))

where rule β1 employs generalised substitution (g-substitution for short), defined as
follows:

s(t, x, x) = x
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v, (y)v′)) = s(t, x, u)(s(t, x, v), (y)s(t, x, v′))

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



A calculus of multiary sequent terms · 17

We let β = β1. The permutative conversion rules are

(p1) t(u, (x)y) → y, x 6= y
(p2) t(u, (x)λy.v) → λy.tLu, (x)vM
(p3) t1(u1, (x)t2(u2, (y)v)) → t1Lu1, (x)t2M(t1Lu1, (x)u2M, (y)v) if x 6∈ v

where the notation tLu, (x)vM abbreviates tLu, [], (x)vM. This ends the alternative
definition of λJ.

The system λJ is isomorphic to the so-called ΛJ-calculus of Joachimski and
Matthes [Joachimski and Matthes 2003]. The isomorphism is evident, being just
a transliteration (to be fully precise, the article just cited does not consider per-
mutative conversion rules). Recall that ΛJ is the Curry-Howard counterpart to
a system of natural deduction due to von Plato [von Plato 2001], where the idea
of generalised elimination rules originated. So, for us, ΛJ is a natural deduction
system, while λJ is a sequent calculus fragment. We will return to the relationship
with natural deduction in Subsection 3.2.

The set of λJ normal forms w.r.t. reduction rules (i.e. βπ-normal forms) is given
by the following grammar:

t, u ::= x | λx.t | x(u, (y)t) .

Because of the omission of the µ-rule, there are λJ normal forms which are not
λJm normal forms.
λm: the multiary λ-calculus.

Definition 3.3. The terms of λm are described in the following grammar:

(λm − terms) t, u ::= x | λx.t | t(u, l, (x)x)
(λm − lists) l ::= t :: l | []

where x ranges over the set V of variables. T m and Lm are used to denote the sets
of λm-terms and λm-lists respectively.

A gm-application of the form t(u, l, (x)x) is called a multiary application (or m-
application, for short).

In the official definition of λm, the predicates “Γ ` t : A in λm” and “t →R

t′ in λm” are defined through λJm. Observe that the subsets T m and Lm are
closed for R ∈ {β1, β2, h, q}13. This follows from direct inspection of the rules.
Additionally, the cases R ∈ {β1, β2} require the fact that T m and Lm are closed
for gm-substitution and the case R = h requires the fact that T m and Lm are closed
for the append operator a. For R ∈ {π, µ, p1, p2, p3}, observe that π-contracta, µ-
redexes and pi-redexes fall outside T m. In particular, λm-terms are µ-nfs. So, h
can be understood as π followed by reduction to µ-normal form.

Definition 3.4. (i) For t ∈ T m (resp. l ∈ Lm), we say Γ` t :A (resp. Γ;B` l :C)
in λm when Γ` t :A (resp. Γ;B ` l :C) in λJm. (ii) For R ∈ {β1, β2, h, q} and for
t, t′ ∈ T m (resp. l, l′ ∈ Lm), we say t →R t′ (resp. l →R l′) in λm when t →R t′

(resp. l→R l
′) in λJm.

13Recall the definition of h in Figure 2.
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The alternative definition of λm is as follows. We re-define the calculus directly
(without using the rules of λJm) and employ systematically the abbreviation t(u, l),
standing for the m-application t(u, l, (x)x). The terms and lists of λm can simply
be given by:

t, u, v ::= x | λx.t | t(u, l) l ::= t :: l | [] .

The typing rules for λm are the obvious Axiom, Right, Ax and Lft rules (analogous
to those in Definition 2.2), plus the rule:

Γ` t :A ⊃ B Γ`u :A Γ;B` l :C
Γ` t(u, l) :C

m-Elim . (13)

The reduction rules for λm are

(β1) (λx.t)(u, []) → s(u, x, t)
(β2) (λx.t)(u, v :: l) → s(u, x, t)(v, l)
(h) t(u, l)(u′, l′) → t(u,a(l, u′, l′))

where rules β1 and β2 employ multiary substitution (m-substitution for short) de-
fined by

s(t, x, x) = x s′(t, x, []) = []
s(t, x, y) = y, y 6= x s′(t, x, v :: l) = s(t, x, v) ::s′(t, x, l)

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v, l)) = s(t, x, u)(s(t, x, v), s′(t, x, l))

and where rule h employs the append operator a restricted to terms in T m and
lists in Lm. We let β = β1 ∪ β2. The unique permutative conversion rule is

(q) t(u, v :: l) → t(u, [])(v, l) .

This ends the alternative definition of λm.
The system thus obtained is isomorphic to the λPh-calculus defined in [Esṕırito Santo

2002a; 2002b] (except that in λPh no q-permutation rule was considered). Origi-
nally this system was introduced essentially as the mid-cuts-free fragment of Her-
belin’s λ, but it can also be seen as the multiary extension of the λ-calculus, where
functions may be applied to lists of arguments.

The set of λm normal forms w.r.t. reduction rules (i.e. βh-normal forms) is the
restriction to λm of the set of λJm normal forms and can thus be described by:

t, u ::= x | λx.t | x(u, l) l ::= u :: l | []

λ-calculus.

Definition 3.5. The terms of λ are described in the following grammar:

(λ− terms) t, u ::= x | λx.t | t(u, l, (x)x)
(λ− lists) l ::= []

where x ranges over the set V of variables. T and L are used to denote the sets of
λ-terms and λ-lists respectively.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



A calculus of multiary sequent terms · 19

Hence, the sets T and L are the subsets of T Jm and LJm obtained by combining the
constraints that define λJ and λm . We call (simple) application a gm-application
of the form t(u, [], (x)x).

In the official definition of λ, the predicates “Γ` t :A in λ” and “t→R t
′ in λ” are

defined through λJm. Observe that the subset of terms T is closed for β1 because
T is closed for gm-substitution. As in λJ, rules β2, µ and q are dropped. As in
λm, rules π and pi are also dropped, but, contrary to the latter system, we cannot
replace rule π by rule h because µ-contracta (hence h-contracta) fall outside T .

Definition 3.6. (i) For t ∈ T , we say Γ` t :A in λ when Γ` t :A in λJm. (ii) For
t, t′ ∈ T , we say t→β1

t′ in λ when t→β1
t′ in λJm.

The alternative definition of λ re-defines the typing predicate and β1-reduction
directly, through λ’s own rules and not through λJm. The abbreviation t(u), stand-
ing for t(u, [], (x)x), is employed systematically. λ-terms can simply be described
as:

t, u ::= x | λx.t | t(u) .

The typing rules for λ are the obvious Axiom and Right rules (analogous to those
in Definition 2.2), plus the rule:

Γ` t :A ⊃ B Γ`u :A
Γ` t(u) :B

Elim .
(14)

The unique reduction rule for λ is

(β1) (λx.t)(u) → s(u, x, t) ,

also called β. It uses (simple) substitution, defined as follows

s(t, x, x) = x
s(t, x, y) = y, y 6= x

s(t, x, λy.u) = λy.s(t, x, u)
s(t, x, u(v)) = s(t, x, u)(s(t, x, v))

The terms of λ are pq-normal forms. Hence, there are no permutative conversions
in λ. This completes the alternative definition of λ.

Again, the normal forms of λ (i.e. β1-normal forms) are not necessarily normal
forms of its extensions. For example, t(u)(u′) is not a redex of λ, but it is a redex
of its extensions.

The system λ is no more than an isomorphic copy of the ordinary λ-calculus.
Again, this fact is an evidence, and has a meaning in terms of the relationship
between natural deduction and sequent calculus, see Subsection 3.2.

Equivalence of the alternative definitions of the subsystems. We need
some preliminary remarks. Each subsystem carries its own substitution operator.
In the following, we use subscripts to stress that gm- or g- or m-substitution is
intended (no subscript for substitution in λ). Similarly for the append operator.

Lemma 3.7. (1) For all t, v in T J, sgm(t, x, v) = sg(t, x, v). (2) For all t, u, v
in T m, all l, l′ in Lm, sgm(t, x, v) = sm(t, x, v) and agm(l, u, l′) = am(l, u, l′). (3)
For all t, v in T , sgm(t, x, v) = s(t, x, v).
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Proof. Routine.

In the following proposition, the LHS of each of the six equivalences actually
means Γ` t :A or t→R t

′ according to the official Definitions 3.2, 3.4, and 3.6. So,
in this proposition one establishes the equivalence between the official definitions
of the subsystems and the corresponding direct ones.

Proposition 3.8 Subsystems of λJm.

(1 ) (i) For all t in T J, Γ` t :A in λJm iff Γ` t :A in λJ by the direct definition.
(ii) Let R ∈ {β1, π, p1, p2, p3}. For all t, t′ in T J, t →R t′ in λJm iff t →R t′

in λJ by the direct definition.

(2 ) (i) For all t in T m, Γ` t :A in λJm iff Γ` t :A in λm by the direct definition.
(ii) Let R ∈ {β1, β2, h, q}. For all t, t′ in T m, t →R t′ in λJm iff t →R t′ in
λm by the direct definition.

(3 ) (i) For all t in T , Γ` t :A in λJm iff Γ` t :A in λ by the direct definition. (ii)
Let R = β1. For all t, t′ in T , t →R t′ in λJm iff t →R t′ in λ by the direct
definition.

Proof. Part (i) of statement 1 is proved by induction on t ∈ λJ. The key
observation is that a term t(u, (x)v) is typable in λJm only with the particular case
of the rule gm-Elim where the penultimate premiss is an instance of Ax, and such
particular case corresponds exactly to the rule g-Elim (12).

Part (ii) of statement 1 is proved by two inductions. First, by induction on
t →R t′ in λJm, one proves that if t is in T J, then t →R t′ in λJ by the direct
definition. (Notice that t′ ∈ T J, for T J is closed for →R of λJm.) Second, by
induction on t →R t′ in λJ by the direct definition, one proves that t →R t′ in
λJm. In both proofs the inductive cases are routine. The base cases follow from
the commutativity of the next two diagrams (where t, u, v are in T J):

(λx.t)(u, [], (y)v)→β1sgm(sgm(u, x, t), y, v)

(λx.t)(u, (y)v)

wwwww
→β1

sg(sg(u, x, t), y, v)

wwwww
t(u, [], (x)v)(u′, [], (y)v′)→πt(u, [], (x)v(u′, [], (y)v′))

t(u, (x)v)(u′, (y)v′)

wwwww
→π t(u, (x)v(u′, (y)v′))

wwwww
The first of the above diagrams uses part 1 of Lemma 3.7. The second just expands
abbreviations. The same happens in the cases pi, so these are omitted.

Statements 2 and 3 are proved in a similar way. Part (i) of statement 2 relies on
the key observation that a term t(u, l) is typable in λJm only with the particular
case of the rule gm-Elim where the rightmost premiss is an instance of Axiom,
and such particular case corresponds exactly to the rule m-Elim (13). Part (i)
of statement 3 relies on the key observation that a term t(u) is typable in λJm

only with the particular case of the rule gm-Elim where the last two premisses
are instances of Ax and Axiom respectively, and such particular case corresponds
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exactly to the rule Elim (14). As to part (ii) of statements 2 and 3: 2 needs two
simultaneous inductions, for proving similar claims for lists, and statement 2 (resp.
3) uses part 2 (resp. part 3) of Lemma 3.7.

Parts (i) of Proposition 3.8 are conservativeness results for the typing systems of
λJ, λm and λ, given by the direct definitions (according to parts (i) of Definitions
3.2, 3.4, and 3.6, conservativeness holds by definition).

The same applies to parts (ii) of Definitions 3.2, 3.4, and 3.6 and Proposition 3.8,
that concern reduction and permutation rules. However, parts (ii) of Proposition
3.8 only give conservativeness in a weak sense. For instance, β-reduction in λ is
equivalent to β-reduction (not full reduction) in λJm. What we do in the next
proposition is to establish this form of conservativeness for λm and λJ over λ.
In all cases, full conservativeness will be proved later (Theorems 4.16 and 4.17 in
Subsection 4.4).

It is easy to verify that the set of λ-terms is closed for β-reduction both in λJ
and λm.

Proposition 3.9. For t, t′ ∈ T , the following is equivalent: (i) t →β1 t
′ in λ;

(ii) t→β1 t
′ in λJ; (iii) t→β1 t

′ in λm.

Proof. Take for (i) the direct definition. Then, the proofs of (ii) iff (i) and (iii)
iff (i) are similar to the proof of 3 in Proposition 3.8.

3.2 λJm and natural deduction

We observed that there are evident isomorphisms between Λ (resp. ΛJ) and the
subsystem λ (resp. λJ) of λJm (recall that we denote the ordinary λ-calculus by
Λ). We now analyse the meaning of this fact in terms of the relationship between
the sequent calculus λJm and natural deduction.

The set of Λ-terms is given by:

M,N ::= x | λx.M |MN

Then, the isomorphism G : Λ → λ is, to start with, a bijection between the set
of Λ-terms and the set of λ-terms (i.e. the subset of λJm-terms where every gm-
application has the form t(u, [], (x)x)). If we let t = G(M) and u = G(N), this
bijection is defined by G(x) = x, G(λx.M) = λx.t and G(MN) = t(u). G is a mere
transliteration that extends to a transliteration between ordinary β-reduction in Λ
and β1-reduction in λ. G also extends to derivations and its effect on derivations is
the replacement of each occurrence of the elimination rule

Γ `M : A ⊃ B Γ ` N : A
Γ `MN : B (15)

(that belongs to the natural deduction system associated with the Λ-calculus) by
an occurrence of rule Elim (14).

Now, unfolding the abbreviation Elim (14) into a gm-Elim, as explained in the
proof of Proposition 3.8, and applying our sequent calculus view (6) of the rule gm-
Elim, we see that each occurrence of Elim corresponds to the following combination
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of inferences

Γ ` A ⊃ B
Γ ` A Γ;B ` B Ax

Γ, x : B ` B Axiom

Γ;A ⊃ B ` B lm-Left

Γ ` B h-cut

Since the middle premiss of the lm-Left-inference in this figure is the conclusion of
an axiom, the mentioned lm-Left-inference is a unary left introduction, whose main
formula is linear. We may simplify this figure thus:

Γ ` A ⊃ B
Γ ` A Γ, x : B ` B Axiom

Γ;A ⊃ B ` B l-Left

Γ ` B h-cut
(16)

This is a familiar combination of inferences. Indeed, when G is regarded as the
replacement of (15) by (16), it becomes a variant of the translation of natural
deduction to sequent calculus that goes back to Gentzen [1969]. This is why we refer
to G as Gentzen’s mapping. One should stress, as was done in [Esṕırito Santo 2002a]
in a different context, that, by establishing an isomorphism between β-reduction
in Λ and β1-reduction in λ, G becomes an isomorphism between normalisation for
minimal logic and the elimination of cuts of the form (16) in the sequent calculus
λJm.

The analysis we have made of the relationship between the Λ-calculus and the
subsystem λ can be adapted to the relationship between the ΛJ-calculus and sub-
system λJ. The set of ΛJ-terms is given by:

M,N,P ::= x | λx.M |M(N, x.P )

The isomorphism G′ : ΛJ → λJ is, to start with, a bijection between the set of
ΛJ-terms and the set of λJ-terms (i.e. the subset of λJm-terms where every gm-
application has the form t(u, [], (x)v)). The bijection is defined by: G′(x) = x,
G′(λx.M) = λx.t and G′(M(N, x.P )) = t(u, (x)v), where t = G′(M), u = G′(N)
and v = G′(P ). If we define MN = M(N, x.x), G′ agrees with G on Λ-terms. G′
is a mere transliteration, that extends to a transliteration between βπ-reduction in
ΛJ and β1π-reduction in λJ. G′ also extends to derivations, and consists of the
replacement of each occurrence of the general elimination rule

Γ `M : A ⊃ B Γ ` N : A Γ, x : B ` P : C

Γ `M(N, x.P ) : C (17)

(that belongs to the natural deduction system associated with ΛJ) by an occurrence
of rule g-Elim (12). Unfolding the abbreviation g-Elim (12) into a gm-Elim, as
explained in the proof of Proposition 3.8, and applying our sequent calculus view
of the latter rule, g-Elim becomes, in turn, an abbreviation of the combination of
inferences

Γ ` A ⊃ B
Γ ` A Γ, x : B ` C

Γ;A ⊃ B ` C l-Left

Γ ` C h-cut
(18)

When regarded as the replacement of (17) by (18), G′ is an extension of Gentzen’s
idea of translating (15) by (16). In addition, by establishing an isomorphism be-

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



A calculus of multiary sequent terms · 23

λJm

λm
�

p
m

λJ

qJ

-

λ

φ

?�

pq
-

Fig. 4. λJm and its subsystems

tween βπ-reduction in ΛJ and β1π-reduction in λJ, G′ becomes an isomorphism
between normalisation for minimal logic in the natural deduction system of [von
Plato 2001]14 and the elimination of cuts of the form (18) in the sequent calculus
λJm.

3.3 Mappings into subsystems

The mappings from λJm into its subsystems are summarised in Figure 415. They
show how to translate to systems where one or both of the features of multiarity
and generality are missing. As described in Theorem 4.1 of next section and in the
analogue Theorem C.14 of Appendix C, the mappings from λJm into its subsys-
tems are also the normal-form mappings relative to the terminating and confluent
rewriting systems of p, q, and pq-permutations.

Mapping φ gives a direct interpretation of λJm into λ and is defined in Figure 5.
It translates a gm-application u0(u1, [u2, u3], (x)u4), say, by s(u′0(u′1)(u′2)(u′3), x, u′4)
where u′i denotes the recursive translation of ui. Mappings from λJm into the
subsystems λm and λJ and from these into λ are also defined in Figure 5. A
mapping corresponding to p from λJ into the λ-calculus is given in [Joachimski
and Matthes 2003]. In [Esṕırito Santo 2002a] an interpretation Q of λm (or rather
λPh) into the λ-calculus corresponding to q is studied. A simple inspection of the
definitions shows that p and q are the restrictions of pm and qJ to T J and T m.
We note also that pm and qJ restricted to T m and T J-terms are identity mappings
and, in virtue of the next proposition, p and q are also the restrictions of φ to these
two classes of terms.

Proposition 3.10 φ decomposition. p ◦ qJ = φ = q ◦ pm.

Proof. These properties are proved together with the following properties (a)
and (b), respectively, using simultaneous induction.

(a) φ′(φ(t), φ(u), l, x, φ(v)) = p(qJ′(q(t),q(u), l, x,q(v)))
(b) φ′(φ(t), φ(u), l, x, φ(v)) = q(s(pm(t)(pm(u),pm′(l)), x,pm(v)))

14This includes the “hidden convertibility” that comes with the general elimination rule
for implication, corresponding to the π-reduction rule of ΛJ : M ′(N ′, y.P ′)(N, x.P ) →
M ′(N ′, y.P ′(N, x.P )).
15Regrettably, the same diagram in [Esṕırito Santo and Pinto 2003] mixed up p and q in the
names of the mappings.
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φ : T Jm −→ T φ′ : T × T × LJm ×V × T −→ T
φ(x) = x φ′(t, u, [], x, v) = s(t(u), x, v)

φ(λx.t) = λx.φ(t) φ′(t, u, v :: l, x, v′) = φ′(t(u), φ(v), l, x, v′)
φ(t(u, l, (x)v)) = φ′(φ(t), φ(u), l, x, φ(v))

pm : T Jm −→ T m pm′ : LJm −→ Lm
pm(x) = x pm′([]) = []

pm(λx.t) = λx.pm(t) pm′(u :: l) = pm(u) ::pm′(l)
pm(t(u, l, (x)v)) = s(pm(t)(pm(u),pm′(l)), x,pm(v))

qJ : T Jm −→ T J qJ′ : T J× T J× LJm ×V × T J −→ T J
qJ(x) = x qJ′(t, u, v :: l, x, v′) = qJ′(t(u),qJ(v), l, x, v′)

qJ(λx.t) = λx.qJ(t) qJ′(t, u, [], x, v) = t(u, (x)v)

qJ(t(u, l, (x)v)) = qJ′(qJ(t),qJ(u), l, x,qJ(v))

p : T J −→ T
p(x) = x

p(λx.t) = λx.p(t)
p(t(u, (x)v)) = s(p(t)(p(u)), x,p(v))

q : T m −→ T q′ : T × T × Lm −→ T
q(x) = x q′(t, u, v :: l) = q′(t(u),q(v), l)

q(λx.t) = λx.q(t) q′(t, u, []) = t(u)
q(t(u, l)) = q′(q(t),q(u), l)

Fig. 5. The mappings φ, pm, qJ, p and q

All the mappings considered above preserve typability in the expected way.

Proposition 3.11 Preservation of typability. Let F be φ (resp. qJ, pm,
q and p), let S be λJm (resp. λJm, λJm, λm and λJ) and let S′ be λ (resp. λJ,
λm, λ and λ). If Γ` t :A in S then Γ`F (t) :A in S′.

Proof. In hold of part 4 of Theorem 4.1 (next section) and part 3 of Theorem
C.14 (Appendix C), this result is a consequence of subject permutation (Proposition
2.9).

Other properties of these mappings are detailed as needed in Subsection 4.1.

4. REWRITING PROPERTIES OF λJm

Here we establish the main rewriting properties of λJm. We start by stating the
main results about permutative conversions, which are as in [Esṕırito Santo and
Pinto 2003], but recall p-permutations are now slightly different. The adjusted
proofs of these results are presented in Appendix C. Then we establish new prop-
erties of reduction (namely: properties of µ-reduction, preservation of reduction
by the various mappings of Section 3, conservativeness over the subsystems, and
preservation of strong normalisation) and based on them we give new proofs of
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strong normalisation and confluence of reduction. Last we address the interplay
between reduction and permutative conversions. In particular, for combinations of
rules whose normal forms are the β-normal forms of λ, we prove confluence and
strong normalisation.

4.1 Properties of permutative conversions

From the viewpoint of λ-calculi, the goal of permutations is to reduce gm-applications
to simple applications. Taking this set of conversions as defining a rewriting sys-
tem, one obtains a strongly normalising and confluent rewriting system such that
the normal form of a λJm-term is its image under the mapping φ : λJm −→ λ.
Moreover we get a permutability theorem: two λJm-terms have the same φ-image
iff they are inter-permutable.

Theorem 4.1 Main results on permutative conversions.

(1 ) Permutability. For all t, t′ ∈ T Jm, φ(t) = φ(t′) iff t↔∗pq t′.
(2 ) Characterisation of pq-normal forms. For all t ∈ T Jm, t is pq-normal iff

t ∈ T .

(3 ) Confluence and termination. →pq is confluent and terminating.

(4 ) Representation of φ. For all t ∈ T Jm, φ(t) =↓pq (t).

Proof. See Appendix C for detailed proofs. Two crucial properties used in these
proofs are, for all t, t′ ∈ T Jm, (1) if t→∗pq t′ then φ(t) = φ(t′), and (2) t→∗pq φ(t).

In Appendix C we show that this sequence of results can be analogously estab-
lished for mappings pm and p w.r.t. p-permutations and also for mappings qJ and
q w.r.t. the permutation q.

4.2 Properties of µ

We prove for µ properties of confluence, termination, postponement, and commu-
tation.

Confluence and termination.

Theorem 4.2. →µ is confluent and terminating.

Proof. Confluence of →µ is a consequence of the diamond property: in λJm, if
t→µ t1 and t→µ t2 then there is t3 such that t1 →µ t3 and t2 →µ t3. The latter,
in turn, follows from associativity of operation a. Termination of →µ follows from
the fact that each µ-reduction step decreases by one the number of µ-redexes.

Postponement. In λJm any →βπµ-reduction sequence can be transformed into
a reduction sequence consisting of two subsequences so that the first contains only
β and π-steps and the second contains only µ-steps. This property (Theorem 4.5
below) is used in particular to guarantee confluence of →βπµ; its proof uses a new
form of reduction, denoted by →π+

, which generalises →π.
The difficulty in arguing about µ-postponement directly in terms of→π has to do

with the fact that, when performing a π-reduction, a new π-redex can be generated

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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and a µ-redex may become hidden, as in the following example:

t0(u0, l0, (y)y(u1, l1, (z)v1))(u, l, (x)v) =: t1
→π t0(u0, l0, (y)y(u1, l1, (z)v1)(u, l, (x)v)) =: t′1
→π t0(u0, l0, (y)y(u1, l1, (z)v1(u, l, (x)v))) =: t4

(19)

Observe that the head of t1 is a µ-redex which becomes hidden in the π-contractum
t′1; the µ-redex is recovered by performing another π-reduction.

The mentioned difficulty occurs in a situation like this:

t0(u0, l0, (y)y(u1, l1, (z)v1))(u, l, (x)v) = t1
→µ t0(u0,a(l0, u1, l1), (z)v1)(u, l, (x)v) =: t2
→π t0(u0,a(l0, u1, l1), (z)v1(u, l, (x)v)) =: t3

(20)

Indeed t4 →µ t3, but the recovery of the µ-redex in t4 costed two π-steps. Now the
proof of part 2 of Lemma 4.4 below demands exactly one reduction step from t1
to t4, and it is precisely for collecting such sequences of π-steps in a single step of
reduction that the new form of reduction →π+ is introduced.

Definition 4.3. Let the rule πn, for each natural n, be as follows:

(πn) t(u, l, (x)v)(u′, l′, (y)v′) → t(u, l, (x)@x
n(v, u′, l′, y, v′))

where
@y

1(t, u, l, x, v) = t(u, l, (x)v)

@y
n+1(t, u, l, x, v) =


y(u′, l′, (z)@z

n(v′, u, l, x, v)),
if t = y(u′, l′, (z)v′) and y 6∈ u′, v′, l′

t(u, l, (x)v), otherwise

Let π+ =
⋃
n≥1 πn and, as before, let →π+

be the compatible closure of π+.

Observe that: (i) π1 = π; (ii) πn ⊆
⋃n
i=1 →i

π⊆→+
π ; (iii) →π+⊆→+

π .

Lemma 4.4. In λJm:

(1 ) If t1 →µ t2 and t2 →β t3 (resp. t2 →π+
t3) then there is t4 such that t1 →β t4

(resp. t1 →π+
t4) and t4 →∗µ t3.

(2 ) If t1 →∗µ t2 and t2 →β,π+
t3 then there is t4 such that t1 →β,π+

t4 and t4 →∗µ t3.

(3 ) If t1 →∗µ t2 and t2 →βπ t3 then there is t4 such that t1 →+
βπ t4 and t4 →∗µ t3.

Proof. 1. Let ρ be the µ-redex contracted in t1 →µ t2, and σ′ be the β-redex
(resp. π+-redex) contracted in t2. Then σ′ is the residual of a β-redex (resp. π+-
redex) σ in t1. The proof proceeds by the analysis of the relative positions of σ and
ρ in t1. If there is no overlap between σ and ρ, the result is trivial. If σ is a strict
subterm of ρ, the analysis is easy, with some subcases using the fact that →µ is
compatible with operation a. If σ = ρ, there are two interesting subcases. In one
of these subcases, σ is a π+-redex and the result follows from

if y 6∈ u′, l′, v′ then @x
n(t, u, l, y, y(u′, l′, (z)v′))→µ @x

n(t, u,a(l, u′, l′), z, v′).
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Fig. 6. µ-postponement

This is readily proved by induction on n. The other subcase is as follows:

t1 = (λz.t0)(u1, [], (x)x(u2, l2, (y)v)),
→µ t2 = (λz.t0)(u1, u2 :: l2, (y)v),
→β2

t3 = s(u1, z, t0)(u2, l2, (y)v),

where x /∈ u2, l2, v. In this case, t1 →β1 t3. Finally, if ρ is a strict subterm of σ,
there are several subcases that follow from compatibility of →µ with operations
s and @x

n, but the only interesting subcase relates to the discussion anteceding
Definition 4.3.

t1 = t0(u0, l0, (y)y(v2, l2, (w)v3))(u1, l1, (z)v1),
→µ t2 = t0(u0,a(l0, v2, l2), (w)v3)(u1, l1, (z)v1),
→πn

t3 = t0(u0,a(l0, v2, l2), (w)@w
n (v3, u1, l1, z, v1)),

where y 6∈ v2, l2, v3. In this case,

t1 →πn+1 t0(u0, l0, (y)@y
n+1(y(v2, l2, (w)v3), u1, l1, z, v1))

= t0(u0, l0, (y)y(v2, l2, (w)@w
n (v3, u1, l1, z, v1)))

→µ t3 .

2. By induction on the length of the reduction sequence t1 →∗µ t2. For length
zero the result is trivial. For length greater than zero the result follows from
the induction hypothesis and from 1 (Here we see that, in order to compose the
induction hypothesis with statement 1, it is crucial that this statement asserts the
existence of exactly one reduction step from t1 to t4.)

3. Immediate from 2, π ⊆ π+, and →π+
⊆→+

π .

The µ-postponement theorem is now a consequence of part 3 of this lemma.

Theorem 4.5 Postponement of µ. If t→∗βπµ t′ in λJm then there is t′′ such
that t→∗βπ t′′ and t′′ →∗µ t′ in λJm.

Proof. The proof can be read without loss of generality from the diagram in
Figure 6, where reduction t →∗βπµ t′ is represented by the solid arrows. Verti-
cal (resp. horizontal) arrows represent µ-steps (resp. βπ-steps). Each rectangle
holds by an application of part 3 of Lemma 4.4. The required reduction t →∗βπ t′′
is obtained from the topmost sequence of horizontal arrows (each containing at
least a βπ-step) and the required reduction t′′ →∗µ t′ corresponds to the rightmost
arrow.
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Statement 3 of Lemma 4.4 is also used later in proving termination of reduction.
In such application it will be crucial that each of the β or π-steps succeeding a
µ-step originates at least one β or π-step after postponement.

Commutation. In order to obtain confluence of →βπµ from confluence of →βπ

and →µ as in Subsection 4.5, besides µ-postponement, some form of commutation
of µ with β and π is also required. Although µ commutes with β (Theorem 4.7
below), it does not commute with π.

Again the problem is that, when performing a π-reduction, newly generated π-
redexes may hide µ-redexes. Recalling the terms in (19) and (20), there is no
common π-reduct of t2 and µ-reduct of t′1. In particular, no π+-reduct of t2 would
help. So, given that t1 → t′1 is a π+-step, rule π+ does not commute with µ either.

Instead of π+ we use the “eager” version π′ of rule π, already considered in
[Esṕırito Santo and Pinto 2004] in the context of λJ. This rule also performs in a
single step sequences of π-reductions, but contrary to π+, π-reduction must carry
on while newly generated π-redexes hide µ-redexes. For π′ commutation with µ
will hold (Theorem 4.7).

Definition 4.6. The rule π′ is the following:

(π′) t(u, l, (x)v)(u′, l′, (y)v′) → t(u, l, (x)@′(x, v, u′, l′, y, v′))

where

@′(x, t, u, l, y, v) =


x(u′, l′, (z)@′(z, v′, u, l, y, v)),

if t = x(u′, l′, (z)v′) and x 6∈ u′, v′, l′

t(u, l, (y)v), otherwise

Observe that →π′⊆→+
π and that a term is π′-normal if and only if it is π-normal.

Theorem 4.7 Commutation with µ. In λJm, if t1 →µ t2 and t1 →β t3 (resp.
t1 →π′ t3), then there is t4 such that t1 →∗µ t4 and t2 →∗β t4 (resp. t2 →∗π′ t4).

Proof. Very similar to the proof of part 1 of Lemma 4.4. Let ρ be the µ-redex
contracted in t1 →µ t2, and σ be the β- or π′-redex contracted in t1 → t3. Again,
the proof proceeds by the analysis of the relative positions of σ and ρ in t1. The fact
that →µ is compatible with operation @′ is used. Additionally, the only novelty is
in one of the subcases of σ = ρ, more precisely when σ is a π′-redex. There one
needs the fact

if y 6∈ u′, l′, v′ then @′(x, t, u, l, y, y(u′, l′, (z)v′))→µ @′(x, t, u,a(l, u′, l′), z, v′),

proved by a straightforward induction on t.

4.3 Preservation of reduction

Now we offer a detailed study of how the various mappings of λJm into subsystems
preserve reduction steps. The properties obtained are used not only to achieve
conservativeness of a system over its subsystems but also to infer confluence and
normalisation properties of λJm, as well as preservation of strong normalisation.
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In order to prove results of preservation of strong normalisation, we introduce
the notion of garbage-free terms. An expression of λJm (resp. term of λJ) is
said garbage-free when, for every gm-application t(u, l, (x)v) (resp. g-application
t(u, (x)v)) occurring as a subterm of it, x ∈ v16.

Lemma 4.8.

(1 ) For t, u in λJm (resp. λJ), if t is garbage-free and t →βπµ u in λJm (resp.
t→βπ u in λJ) , then u is garbage-free.

(2 ) For t in λJm (resp. λJ), if x ∈ t and t is garbage-free, x ∈ pm(t) (resp.
x ∈ p(t)).

Proof. The statements about λJ are proved by easy inductions. The state-
ments about λJm are proved together with analogous statements for lists by easy
simultaneous inductions.

Now we tackle preservation of reduction by the mappings pm and p, the results
to the latter being corollaries of the results to the former.

Proposition 4.9 Preservation of reduction by pm.

(1 ) If t→βi
t′ in λJm then (i) pm(t)→∗βi

pm(t′) in λm, and (ii) if t is garbage-free

then pm(t)→+
βi

pm(t′) in λm.

(2 ) If t→π t
′ in λJm then pm(t) = pm(t′).

(3 ) If t→µ t
′ in λJm then (i) pm(t)→∗h pm(t′) in λm, and (ii) if t is garbage-free

then pm(t)→+
h pm(t′) in λm.

(4 ) If t→h t
′ in λJm then (i) pm(t)→∗h pm(t′) in λm, and (ii) if t is garbage-free

then pm(t)→+
h pm(t′) in λm.

Proof. Notice that statement 4 is a corollary of statements 2 and 3 (since t→h t
′

implies that there exists t′′ such that t →π t
′′ and t′′ →µ t, and t′′ is garbage-free

when t is). It remains a statement for each R ∈ {β1, β2, π, µ}. Each of these is
proved together with a similar statement for lists by simultaneous induction on
t →R t′ and l →R l′. The inductive cases are routine and use the fact that →∗R,
→+
R and = are compatible. The proof of the base cases requires the substitution

lemma for m-substitution, compatibility of →β,h with m-substitution, specifically

(1) for all t, u, v in λm and R ∈ {β1, β2, h}, if t→R u then s(v, x, t)→R s(v, x, u),
s(t, x, v)→∗R s(u, x, v), and moreover, if x ∈ v then s(t, x, v)→+

R s(u, x, v),

and requires also the following two commutation properties of pm:

(1) for all t, u in λJm, pm(s(u, x, t)) = s(pm(u), x,pm(t));

(2) for all l, u, l′ in λJm, pm′(a(l, u, l′)) = a(pm′(l),pm(u),pm′(l′)).

We just check the base cases. Below we generally abbreviate pm and pm′ by p and
omit some parentheses.

16If the application t(u, l, (x)v) is thought of as the substitution of t(u, l) for x in v, then, in the

case x 6∈ v, it is natural to regard it as equal to v and to regard the components t, u, l as garbage.
In explicit substitutions calculi the reduction to v in such case is called garbage collection.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Case β1. p((λx.t)(u, [], (y)v)) = s((λx.pt)(pu, []), y, pv)
→∗β1

s(s(pu, x, pt), y, pv)

= s(p(s(u, x, t)), y, pv)
= p(s(s(u, x, t), y, v))

The first equality is by definition of pm, the reduction uses compatibility of s with
→β1

and the other equalities follow by commutation of s with pm. For (ii), observe
additionally that compatibility of s with →β guarantees one or more β1-steps,
because, when (λx.t)(u, [], (y)v) is garbage-free, y ∈ v and v is also garbage-free,
hence, by Lemma 4.8, y ∈ pv.

Case β2: similar to case β1.
Case π. p(t(u, l, (x)v)(u′, l′, (y)v′))

= s(s((pt)(pu, pl), x, pv)(pu′, pl′), y, pv′)
= s(s((pt)(pu, pl), x, (pv)(pu′, pl′)), y, s((pt)(pu, pl), x, pv′))
= s((pt)(pu, pl), x, s((pv)(pu′, pl′), y, pv′))
= p(t(u, l, (x)v(u′, l′, (y)v′)))

Here the first and last equalities are by definition of pm, the second by x /∈ u′, l′, v′,
and the third by the substitution lemma.

Case µ. p(t(u, l, (x)x(u′, l′, (y)v)))
= s((pt)(pu, pl), x, s(x(pu′, pl′), y, pv))
= s(s((pt)(pu, pl), x, x(pu′, pl′)), y, s((pt)(pu, pl), x, pv))
= s((pt)(pu, pl)(pu′, pl′), y, pv)
→∗h s((pt)(pu,a(pl, pu′, pl′)), y, pv)
= s((pt)(pu, p(a(l, u′, l′))), y, pv)
= p(t(u,a(l, u′, l′), (y)v))

Here the first and last equalities are by definition of pm, the second by the substitu-
tion lemma, the third by x /∈ u′, l′, v′, and the penultimate by commutation of a with
pm′. The reduction holds by compatibility of s with →h. For (ii), as in the case of
β1, observe that→∗h can be replaced by→+

h , because, when t(u, l, (x)x(u′, l′, (y)v))
is garbage-free, y ∈ pv holds.

Corollary 4.10 Preservation of reduction by p.

(1 ) If t→β1
t′ in λJ then (i) p(t)→∗β1

p(t′) in λ, and (ii) if t is garbage-free then

p(t)→+
β1

p(t′) in λ.

(2 ) If t→π t
′ in λJ then p(t) = p(t′).

Proof. As to statement 1, suppose t→β1 t
′ in λJ. From part 1 of Proposition

3.8 we get t →β1
t′ in λJm, hence, by Proposition 4.9: (a) pm(t) →∗β1

pm(t′) in

λm; (b) if t is garbage-free then pm(t) →+
β1

pm(t′) in λm. From (a), because p is
the restriction of pm to λJ-terms, p(t)→∗β1

p(t′) in λm. Therefore, since p(t) and
p(t′) are in λ, it follows from Proposition 3.9 that p(t)→∗β1

p(t′) in λ, thus proving
(i). (ii) is analogously obtained from (b).

Statement 2 is similar but simpler to 1 (no need to use Proposition 3.9).

We now move to preservation of reduction by qJ and q. Contrary to pm, each
reduction step in λJm is mapped by qJ into at least a reduction step. This is a
crucial property when inferring termination of the source system from that of the
target, as we do in the proof of Theorem 4.20. The following lemma collects some
of the properties required for the results of preservation of reduction by qJ.
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Lemma 4.11. For all t, u, l, v, u′, l′, v′ in λJm:

(1 ) qJ(t(u, (x)v)(u′, l′, (y)v′))→+
π qJ(t(u, (x)v(u′, l′, (y)v′))).

(2 ) qJ(t(u, l, (x)v)(u′, l′, (y)v′))→+
π qJ(t(u, l, (x)v(u′, l′, (y)v′))).

(3 ) qJ(t(u, l, (x)x)(u′, l′, (y)v′)) = qJ(t(u,a(l, u′, l′), (y)v′)).

Proof. 1. One proves, by induction on l′ that, for all t0, u0, v0, u
′
0, v
′
0 in λJ, and

all l′ in λJm, one has

qJ′(t0(u0, (x)v0), u′0, l
′, y, v′0)→+

π t0(u0, (x)qJ′(v0, u
′
0, l
′, y, v′0)) .

We need the following property of qJ′: if t→R t
′ in λJ, then also qJ′(t, u, l, x, v)→R

qJ′(t′, u, l, x, v) in λJ. The proof of this property is a routine induction on l.
2. One proves, by induction on l that, for all t0, u0, v0, u

′
0, v
′
0 in λJ, and all l, l′

in λJm, one has

qJ′(qJ′(t0, u0, l, x, v0), u′0, l
′, y, v′0)→+

π qJ′(t0, u0, l, x,qJ′(v0, u
′
0, l
′, y, v′0)) .

The base case follows by 1.
3. One proves, by induction on l that, for all t0, u0, v0, v

′
0 in λJ, and all u′, l, l′ in

λJm, one has

qJ′(qJ′(t0, u0, l, x, x),qJ(u′), l′, y, v′0) = qJ′(t0, u0,a(l, u′, l′), y, v′0) .

Proposition 4.12 (Co-)preservation of reduction by qJ.

(1 ) If t→βi t
′ in λJm then qJ(t)→β1 qJ(t′) in λJ.

(2 ) If t→π t
′ in λJm then qJ(t)→+

π qJ(t′) in λJ.

(3 ) If t→µ t
′ in λJm then qJ(t′)→+

π qJ(t) in λJ.

(4 ) If t→h t
′ in λJm then qJ(t) = qJ(t′).

Proof. Notice that in statement 3 reduction in the target goes in the opposite
direction (hence “co-preservation”) and moreover it is a corollary of statements
2 and 4 (since µ ⊆ h ◦ π−1, one has →µ⊆→+

π−1,h). It remains a statement for

each R ∈ {β1, β2, π, h}. Each of these is proved together with a similar statement
for lists by simultaneous induction on t →R t′ and l →R l′. The inductive cases
are routine and use the fact that →∗R and = are compatible. We check the base
cases. They require the previous lemma and commutation of s with qJ as follows:
qJ(s(u, x, t)) = s(qJ(u), x,qJ(t)), for all t, u in λJm. Below we generally abbreviate
qJ and qJ′ by q and omit some parentheses.

Case β1. q((λx.t)(u, [], (y)v)) = (λx.qt)(qu, (y)qv)
→β1 s(s(qu, x, qt), y, qv)

= s(q(s(u, x, t)), y, qv)
= q(s(s(u, x, t), y, v))

The last two equalities are by commutation of s with qJ and the first by definition
of qJ.
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Case β2. q((λx.t)(u, u′ :: l, (y)v)) = q(λx.qt, qu, u′ :: l, y, qv)
= q(λx.qt)[qu], qu′, l, y, qv)
→β1 q(s(qu, x, qt), qu′, l, y, qv)

= q(q(s(u, x, t)), qu′, l, y, qv)
= q(s(u, x, t)(u′, l, (y)v))

The reduction holds by the property of qJ′ mentioned in the proof of part 1 of the
previous lemma. The penultimate equality is by commutation of s with qJ and the
others by definition of qJ or qJ′.

Cases π and h are respectively parts 2 and 3 of the previous lemma.

Corollary 4.13 Preservation of reduction by q. 17

(1 ) If t→βi
t′ in λm then q(t)→β1

q(t′) in λ.

(2 ) If t→h t
′ in λm then q(t) = q(t′).

Proof. The proof can be obtained as in Corollary 4.10, replacing pm and p
by qJ and q resp., λm by λJ, Proposition 4.9 by Proposition 4.12 and part 1 of
Proposition 3.8 by part 2 of the same proposition.

Preservation of reduction by φ is now a simple corollary of the preservation
properties before.

Proposition 4.14 Preservation of reduction by φ.

(1 ) If t→βi
t′ in λJm then φ(t)→∗β1

φ(t′) in λ.

(2 ) If t→π,µ,h t
′ in λJm then φ(t) = φ(t′).

Proof. It follows from φ = q ◦pm, Proposition 4.9 and Corollary 4.13 (or from
φ = p ◦ qJ, Proposition 4.12 and Corollary 4.10).

The proof-theoretic reading of the last preservation result says how mapping φ
gives an interpretation of cut-elimination by means of normalisation, and therefore
relates the result with the work of Zucker [1974] and Pottinger [1977].

4.4 Conservativeness and preservation of strong normalisation

Conservativeness. With the help of the reduction preservation properties just
established, here we strengthen the conservativeness results for reduction of Sub-
section 3.1.

The following result, which is a corollary of the µ-postponement theorem (The-
orem 4.5), plays a key role in proving conservativeness.

Lemma 4.15. If t→∗βπµ t′ in λJm and t′ ∈ λJ, then t→∗βπ t′ in λJm.

Proof. By Theorem 4.5 one has

t βπ-- t′′

t′

µ

??

βπµ
--

17This result is implicit in [Esṕırito Santo 2002a].
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From t′′ →∗µ t′ and t′ ∈ λJ, it follows t′′ = t′, for t′ cannot contain a µ-contractum.
Hence t→∗βπ t′.

Theorem 4.16 Conservativeness. λJm is conservative over its subsystems,
that is:

(1 ) For all t, t′ ∈ λJ, t→∗βπµ t′ in λJm iff t→∗βπ t′ in λJ.

(2 ) For all t, t′ ∈ λm, t→∗βπµ t′ in λJm iff t→∗βh t′ in λm.

(3 ) For all t, t′ ∈ λ, t→∗βπµ t′ in λJm iff t→∗β t′ in λ.

Proof. The “if” statements follow from the Definitions 3.2, 3.4, and 3.6 of
λJ, λm, and λ. As to the “only if” statements, we start by showing that of 3.
Let t, t′ ∈ λ and suppose t →∗βπµ t′ in λJm. From the fact that φ preserves
reduction (Proposition 4.14), it follows that φ(t) →∗β φ(t′) in λ. But φ(t) = t and
φ(t′) = t′, as t, t′ ∈ λ. The “only if” statement of 2 is proved in a similar fashion,
using preservation of reduction by mapping pm (Proposition 4.9). As to 1, the
proof needs a slight adjustment, as mapping qJ does not preserve µ-steps. So, we
start by using Lemma 4.15, and only then apply Proposition 4.12 in order to get
qJ(t)→∗βπ qJ(t′) in λJ. But qJ(t) = t and qJ(t′) = t′, as t, t′ ∈ λJ.

The following result, together with part 3 of the previous theorem, says that λ
is conservatively extended by its supersystems.

Theorem 4.17 Conservativeness. 18 For all t, t′ ∈ λ:

(1 ) t→∗βπ t′ in λJ iff t→∗β t′ in λ.

(2 ) t→∗βh t′ in λm iff t→∗β t′ in λ.

Proof. Analogous to the proof of the previous theorem, using Proposition 3.9
to justify the “if” statements, and the reduction preservation properties of p and
q (resp.) to justify the “only if” statements.

Part 1 of this theorem has the following proof-theoretic reading: normalisation in
natural deduction with general elimination rules is conservative over normalisation
in the sense of Prawitz.

Preservation of strong normalisation. We show that any term which is strongly
normalising w.r.t. reduction in a given system is also strongly normalising w.r.t.
reduction in each of the system’s supersystems. Such results are obtained with the
help of the results on preservation of reduction by the respective mapping from the
supersystem to the system. The following lemma is also needed.

Lemma 4.18. (1) →πµ in λJm is SN. (2) →π and →µ and →h in λJm are
SN. (3) →π in λJ is SN. (4) →h in λm is SN.

Proof. 1. Proved in [Esṕırito Santo and Pinto 2004]. 2. Immediate from 1 and
h ⊆ µ ◦ π. 3. Follows from 2 and the fact that an infinite π-reduction sequence
in λJ originates, by definition of λJ, an infinite π-reduction sequence in λJm. 4.
mutatis mutandis.

18Part 2 of this theorem is implicit in [Esṕırito Santo 2002a].
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Theorem 4.19 Preservation of Strong Normalisation.

(1 ) For all t ∈ λm, t is SN in λm iff t is SN in λJm.

(2 ) For all t ∈ λJ, t is SN in λJ iff t is SN in λJm.

(3 ) For all t ∈ λ, t is SN in λ iff t is SN in λm.

(4 ) For all t ∈ λ, t is SN in λ iff t is SN in λJ.

(5 ) For all t ∈ λ, t is SN in λ iff t is SN in λJm.

Proof. Part 5 follows immediately by combining either 1 and 3 or 2 and 4.
As to the first four properties, for the “if” statements, observe that if there is an
infinite reduction sequence in the subsystem, the same infinite reduction sequence
exists in the supersystem. This is so by the definitions of the subsystems, in the
case of 1 and 2; and by virtue of Proposition 3.9, in the case of 3 and 4. Now we
address the “only if” statements.

Statement 1. Suppose there is an infinite reduction sequence, S say, in λJm,
starting at t ∈ λm. Because →π is terminating (Lemma 4.18), there are infinitely
many βµ-steps in S. Using map pm, we obtain from S an infinite reduction sequence
in λJ starting at t = pm(t), since, by Proposition 4.9, each βµ-step is mapped into
one or more βh-steps (notice that t, being a λm-term, is garbage-free and thus, by
Lemma 4.8, all terms in S are garbage-free).

Statement 2. If there was an infinite reduction sequence in λJm starting at
t ∈ λJ, using the facts that →µ is terminating (Lemma 4.18) and that µ-steps
can be postponed over βπ-steps (see the argument in the proof of Theorem 4.5),
there would be arbitrarily long reduction sequences of βπ-steps in λJm starting at
t. Thus, as each βπ-step in λJm under qJ gives rise to at least one βπ-step in
λJ (Proposition 4.12), there would be arbitrarily long reduction sequences in λJ
starting at t = qJ(t).

Statements 3 and 4. They follow by similar arguments. In particular, to prove 3
we use the properties of map q in Corollary 4.13 and the fact that→h is terminating
in λm (Lemma 4.18) and to prove 4 we use the properties of map p in Corollary 4.10
and the facts that →π is terminating in λJ (Lemma 4.18) and that garbage-free
terms are closed for reduction in λJ (Lemma 4.8).

4.5 Strong normalisation and confluence of reduction

Strong normalisation. Strict preservation of βπ- reduction steps by mapping
qJ, combined with the properties established for µ, allow the lifting to λJm of the
strong normalisation property of ΛJ [Joachimski and Matthes 2003].

Theorem 4.20 Strong normalisation. There is no infinite →βπµ-reduction
sequence starting at a typable term of λJm.

Proof. Suppose there is such an infinite reduction sequence S, starting at ty-
pable term t ∈ λJm. Since →µ is terminating, S contains infinitely many βπ-
reduction steps. As in the proof of statement 2 of Theorem 4.19, we can build
an arbitrarily long reduction sequence in λJ starting from qJ(t). But this is a
typable term, since qJ preserves typability (Proposition 3.11), contradicting strong
normalisation of λJ.
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π : T Jm −→ T Jm π′ : LJm −→ LJm

π(x) = x π′([]) = []

π(λx.t) = λx.π(t) π′(u :: l) = π(u) ::π′(l)
π(t(u, l, (x)v)) = @(π(t), π(u), π′(l), x, π(v))

where

@(t, u, l, x, v) =


t′(u′, l′, (y)@(v′, u, l, x, v)), if t = t′(u′, l′, (y)v′)

t(u, l, (x)v), otherwise

Fig. 7. The mapping π

This strong normalisation result contains a strong cut-elimination result, since
it says, in particular, that from a term representing a sequent calculus derivation
there cannot be an infinite sequence of cut-elimination (i.e. βπ) steps.

Confluence. Firstly we recall from [Esṕırito Santo and Pinto 2004] that relations
→π, →β and →βπ in λJm are confluent.

Theorem 4.21 Confluence. →π, →β and →βπ are confluent.

Proof. By extending the confluence proofs for ΛJ presented in [Joachimski and
Matthes 2000]. See [Esṕırito Santo and Pinto 2004] for details.

Now we consider confluence in the presence of rule µ. The proof relies on the
properties of rule µ proved above, but also in the fact that, in certain cases, π-
reductions can be replaced by π′-reductions (Lemma 4.22(4)). To establish the
latter we make use of the mapping π of Figure 7 which calculates the π-normal
form of a λJm-term.

Lemma 4.22. For all t, u ∈ T Jm,

(1 ) π(t) is π-normal.

(2 ) t→∗π′ π(t).

(3 ) if t→βπ u, then π(t)→∗βπ′ π(u).

(4 ) if t →∗π u (resp. t →∗βπ u) and u is a π-normal form, then t →∗π′ u (resp.
t→∗βπ′ u).

Proof. 1. Proved together with the corresponding statement for l ∈ LJm by
simultaneous induction on t and l.

2. Because →π′⊆→+
π and →π is terminating, →π′ is also terminating. Let t′ be

a π′-normal form of t. Since t′ is also a π-normal form, t→∗π t′. Now, by 1 and
confluence of →π, t′ = π(t) and thus t→∗π′ π(t).

3. By induction on t→βπ u. The base case for π is trivial since →π is invariant
w.r.t. mapping π. The base case for β uses the fact that, for all t, u ∈ T Jm,

s(π(t), x, π(u))→∗π π(s(t, x, u)).

which can in be proved by induction on u with the help of another fact:

s(t, x,@(t0, u0, l0, y, v0))→∗π@(s(t, x, t0), s(t, x, u0), s′(t, x, l0), y, s(t, x, v0)),

for all t, t0, u0, v0 ∈ T Jm, l0 ∈ LJm. This latter fact, in turn, can be proved by
induction on t0.
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4. The result for →∗π follows from 2 and from the fact that π-normal forms
are unique, so u = π(t). For the other result, observe firstly that 3 implies that
π(t) →∗βπ′ π(u). Observe then that π-normality of u guarantees π(u) = u and 1
guarantees t→∗π′ π(t).

Theorem 4.23 Confluence. →βπµ, →πµ and →βµ are confluent.

Proof. Let R = π (resp. R = βπ) and let R′ = π′ (resp. R′ = βπ′). Suppose
t →Rµ t1 and t →Rµ t2. This fork is closed as shown in the diagram of Figure 8.

1 holds by postponement of µ (Theorem 4.5), 2 holds by confluence (Theorem

4.21), 3 holds by Lemma 4.22(3) (t6 being the π-normal form of t5), 4 holds by

commutation with µ (Theorem 4.7) and 5 holds by confluence of →µ (Theorem
4.2). The proof of the first two statements of this theorem concludes by observing
that each π′-reduction step in the reduction sequences from t1 to t7 and from t2 to
t8 may be replaced by a sequence of π-reduction steps.

As to the last statement of this theorem, let R = β and R′ = R and consider the
same diagram, except that t6 = t5. The proof is complete after observing that 1

to 5 hold for the same reasons, except that 3 now holds trivially.

Other proofs of confluence and strong normalisation of relation →βπµ in λJm

are given in [Esṕırito Santo and Pinto 2004]. There the lifting of the results from
ΛJ is achieved through the mapping ν : λJm → λJ introduced in that paper.
The main problem in using the original mapping qJ : λJm → λJ (introduced in
[Esṕırito Santo and Pinto 2003] under name qm) is that this mapping does not
preserve µ-reduction. This was an obstacle to the lifting not overcome at the time
of the writing of [Esṕırito Santo and Pinto 2004], that we remove here through the
deeper study of the properties of µ.

4.6 Interaction of reduction and permutative conversions

One of the novelties of λJm is the co-existence of reduction and permutation rules.
If one wants to obtain, from a λJm-term t, not only a λ-term, but also one in
β-normal form, then one has to apply to t both reduction and permutation rules.
This reason alone justifies the interest in combining both kinds of transformations.
Below we present a complete study of the confluence and normalisation properties
of the combined systems having the β-normal λ-terms as normal forms. The proofs
of these properties benefit greatly of the results established before in this section.

Firstly observe that we cannot freely combine reduction and permutation rules
and, simultaneously, keep strong normalisation. Two direct illustrations of this are
the following cycles19.

t(u, u′ :: l, (x)v) →q t(u)(u′, l, (x)v)
= t(u, [], (y)y)(u′, l, (x)v)
→π t(u, [], (y)y(u′, l, (x)v))
→µ t(u,a([], u′, l), (x)v)
= t(u, u′ :: l, (x)v) .

(21)

19Notice how in (21) we move around the particular case of the triangle in Figure 2 where l = [].
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Fig. 8. Proof of Theorem 4.23

t(u, l, (x)v)(u′, l′, (y)v′) →π t(u, l, (x)v(u′, l′, (y)v′))
→p3 t(u, l, (x)v)(u′, l′, (y)v′)

(22)

In the latter example, we assume x ∈ v, whereas x /∈ u′, l′, v′ is guaranteed.
Calculation (22) shows π−1 ⊆→p. So we omit π from the combinations of reduc-

tion rules with permutative conversions. Since we are interested in getting λ-terms,
this is no handicap. In fact:

Proposition 4.24 Complete combinations. Let t be λJm-term. Then the
following are equivalent: (1) t is a λ-term in β-nf; (2) t is a βµpq-nf; (3) t is a
βpq-nf; (4) t is a β1pq-nf.

Proof. A simple induction on t proves the first equivalence. The other two
equivalences hold respectively because a µ-redex is also a p-redex and a β2-redex is
also a q-redex.

For all the combinations of rules capturing the class of λ-terms in β-normal form,
confluence follows easily from previous results.

Theorem 4.25 Confluence. →βµpq, →βpq, and →β1pq are confluent.

Proof. Let S be one of the combinations βµpq, βpq or β1pq. Suppose t→∗S t1
and t →∗S t2. This fork is closed as shown in the diagram in Figure 9, where 1
holds by Proposition 4.14 and the properties (1) and (2) in the proof of Theorem

4.1 and 2 holds by confluence of →β in the λ-calculus.

Notice that→βµpq,→βpq, and→β1pq all determine the same normal form, if any,
for a given t ∈ λJm, since →βµpq⊇→βpq⊇→β1pq. So, we are guaranteed to have
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Fig. 9. Proof of Theorem 4.25

at most one λ-term in β-normal form corresponding to t. The weak normalisation
theorem below shows that, for typable t, there is always one such λ-term, and two
strategies to arrive at it. The theorem needs the following remark.

Lemma 4.26. If u ∈ λJm is a βπ-normal form, then φ(u) is a β-normal λ-term.

Proof. That the assignment of λ-terms to sequent calculus derivations relates
normal terms with cut-free derivations is not surprising20. We give a new proof,
where instead of the assignment φ we analyse pq-reduction.

The proof needs a new subclass T of λJm-terms. We define the classes T , A, and
L simultaneously as follows:

(T ) t, u, v ::= x | λx.t | a(u, l, (x)v)
(A) a, b ::= x | a(u, l, (x)b)
(L) l ::= t :: l | []

T is in between the classes of βπ-normal terms and β-normal terms. The former
(resp. the latter) is obtained by forbidding (resp. extending as a(u, l, (x)v)) the
second clause in the definition of A.

The point is that T is closed for pq-reduction (which is the case neither for βπ-
normal forms, nor for β-normal forms 21). Specifically, one proves simultaneously,
by induction on t, a, and l: (a) if t ∈ T and t →pq t

′, then t′ ∈ T ; (b) if a ∈ A
and a →pq a

′, then a′ ∈ A; (c) if l ∈ L and l →pq l
′, then l′ ∈ L. Now since u

is a βπ-normal form, u ∈ T . From u →∗pq φ(u), and T closed for pq-reduction, it
follows φ(u) ∈ T . Hence φ(u) is a β-normal form.

20A direct proof is as follows. One proves:

(1) For all u ∈ λJm, if u is a βπ-normal form, then φ(u) is a β-normal λ-term;

(2) For all l ∈ λJm, for all n ≥ 0, for all t1, · · · , tn, u, v β-normal λ-terms, if l is a βπ-normal
form, then φ′(x[t1] · · · [tn], u, l, y, v) is a β-normal λ-term;

by simultaneous induction on u and l.
21Obviously, p-reduction generates π-redexes. On the other hand, a β-normal form with the shape
x(u, l, (y)λz.v)(u′, l′, (y′)v′) immediately becomes a β-redex after one p2-step.
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Theorem 4.27 Weak normalisation. →βµpq is weakly normalising on ty-
pable terms.

Proof. Let t be a typable λJm-term. The first strategy is rather obvious. From
the property (2) in the proof of Theorem 4.1, t →∗pq φ(t). Now φ(t) is a typable
λ-term, so we reduce φ(t) in λ to its β-normal form t′.

So the sought β-normal λ-term t′ is obtained by reduction to pq-normal form,
followed by normalisation. There is a second, “dual”, strategy that proceeds by
cut-elimination first, followed by reduction to pq-normal form. It is not obvious
that these two stages are enough. Let u be the βπ-normal form of t, that exists
since t is typable. We can build the following diagram:

t
pq -- φ(t)

u

βπ
??

pq
-- φ(u)

β
--

��
β

t′

β??

The reduction from φ(t) to φ(u) is by Proposition 4.14. The triangle holds by
confluence of β-reduction in the λ-calculus. That indeed φ(u) = t′ follows from
Lemma 4.26.

Computationally, whereas with the first strategy β-reduction happens only on
λ-terms, the second strategy opens up alternatives for β-reduction, including the
possibility of sharing of computations due to the explicit substitution facility offered
by gm-application.

So, essentially, the meta-theory of λJm developed so far was enough to prove the
previous weak normalisation result. Now, strong normalisation for the combined
relation →βµpq actually holds, but the proof needs a new tool: the λex-calculus
[Kesner 2009]. This is a calculus of explicit substitutions with variable names
enjoying strong normalisation. Our proof of strong normalisation is based (as other
strong normalisation proofs before) on a mapping that preserves infinite reduction
sequences. Let us recall the λex-calculus. Its terms are given by

M,N ::= x |λx.M |MN | 〈N/x〉M .

We note that [Kesner 2009] usesM [x/N ] for explicit substitution, instead of 〈N/x〉M .
In 〈N/x〉M the occurrences of x in M are considered to be bound. We use T λex
to denote the set of λex-terms.

The typing of λex-terms is as usual in simply-typed λ-calculus, with the following
extra rule for typing explicit substitutions:

Γ `M : A Γ, x :A ` N : B

Γ ` 〈M/x〉N : B
.

The calculus λex is equipped with six reduction rules:

(B) (λx.M)N → 〈N/x〉M (Lamb) 〈N/x〉(λy.M) → λy.〈N/x〉M
(Var) 〈N/x〉x → N (App) 〈N/x〉(MM ′) → (〈N/x〉M)〈N/x〉M ′
(Gc) 〈N/x〉M → M,x /∈M (Comp) 〈N/x〉〈N ′/y〉M → 〈〈N/x〉N ′/y〉〈N/x〉M, x ∈ N ′
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◦ : T Jm −→ T λex ◦ : T λex× LJm −→ T λex
x◦ = x (M, [])◦ = M

(λx.t)◦ = λx.t◦ (M,u :: l)◦ = (Mu◦, l)◦

t(u, l, (x)v)◦ =

{
(t◦u◦, l)◦ if v = x
〈(t◦u◦, l)◦/x〉v◦ if v 6= x

Fig. 10. The mapping ◦

The compatible closure of all rules but B is denoted by →x and the compatible
closure of all the six rules by →Bx. The calculus λex is also equipped with the
equation:

〈N/x〉〈N ′/y〉M = 〈N ′/y〉〈N/x〉M, x /∈ N ′, y /∈ N.

The relation =e is the equivalence relation generated from the equation above and
renaming of bound variables (α-equivalence). The relations →ex and →λex result
then from taking →x and →Bx modulo =e, i.e.:

M →ex N iff exists M ′, N ′ ∈ T λex s.t. M =e M
′ →x N

′ =e N ;
M →λex N iff exists M ′, N ′ ∈ T λex s.t. M =e M

′ →Bx N
′ =e N .

The relation →λex is strongly normalising on typable terms. Another fundamen-
tal property of λex in what follows is full composition:

for all M,N ∈ T λex, 〈M/x〉N →+
ex s(M,x,N),

where s(M,x,N) denotes implicit substitution in λex (written N{x/M} in [Kesner
2009]), defined in the obvious way. We point to [Kesner 2009] for proofs of these
two properties.

The mapping of λJm-terms into λex-terms is denoted by ◦ and given in Figure
10. This mapping preserves typing.

Proposition 4.28 Preservation of typing by ◦.

(1 ) If Γ ` t : A in λJm then Γ ` t◦ : A in λex.

(2 ) If Γ `M : A in λex and Γ;A` l : B in λJm then Γ ` (M, l)◦ : B in λex.

Proof. Simple simultaneous induction on t and l.

Other fundamental properties of mapping ◦ are presented in Proposition 4.30 and
they are proved with the help of the collection of results in the following lemma.

Lemma 4.29. For all t, u, v, l, l0 ∈ λJm and for all M,N ∈ λex:

(1 ) x ∈ t iff x ∈ t◦; x ∈ (M, l)◦ iff x ∈M or x ∈ l;
(2 ) s(t◦, x, u◦) = s(t, x, u)◦;

(3 ) if M →R N then (M, l)◦ →R (N, l)◦, for R ∈ {x, λex};
(4 ) if x /∈ l then 〈M/x〉(N, l)◦ →∗x (〈M/x〉N, l)◦;
(5 ) ((M, l)◦u◦, l0)◦ = (M,a(l, u, l0))◦;

(6 ) 〈(t◦u◦, l)◦/x〉v◦ →=
x t(u, l, (x)v)◦;

(7 ) 〈(t◦u◦, l)◦/x〉v◦ →=
x tLu, l, (x)vM◦;

(8 ) 〈(t◦u◦, l)◦/x〉(M, l0)◦ →∗x (〈(t◦u◦, l)◦/x〉M, tLu, l, (x)l0M)◦.
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Proof. The conjuncts of 1 are proved by simultaneous induction on t and l.
Part 2 is proved together with the property s(t◦, x, (M, l)◦) = (s(t◦, x,M), s′(t, x, l))◦,

for all t, l ∈ λJm, M ∈ λex, by simultaneous induction on u and l.
Parts 3, 4 and 5 are simple inductions on l.
Both part 6 and part 7 follow by case analysis on v.
Part 8 follows by induction on l0, with the help of part 7.

Proposition 4.30 Preservation of βµpq-steps by ◦. For all t, u ∈ λJm,

(1 ) if t→β u then t◦ →+
λex u

◦.

(2 ) if t→µp u then t◦ →+
x u◦.

(3 ) if t→q u then t◦ →∗x u◦.

Proof. Each of the statements is proved, by induction, together with the cor-
responding analogue for lists, for all l1, l2 ∈ λJm,M ∈ λex: (1) if l1 →β l2 then
(M, l1)◦ →+

λex (M, l2)◦; (2) if l1 →µp l2 then (M, l1)◦ →+
x (M, l2)◦; (3) if l1 →q l2

then (M, l1)◦ →∗x (M, l2)◦.
We illustrate the base cases. The base case for q gives t◦ = u◦, so we illustrate

also the inductive case where reduction steps not justified by IH can be generated.
Case β1: (λx.t)(u, [], (y)v)→ s(s(u, x, t), y, v).
We assume v 6= y. The case v = y is analogous, but simpler.

(λx.t)(u, [], (y)v)◦ = 〈(λx.t◦)u◦/y〉v◦
→B 〈〈u◦/x〉t◦/y〉v◦
→+

ex s(s(u◦, x, t◦), y, v◦) (Full composition)
= s(s(u, x, t), y, v)◦ (Lemma 4.29.2)

Case β2: (λx.t)(u, u0 :: l, (y)v)→ s(u, x, t)(u0, l, (y)v).
Assume v 6= y (the case v = y is analogous, but simpler).

(λx.t)(u, u0 :: l, (y)v)◦ = 〈((λx.t◦)u◦u◦0, l)◦/y〉v◦
→λex 〈((〈u◦/x〉t◦)u◦0, l)◦/y〉v◦ (Lemma 4.29.3)
→+

ex 〈(s(u◦, x, t◦)u◦0, l)
◦/y〉v◦ (Full composition and Lemma 4.29.3)

= 〈(s(u, x, t)◦u◦0, l)
◦/y〉v◦ (Lemma 4.29.2)

= s(u, x, t)(u0, l, (y)v)◦

Case µ: t(u, l, (x)x(u0, l0, (y)v))→ t(u,a(l, u0, l0), (y)v) if x 6∈ u0, l0, v.
Again, we assume v 6= y (the case v = y being simpler).

t(u, l, (x)x(u0, l0, (y)v))◦

= 〈(t◦u◦, l)◦/x〉(〈(xu◦0, l0)◦/y〉v◦)
→Comp 〈〈(t◦u◦, l)◦/x〉(xu◦0, l0)◦/y〉〈(t◦u◦, l)◦/x〉v◦

(x ∈ (xu◦0, l0)◦,by x ∈ xu◦0 and Lemma 4.29.1)
→Gc 〈〈(t◦u◦, l)◦/x〉(xu◦0, l0)◦/y〉v◦ (x /∈ v◦, by x /∈ v and Lemma 4.29.1)
→∗x 〈(〈(t◦u◦, l)◦/x〉(xu◦0), l0)◦/y〉v◦ (by Lemma 4.29.4, as x /∈ l0)
→3

x 〈((t◦u◦, l)◦u◦0, l0)◦/y〉v◦ (x /∈ u◦0, by x /∈ u0 and Lemma 4.29.1)
= 〈(t◦u◦,a(l, u0, l0))◦/y〉v◦ (Lemma 4.29.5)
= t(u,a(l, u0, l0), (y)v)◦

Case p1: t(u, l, (x)y)→ y, if x 6= y.

t(u, l, (x)y)◦ = 〈(t◦u◦, l)◦/x〉y →Gc y = y◦
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Case p2: t(u, l, (x)λy.v)→ λy.tLu, l, (x)vM.

t(u, l, (x)λy.v)◦ = 〈(t◦u◦, l)◦/x〉λy.v◦
→Lamb λy.〈(t◦u◦, l)◦/x〉v◦
→∗x λy.tLu, l, (x)vM◦ (Lemma 4.29.7)
= (λy.tLu, l, (x)vM)◦

Case p3: t(u, l, (x)t0(u0, l0, (y)v))→ tLu, l, (x)t0M(tLu, l, (x)u0M, tLu, l, (x)l0M, (y)v), if
x 6∈ v.

We do the case v 6= y (the case v = y is simpler). First we consider the subcase
where x 6∈ t0, x 6∈ u0, and x /∈ l0.22

t(u, l, (x)t0(u0, l0, (y)v))◦

= 〈(t◦u◦, l)◦/x〉〈(t◦0u◦0, l0)◦/y〉v◦
→Gc 〈(t◦0u◦0, l0)◦/y〉v◦ (x /∈ (t◦0u

◦
0, l0)◦, x /∈ v◦, by x /∈ t0, u0, l0, v and Lemma 4.29.1)

= t0(u0, l0, (y)v)◦

= tLu, l, (x)t0M(tLu, l, (x)u0M, tLu, l, (x)l0M, (y)v)◦ (x /∈ t0, u0, l0)

Now we consider the subcase where x ∈ t0 or x ∈ u0 or x ∈ l0.

t(u, l, (x)t0(u0, l0, (y)v))◦

= 〈(t◦u◦, l)◦/x〉〈(t◦0u◦0, l0)◦/y〉v◦
→Comp 〈〈(t◦u◦, l)◦/x〉(t◦0u◦0, l0)◦/y〉〈(t◦u◦, l)◦/x〉v◦

(x ∈ (t◦0u
◦
0, l0)◦,by Lemma 4.29.1 and x ∈ t0, or x ∈ u0, or x ∈ l0)

→Gc 〈〈(t◦u◦, l)◦/x〉(t◦0u◦0, l0)◦/y〉v◦ (x /∈ v◦, by x /∈ v and Lemma 4.29.1)
→∗x 〈(〈(t◦u◦, l)◦/x〉(t◦0u◦0), tLu, l, (x)l0M)◦/y〉v◦ (Lemma 4.29.8)
→App 〈(〈(t◦u◦, l)◦/x〉t◦0〈(t◦u◦, l)◦/x〉u◦0, tLu, l, (x)l0M)◦/y〉v◦
→∗x 〈(tLu, l, (x)t0M◦tLu, l, (x)u0M◦, tLu, l, (x)l0M)◦/y〉v◦ (Lemma 4.29.3/7)
= tLu, l, (x)t0M(tLu, l, (x)u0M, tLu, l, (x)l0M, (y)v)◦

Case q: t(u, u0 :: l, (x)v)→ t(u, [], (y)y)(u0, l, (x)v).
Assume v 6= x. (It is analogous if v = x.)

t(u, u0 :: l, (x)v)◦ = 〈((t◦u◦)u◦0, l)◦/x〉v
= 〈(t(u, [], (y)y)◦u◦0, l)

◦/x〉v
= (t(u, [], (y)y)(u0, l, (x)v))◦

Notice that the second step would fail if, in the definition of mapping ◦ for gm-
applications, we uniformly generated an explicit substitution.

Let us consider the following inductive case: t0(u0, l0, (x)v0)→q t0(u0, l0, (x)v1),
with v0 →q v1.

t0(u0, l0, (x)v0)◦ = 〈(t◦0u◦0, l0)◦/x〉v◦0 (v0 6= x, as v0 →q v1)
→∗x 〈(t◦0u◦0, l0)◦/x〉v◦1 (IH)
→∗x t0(u0, l0, (x)v1)◦ (Lemma 4.29.6)

22It is this subcase that does not go through, if we consider permutation p′3 (see Subsection 2.4),
and try to adapt the argument in order to obtain SN of →βp′ . Note that if x /∈ t0, u0, l0, v,
LHS◦ = 〈(t◦u◦, l)◦/x〉〈(t◦0u◦0, l0)◦/y〉v◦ and now this term: (i) can be reduced to t0(u0, l0, (y)v)◦

in the same way, but, unlike for p3, this expression is not reducible to RHS◦ of p′3; (ii) cannot be
reduced with Comp, as the side condition of this rule is not met.
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Theorem 4.31 Strong normalisation. →βµpq is SN on typable terms.

Proof. Follows from the previous proposition and the facts that λex is SN, ◦
preserves typing (Proposition 4.30), and →q is SN.

5. CONCLUSION

Contributions. From a strict proof-theoretical point of view, this work is a direct
successor of [Dyckhoff and Pinto 1999; Schwichtenberg 1999], both for the aspects
that remain constant (the kind of results sought w.r.t permutative conversions, the
technical realisation via term annotations, the insistence on the multiary variant
of the sequent calculus), and for novelties introduced (allowance and study of cuts
and cut-elimination rules). By not restricting itself to the cut-free fragment, and
by the inclusion of a thorough account of the connection with natural deduction
(an involuntary development that proved to be necessary), this paper immediately
becomes a revisitation, for the implicational fragment of intuitionisitic logic, and
with totally new techniques, of Zucker and Pottinger classical results [Zucker 1974;
Pottinger 1977]. Indeed, proof identity (i.e., equal interpretation into natural de-
duction) is characterized via a well-behaved set of permutation rules; and even
normalisation (if by this we mean β-reduction in the λ-calculus) is proved to be an
“homomorphic” image of cut-elimination.

An alternative way of seeing our contribution is as the development of the meta-
theory of the extension λJm of the λ-calculus, which proves to be a very useful
task because λJm is, not merely a device of proof annotations, but mainly a rich
and meaningful computational interpretation of (our fragment of) sequent calculus.
In this vein, we established all the main theoretical properties, of permutative
conversions and reduction rules, both in isolation and in combined systems; and
gave an account of the “internal structure” of the system, that is, of how several
meaningful systems coexist inside λJm, thereby making precise the connection with
the λ-calculus itself. Through this development the richness of the system is made
more precise, although enough evidence for that richness is the mere coexistence of
permutative conversions and reduction rules, and among the latter the coexistence
of an already complex β-rule with rules π and µ.

Related and future work. In λJm cuts have a restricted form (the right cut-
formula is main in a left introduction), precisely that form that is closer to the
elimination rule of natural deduction, and that corresponds to (an enlarged con-
cept of) application. Therefore, λJm is still a fragment of the full, multiary sequent
calculus where all forms of cut are allowed. This is made precise in [Esṕırito Santo
et al. 2007] by means of a “spectrum” of successively stronger proof systems (pre-
sented as typed λ-calculi), leading from the λ-calculus to the intuitionistic fragment
of λµµ̃ [Curien and Herbelin 2000] — a type theoretic presentation of classical se-
quent calculus LK —, a spectrum where λJm finds its place (under a slightly
different clothing) approximately half way between the end-points. Essentially,
systems stronger than λJm in the spectrum are characterised by the fact that cut
plays a double role, either as an application or as an explicit substitution, and, ac-
cordingly, the β-rule becomes a rule for the generation of substitution, whose actual
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execution if left to another, complementary reduction rule.23 So, what makes λJm

closer in spirit to the ordinary λ-calculus, and therefore what gives it an identity
and character, is precisely the fact that only some forms of cut are primitive.24

Combining permutation and reduction rules is necessary if one wants to extract
from a λJm-term, not only a cut-free expression, but also a permutation-free one; or,
not only a λ-term, but also a β-normal one. In this paper we developed a complete
study of all the combinations of both kinds of rules capturing the class of β-normal
λ-terms. Nonetheless, the richness of λJm allows to consider other meaningful
rules. [Esṕırito Santo et al. 2006] initiates a study of combined systems involving
these new rules, which allows the identification inside λJm of other interesting
classes of normal forms for sequent calculus (including those of [Herbelin 1995]
and of [Mints 1996]) and is computationally connected to the fact that multiple
function application finds in λJm a wealth of alternative representations. However,
the complexity of [Esṕırito Santo et al. 2006] shows that the topic is beyond the
scope of the present article, and in need of an expanded and future account.

Our presentation of λJm as a system where the multiary λ-calculus and the
λ-calculus with generalised application coexist, together with the fact that permu-
tative conversions are separated into two kinds, each dedicated to the elimination
of one of the features of multiarity and generality, may give the wrong impres-
sion that λJm is a system erected from the λ-calculus by the modular addition of
those two dimensions. But the µ-reduction rule, and its replacing of certain uses
of the generality facility by a heavier use of lists, shows that multiarity and gen-
erality are overlapping. The study of these “structural overlaps”, already started
in [Esṕırito Santo and Pinto 2004] and matured in [Esṕırito Santo et al. 2006], led
to the re-definition and re-classification of permutation and reduction rules, and to
the refinement of the view of λJm as a two-dimensional system. This topic also
deserves an expanded and future treatment.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/tocl/20YY-V-N/p1-.
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APPENDIX

A. PROOF TRANSFORMATIONS

In this appendix we show the proof transformations associated to each reduction
rule and permutative conversion, as required by the proofs of Theorems 2.7 and 2.9
on subject reduction and subject permutation.

Preliminaries. In defining a proof transformation, we use the admissible rules
proved in Propositions 2.4 and 2.5. This should be understood as indicating that the
transformation also comprises the obtention of the conclusion of the admissible rule
by the transformation of its premisses, according to the process that is associated
to the admissibility of the rule, and that constitutes the content of the proof of that
admissibility.

The content of the proof of Proposition 2.4, concerned with the admissibility
of the forms (8) of mid-cut, is a certain transformation on derivations: given a
derivation D1 of Γ ` t : A, and given another derivation D2 of x : A,Γ ` v : B
(resp. of x : A,Γ;C ` l : B), there is a derivation D3 of Γ ` s(t, x, v) : B (resp. of
Γ;C`s′(t, x, l) :B), obtained from D1 and D2 by an obvious (but tedious to define)
process that we describe as the complete permutation, along the subderivation of
the right premiss, of the implicit cut of the form of the left (resp. right) figure of
(8) with premisses derived by D1 and D2.

The content of the proof of Proposition 2.5, concerned with the admissibility of
the form (9) of head-cut, is another transformation of derivations. Given derivations
D1 of Γ;C ` l : A1 ⊃ A2 and D2 of Γ ` u′ : A1 and D3 of Γ;A2 ` l′ : B, there is a
derivation D4 of Γ;C ` a(l, u′, l′) :B, obtained from D1, D2 and D3 by an obvious
process that we describe as the complete permutation, along the subderivation of
the left premiss, of the implicit cut of the form (10) with premisses derived by D1,
D2 and D3.

For readability, in proof transformations we omit contexts as well as term and list
annotations from sequents; we use terms and lists for naming derivations instead,
and we choose these names exactly as in the definitions of reduction rules and
permutative conversions (recall Definition 2.6 and Subsection 2.4). In addition, we
do not make explicit the uses of the weakening and strengthening rules.

Reduction rules.
Case β1. The LHS corresponds to a derivation of the form:

t
...

x :A ` B
` A⊃B Right

u
...
` A ;B`B Ax

v
...

y :B ` C
;A⊃B`C lm-Left

` C head-cut

In such cut inference the cut formula is main in both premisses. This determines a
key step in cut-elimination and the elimination of this cut produces two mid-cuts:

u
...
` A

t
...

x :A ` B
` B mid-cut

v
...

y :B ` C
` C mid-cut
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Case β2. The derivation corresponding to the LHS has the form

t
...

x :A ` B1⊃B2

` A⊃B1⊃B2
Right

u
...
` A

v
...
` B1

l
...

;B2`C
;B1⊃B2`C

Lft

v′

...
y :C ` D

;A⊃B1⊃B2`D
lm-Left

` D head-cut

Again, we are in the presence of a key step in cut-elimination. However, in this
case one of the cuts generated assumes the particular form corresponding to a
gm-elimination:

u
...
` A

t
...

x :A ` B1⊃B2

` B1⊃B2
mid-cut

v
...
` B1

l
...

;B2`C

v′

...
y :C ` D

;B1⊃B2`D
lm-Left

` D head-cut

Case π. The LHS corresponds to a derivation of the form

t
...

` A⊃B

u
...
` A

l
...

;B`C

v
...

x :C ` D1⊃D2

;A⊃B`D1⊃D2
(a)

` D1⊃D2
h-cut

u′

...
` D1

l′

...
;D2`E

v′

...
y :E ` F

;D1⊃D2`F
(b)

` F h-cut

where (a) and (b) are lm-Left inferences. Since the left cut formula of the outer cut
is not main, this cut is left-permutable. The RHS of π results by permuting the
outer cut above the other cut and inference (a):

t
...

` A⊃B

u
...
` A

l
...

;B`C

v
...

x :C ` D1⊃D2

u′

...
x :C ` D1

l′

...
x :C;D2`E

v′

...
y :E, x :C ` F

x :C;D1⊃D2`F
(b)

x :C ` F h-cut

;A⊃B`F (a)

` F h-cut

Case µ. The LHS corresponds to a derivation of the form

t
...

` A⊃B

u
...
` A

l
...

;B`C1⊃C2

u′

...
` C1

l′

...
;C2`D

v
...

y :D ` E
x :C1⊃C2 ` E

m-Left

;A⊃B`E lm-Left

` E head-cut

Notice that the variable x does not occur in u′, l′, v and the inner gm-application
is an m-Left introduction whose main formula is active in the next inference. So
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formula C1 ⊃ C2, instead of being introduced by an m-Left inference, could have
been introduced in a linear fashion by a Lft inference:

t
...

` A⊃B

u
...
` A

l
...

;B`C1⊃C2

u′

...
` C1

l′

...
;C2`D

;C1⊃C2`D
Lft

;B`D aux-h-cut

v
...

y :D ` E
;A⊃B`E lm-Left

` E head-cut

This construction requires subderivations indicated by u′, l′ and v to be strength-
ened by erasure of declaration x :C1 ⊃ C2.

Permutative conversions.
Case p1. The LHS corresponds to a derivation of the form:

t
...

y :D `A⊃B

u
...

y :D `A

l
...

y :D;B`C x :C, y :D`D Axiom

y :D;A⊃B`D lm-Left

y :D `D h-cut

The endsequent can in this case simply be obtained by:

y :D`D Axiom

Case p2. The LHS corresponds to a derivation of the form:

t
...

` A⊃B

u
...
` A

l
...

;B`C

v
...

x :C, y :D1 ` D2

x :C ` D1⊃D2
Right

;A⊃B`D1⊃D2
lm-Left

` D1⊃D2
h-cut

If x ∈ v, the effect of the transformation is to permute the right inference down
past the two inferences lm-Left and h-cut:

t
...

y :D1 ` A⊃B

u
...

y :D1 ` A

l
...

y :D1;B`C

v
...

x :C, y :D1 ` D2

y :D1;A⊃B`D2
lm-Left

y :D1 ` D2
h-cut

` D1⊃D2
Right

If x /∈ v, admissibility of strengthening justifies the following derivation:

v
...

y :D1 ` D2

` D1⊃D2
Right
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Consider now the special case of permutation p2 where x ∈ v and where t is a
variable, say z. Its RHS corresponds to

u
...

z :A⊃B ` A

l
...

z :A⊃B;B`C

v
...

y :D1, x :C, z :A⊃B ` D2

x :C, z :A⊃B ` D1⊃D2
Right

z :A⊃B ` D1⊃D2
m-Left

The transformation permutes the right inference below a multiary left inference:

u
...

y :D1, z :A⊃B ` A

l
...

y :D1, z :A⊃B;B`C

v
...

x :C, y :D1, z :A⊃B ` D2

y :D1, z :A⊃B ` D2
m-Left

z :A⊃B ` D1⊃D2
Right

This transformation relates to permutative conversion (5) of [Schwichtenberg 1999]
and, in the unary case (l = []), to the permutation of an implication right inference
below an ordinary implication left inference.

Case p3. The LHS corresponds to a derivation of the form:

t1
...

`A1⊃B1

u1
...
`A1

l1
...

;B1`C1

D1

x :C1`D
;A1⊃B1`D

lm-Left

`D h-cut

(23)

where D1 is

t2
...

x :C1`A2⊃B2

u2
...

x :C1`A2

l2
...

x :C1;B2`C2

v
...

y :C2, x :C1`D
x :C1;A2⊃B2`D

lm-Left

x :C1`D
h-cut

(24)

We illustrate what happens if x ∈ t2 and x ∈ u2. (If this is not the case, we have
simplified situations.) The corresponding RHS is

D2

` A2⊃B2

D3

` A2

D4

;B2`C2

v
...

y :C2 ` D
;A2⊃B2`D

lm-Left

` D h-cut

(25)

where D2 is

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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t1
...

` A1⊃B1

u1
...
` A1

l1
...

;B1`C1

t2
...

x :C1 ` A2⊃B2

;A1⊃B1`A2⊃B2
lm-Left

` A2⊃B2
h-cut

the subderivation D3 is the same as D2, except that t2 (resp. A2 ⊃ B2) is replaced
by u2 (resp. A2) and subderivation D4 is obtained from derivations represented by
t1, u1, l1 and l2 by an application of the following admissible rule

Γ` t :A ⊃ B Γ`u :A Γ;B` l :C y :C,Γ;E` l′ :D
Γ;E` tLu, l, (y)l′M :D

(26)

(The admissibility of this rule is an easy induction on l′.)
The role of p3 is to permute the block of two inferences lm-Left and h-cut (24)

down past the block of two inferences lm-Left and h-cut (23), swapping in particular
the relative order of the head-cuts on A1 ⊃ B1 and on A2 ⊃ B2. In order to
perform the permutation, block (23) needs to be propagated to the derivations of
the premises of the block (24) represented by t2, u2, l2 (recall x 6∈ v). In the first
two cases it suffices to add block (23) at the end of the derivations corresponding
to t2, u2, replacing D by A2 ⊃B2 or A2 respectively. In the last case recall that
the derivation corresponding to l2 is a tower of Lft inferences. Here propagation is
achieved thus: for each of these Lft inferences, add the block (23) at the end of the
derivation of its minor premise, whenever x occurs in the term representing this
derivation; this is the proof transformation associated with the admissibility of rule
(26).

Consider now the particular case of p3 where t1 and t2 are variables, say z1 and
z2. Its LHS corresponds to two multiary left inferences introducing z1 : A1 ⊃B1

and z2 : A2⊃B2:

u1
...

Γ `A1

l1
...

Γ;B1`C1

u2
...

Γ, x :C1`A2

l2
...

Γ, x :C1;B2`C2

v
...

Γ, x :C1, y :C2`D
Γ, x :C1 ` D

m-Left

Γ ` D m-Left

where Γ = {z1 : A1 ⊃ B1, z2 : A2 ⊃ B2}. In this case, and assuming x ∈ u2, the
transformation on derivations associated with p3, as defined before, can be thought
of as the permutation of the two multiary left inferences, resulting in

u1
...

Γ `A1

l1
...

Γ;B1`C1

u2
...

Γ, x :C1`A2

Γ ` A2
m-Left D4

Γ;B2`C2

v
...

Γ, y :C2 ` D
Γ ` D m-Left

as long as derivation D2 of (25) is replaced by an axiom (because declaration z2 :
A2⊃B2 is in the context) so that 25 is an m-Left inference.
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Case q. The LHS corresponds to a derivation of the form

t
...

` A⊃(B1⊃B2)

u
...
` A

v
...
` B1

l
...

;B2`C
;B1⊃B2`C

Lft

v′

...
x :C ` D

;A⊃(B1⊃B2)`D
lm-Left

` D h-cut

and the RHS corresponds to a derivation of the form

D
`B1⊃B2

v
...
`B1

l
...

;B2`C

v′

...
x :C`D

;B1⊃B2`D
lm-Left ,

` D h-cut

D =

t
...

`A⊃(B1⊃B2)

u
...
`A ;B1⊃B2`B1⊃B2

Ax
y :B1⊃B2`B1⊃B2

Axiom

;A⊃(B1⊃B2)`B1⊃B2
lm-Left .

`B1⊃B2
h-cut

In contrast to p2 and p3, the proof transformation associated to (q) does not
have the flavour of permuting inferences past other inferences. This transformation
forces the main formula B1 ⊃ B2 of a Lft inference to be the main formula of a
linear multiary left inference. As a consequence, B1 ⊃ B2 also becomes the cut-
formula of a new head-cut, the right subderivation D of which is another head-cut,
the descendant of the original head-cut with cut-formula A⊃(B1⊃B2). The middle
premise of the displayed lm-Left inference of D has no instance of Lft.

B. RELATIONSHIP WITH λ-CALCULUS

Herbelin’s λ-calculus (and its type system, the sequent calculus LJT ) [Herbelin
1995] was important for the present paper because we recognised in λ syntactic
solutions for the implementation of multiarity. λ continues to be used in literature
as a presentation of the intuitionistic sequent calculus equipped with a computa-
tional interpretation, so a natural question is: what are the differences and relative
advantages between λ and λJm?

Roughly speaking, the difference between the two systems boils down to this: λ
has a restricted form of (primitive) left introduction, whereas λJm has a restricted
form of (primitive) cut. In λ, left introduction corresponds to u :: l, while more
general forms are derivable with the help of cut; in λJm, in addition to u :: l,
one has the particular forms of gm-application x(u, (y)v) and x(u, l, (y)v) that cor-
respond to ordinary and multiary left introduction. On the other hand, in λJm

gm-application corresponds to a cut with righ cut-formula main in a left introduc-
tion (recall figure (6)), while the unconstrained cut is only admissible (as witnessed
by the admissibility of the typing rule for substitution - Proposition 2.4); in λ the
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general form of cut is primitive, and that is why λ has an explicit substitution
construction.

We now give some elements of a more formal comparison between λ and λJm.
Expressions of Herbelin’s λ-calculus are, as those of λJm, separated into terms

and lists, and are given by:

t, u, v ::= ŷ l |λx.t | tl | v{x := t}
l ::= [] |u :: l

We are omitting two list constructors for simplicity. In addition to λ-abstraction,
the term constructors are ŷ l (dereliction), tl (head-cut) and v{x := t} (mid-cut),
with typing rules

y :A,Γ;A` l :B
y :A,Γ` ŷ l :B Der

Γ` t :A Γ;A` l :B
Γ` tl :B h-cut

Γ` t :A x :A,Γ`v :B

Γ`v{x := t} :B
m-cut

In λ there are reduction rules to eliminate both forms of cuts. Mid-cuts are explicit
substitutions and the reduction rules to eliminate them correspond to steps in the
execution of explicit substitution.

We consider the question of mapping λ into λJm. Insofar lists are restricted to
the forms [] and u :: l, the following suffices for a type preserving mapping (whose
range is actually contained in λm):

ŷ [] ; y

ŷ (u :: l) ; y(u, l)

v{x := t} ; s(t, x, v)

t[] ; t

t(u :: l) ; t(u, l)

The cut-free fragment of λ is, of course, the fragment where constructors tl
and v{x := t} are omitted. The interpretation of dereliction given by the first
two clauses above establishes a bijection between cut-free λ-terms and the normal
forms of λm as observed in [Esṕırito Santo 2002a]. The interpretation of mid-cut
by meta-substitution means that the reduction steps for the explicit execution of
substitution in λ are mapped to equations in the target.

Let us now turn into the question of mapping λJm into λ. There is an interpre-
tation determined by the following transformations:

y ; ŷ [] (27)

t(u, l, (x)v) ; v{x := t(u :: l)} (28)

Thus gm-application is interpreted as explicit substitution . The same interpreta-
tion was given in [Schwichtenberg 1999] to vx{y, u :: l}, i.e. y(u, l, (x)v).
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In terms of inference rules, (28) corresponds to interpreting gm-eliminations as
the following combination of inferences in λ:

Γ` t :A ⊃ B
Γ`u :A Γ;B` l :C
Γ;A ⊃ B`u :: l :C

Lft

Γ` t(u :: l) :C
h-cut

x :C,Γ`v :D

Γ`v{x := t(u :: l)} :D
m-cut

(29)

This should be compared with (6): instead of a linear multiary left inference, one
has a Lft-inference plus a mid-cut.

Interpretation (28) is related to the translation of LJ left inferences into infer-
ences of λ given in [Herbelin 1995]. Writing unary left inferences by means of
λJm-terms, Herbelin’s translation reads

y(u, (x)v) ; v{x := ŷ [u]} , (30)

and is readily extended to multiary left inferences thus:

y(u, l, (x)v) ; v{x := ŷ (u :: l)} . (31)

In the case t = y, (31) is a slight improvement over (28) in the sense that

y(u, l, (x)v) ; v{x := ŷ [](u :: l)} (32)

→∗ v{x := ŷ (u :: l)} , (33)

where (32) is by (27) and (28), and (33) is a reduction allowed in λ.
The interpretation (28) shows that λ, or rather its type system, proves the same

logical sequents as the type system of λJm. But there are problems with interpreta-
tion (28) as a mapping between two structures, problems which are certainly shared
to a large extent by Herbelin’s interpretation (30) of LJ . The cut-free fragment of
λ is permutation-free [Dyckhoff and Pinto 1999] and, accordingly, is small and has
no notion of permutative conversion. So it is not surprising that interpretation (28)
does not preserve cut-freenees, and maps permutative conversion steps, at best,
to cut-elimination steps (but the simulation of p3-permutations poses problems, as
it would require the propagation of a substitution inside another substitution, a
feature not available in λ). Finally, also the simulation of cut-elimination steps is
problematic. For instance, a π-step is mapped to

v′{y := v{x := t(u :: l)}(u′ :: l′)} → v′{y := v(u′ :: l′)}{x := t(u :: l)} ,

a step for enlarging the scope of substitution {x := t(u :: l)} not reproducible by
the cut-elimination rules of λ.

C. RESULTS ON PERMUTATIVE CONVERSIONS

In this appendix we present, in the first subsection, the proofs of the main results
on permutative conversions, established in Section 4.1 in terms of mapping φ; and
detail, in the second subsection, analogous results for mappings p, q, pm and qJ.
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C.1 Proofs of main results

Firstly we introduce some basic facts about φ used throughout.

Lemma C.1. For all t, u, v, v1, v2 ∈ T Jm, l ∈ LJm:

(1 ) φ(t(u)) = φ(t)(φ(u));

(2 ) φ(t(u, l, (x)v)) = s(φ(t(u, l)), x, φ(v)) = φ(tLu, l, (x)vM);
(3 ) φ(s(t, x, v)) = s(φ(t), x, φ(v)) and

φ′(s(φ(t), x, φ(v1)), s(φ(t), x, φ(v2)), s′(t, x, l), y, s(φ(t), x, φ(v))) =
s(φ(t), x, φ(v1(v2, l, (y)v))).

Proof. Part 1 is by a simple calculation:

φ(t(u)) = φ′(φ(t), φ(u), [], x, φ(x)) = s(φ(t)(φ(u)), x, x) = φ(t)(φ(u)).

The first equality of 2 follows by routine induction on l and the second equality
follows then easily from the first. The two conjuncts of 3 are proved together, by
simultaneous induction on v and l.

Now we address two key properties in establishing the permutability theorem for
mapping φ. These properties assert that permutation reduction is invariant under
φ (Proposition C.2) and that each term can be reduced to its φ-image using solely
permutations (Proposition C.4).

Proposition C.2. If t→∗pq u then φ(t) = φ(u), for all t, u ∈ T Jm.

Proof. The proof follows by induction on the relation→∗pq. Below we consider
the base cases corresponding to the various permutations.

Case p1. φ(t(u, l, (x)y))
= s(φ(t(u, l)), x, φ(y)) (Lemma C.1.2)
= φ(y) x 6= y

Case p2. φ(t(u, l, (x)λy.v))
= s(φ(t(u, l)), x, φ(λy.v)) (Lemma C.1.2)
= λy.s(φ(t(u, l)), x, φ(v))
= λy.φ(tLu, l, (x)vM) (Lemma C.1.2)
= φ(λy.tLu, l, (x)vM)

Case p3.

φ(t1(u1, l1, (x)t2(u2, l2, (y)v)))
= s(φ(t1(u1, l1)), x, φ(t2(u2, l2, (y)v))) (Lemma C.1.2)
= φ′(s(φ(t1(u1, l1)), x, φ(t2)), s(φ(t1(u1, l1)), x, φ(u2)), s′(t1(u1, l1), x, l2), y, φ(v))

(Lemma C.1.3 and x 6∈ v)
= φ′(φ(t1(u1, l1, (x)t2)), φ(t1(u1, l1, (x)u2)), t1Lu1, l1, (x)l2M, y, φ(v))

(Lemma C.1.2 and the fact
φ′(t, u, s′(t1(u1, l1), x, l2), y, v) = φ′(t, u, t1Lu1, l1, (x)l2M, y, v)

proved by induction on l2)
= φ(t1Lu1, l1, (x)t2M(t1Lu1, l1, (x)u2M, t1Lu1, l1, (x)l2M, (y)v)) (Lemma C.1.2)

Case q. φ(t(u, v :: l, (x)v′))
= φ′(φ(t)(φ(u)), φ(v), l, x, φ(v′))
= φ(t(u)(v, l, (x)v′)) (Lemma C.1.1)
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Proposition C.4 is established with the help of the following auxiliary results.

Lemma C.3. For all t, u, v ∈ T m, l ∈ Lm, tLu, l, (x)vM→∗p s(t(u, l), x, v).

Proof. Proved together with the fact, for all t, u ∈ T m, l, l0 ∈ Lm,

tLu, l, (x)l0M→∗p s′(t(u, l), x, l0),

by induction on v and l0. We show the cases relative to v.
Observe that if x /∈ v, the LHS and the RHS are both equal to v. Below we

assume x ∈ v.
Case v = x. tLu, l, (x)xM = t(u, l) = s(t(u, l), x, x) .
Case v = λy.v0. tLu, l, (x)λy.v0M = t(u, l, (x)λy.v0) (x ∈ v)

→p2 λy.tLu, l, (x)v0M
→∗p λy.s(t(u, l), x, v0) (IH)
= s(t(u, l), x, λy.v0) .

Case v = t1(u1, l1).

tLu, l, (x)t1(u1, l1)M = t(u, l, (x)t1(u1, l1)) (x ∈ v)
→p3 tLu, l, (x)t1M(tLu, l, (x)u1M, tLu, l, (x)l1M)
→∗p s(t(u, l), x, t1)(s(t(u, l), x, u1), s′(t(u, l), x, l1)) (IH)
= s(t(u, l), x, t1(u1, l1)) .

Proposition C.4. t→∗pq φ(t) for all t ∈ T Jm.

Proof. This result is proved together with the fact

φ(t)(φ(u), l, (x)φ(v))→∗pq s(φ(t(u, l)), x, φ(v)), for all l ∈ LJm and t, u, v ∈ T Jm,

by simultaneous induction on the structure of t and l. We show the cases relative
to l, where direct use of permutations is required.

Case l = []. φ(t)(φ(u), [], (x)φ(v))
= φ(t)(φ(u), (x)φ(v))
→∗p φ(t)Lφ(u), (x)φ(v)M (Lemma 2.8.2)
→∗p s(φ(t)(φ(u)), x, φ(v)) (Lemma C.3)
= s(φ(t(u, [])), x, φ(v)) (Lemma C.1.1)

Case l = u1 :: l1. φ(t)(φ(u), u1 :: l1, (x)φ(v))
→q φ(t)(φ(u))(u1, l1, (x)φ(v))
→∗pq φ(t(u))(φ(u1), l1, (x)φ(v)) (Lemma C.1.1 and IH)
→∗pq s(φ(t(u)(u1, l1)), x, φ(v)) (IH)
= s(φ(t(u, u1 :: l1)), x, φ(v)) (Lemma C.1.1)

Now we prove the main theorems about permutations. This is done with the
help of Propositions C.2 and C.4. We start with the relationship between →pq and
the kernel of φ.

Theorem C.5 Permutability. φ(t1) = φ(t2) iff t1 ↔∗pq t2, for all t1, t2 ∈
T Jm.
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56 · J. Esṕırito Santo and L. Pinto

Proof. Proposition C.2 guarantees φ(t1) = φ(t2) whenever t1↔∗pq t2. As to the
only if part, we use Proposition C.4, obtaining t1→∗pq φ(t1) and t2→∗pq φ(t2) and
thus, as by hypothesis φ(t1) = φ(t2), t1 and t2 are inter-permutable.

The pq-normal forms are the λ-terms.

Theorem C.6 Characterisation of pq-normal forms. For all t ∈ T Jm,
t is pq-normal iff t ∈ T .

Proof. On the one hand, λ-terms have neither p or q-redexes and so they are
pq-normal. Consider, on the other hand, that t is pq-normal. By Proposition C.4,
t →∗pq φ(t) and thus the normality of t implies t = φ(t). The proof concludes
observing that the co-domain of φ is T .

Now the two main properties of relation →pq are established.

Theorem C.7 Confluence. →pq is confluent.

Proof. Assuming t→∗pq t1 and t→∗pq t2, by Proposition C.4 follows that t1→∗pq φ(t1)
and t2→∗pq φ(t2). Yet by Proposition C.4 we have t→∗pq φ(t) and we can now use
Proposition C.2 to conclude that φ(t1) = φ(t) = φ(t2).

Theorem C.8 Termination. →pq is terminating.

Proof. We introduce notions of weight w(t) and w(l), for terms and lists of
λJm, as follows:

w(x) = 1 w([]) = 0
w(λx.t) = 1 + w(t) w(u :: l) = 2 + w(u) + w(l)

w(t(u, l, (x)v)) = w(v)(w(t) + w(u) + w(l) + 1)

Note that w(t(u, l, (x)v)) ≥ w(tLu, l, (x)vM). Each permutation can be shown to
have a RHS of weight lower than its LHS and thus every sequence of permutations
must be finite.

Case p1: w(t(u, l, (x)y)) = w(t) + w(u) + w(l) + 1 > 1 = w(y) .
Case p2: w(t(u, l, (x)λy.v))

= (1 + w(v))(w(t) + w(u) + w(l) + 1)
> 1 + w(v)(w(t) + w(u) + w(l) + 1)
≥ w(λy.tLu, l, (x)vM) .

Case p3:

w(t1(u1, l1, (x)t2(u2, l2, (y)v)))
= w(v)( (w(t2) + w(u2))(w(t1) + w(u1) + w(l1) + 1)+

(w(l2) + 1)(w(t1) + w(u1) + w(l1)) + w(l2) + 1)
> w(v)((w(t2) + w(u2))(w(t1) + w(u1) + w(l1) + 1) + w(t1Lu1, l1, (x)l2M) + 1)
≥ w(t1Lu1, l1, (x)t2M(t1Lu1, l1, (x)u2M, t1Lu1, l1, (x)l2M, (y)v))

where the inequality step follows from the fact
w(t1Lu1, l1, (x)l2M) < (w(l2) + 1)(w(t1) + w(u1) + w(l1)) + w(l2),

which is proved by induction on l2.
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Case q: w(t(u, v :: l, (x)v′))
= w(v′)(w(t) + w(u) + 2 + w(v) + w(l) + 1)
> w(v′)(w(t) + w(u) + 1 + w(v) + w(l) + 1)
= w(t(u)(v, l, (x)v′)) .

Since →pq is confluent and terminating, each λJm-term t has a unique normal
form that we denote by ↓pq (t). The rewriting system →pq calculates φ.

Theorem C.9 Representation of φ. φ(t) =↓pq (t), for all t ∈ T Jm.

Proof. By Proposition C.4, t→∗pq φ(t) and φ(t) is a normal form.

C.2 Other results

Propositions C.10, C.11, C.12 and C.13 below are the analogues to p, q, pm and
qJ respectively of Propositions C.2 and C.4.

Proposition C.10. For all t, u ∈ T J:

(1 ) if t→∗pu then p(t) = p(u);

(2 ) t→∗pp(t).

Proof. From Proposition C.2, if t→∗p u, φ(t) = φ(u). The proof of 1 concludes
observing that p is the restriction of φ to λJ-terms.

In order to prove 2, observe first that t→∗pq φ(t) = p(t) by Proposition C.4. The
proof concludes observing that λJ-terms have no q-redexes and λJ is closed for
p-permutations

Proposition C.11. For all t, u ∈ T m:

(1 ) if t→∗q u then q(t) = q(u);

(2 ) t→∗q q(t).

Proof. Analogous to the proof of the proposition above.

Proposition C.12. For all t, u ∈ T Jm:

(1 ) if t→∗pu then pm(t) = pm(u);

(2 ) t→∗ppm(t).

Proof. As to 1, the cases p1 and p2 follow as the corresponding cases in the
proof of Proposition C.2, simply by replacing φ by pm and with the help of the
following analogue of Lemma C.1.2 for pm,

pm(t(u, l, (x)v)) = s(pm(t(u, l)), x,pm(v)) = pm(tLu, l, (x)vM) , (34)

which results by simple calculations. The case p3 uses additionally the fact

pm′(tLu, l, (x)l0M) = s′(pm(pm(t)(pm(u),pm(l))), x,pm′(l0)) , (35)
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proved by induction on l0. The case p3 is as follows:

pm(t1(u1, l1, (x)t2(u2, l2, (y)v)))
= s(pm(t1)(pm(u1),pm′(l1)), x,pm(t2)(pm(u2),pm′(l2), (y)pm(v)))
= s(pm(t1(u1, l1, (x)t2))(pm(t1(u1, l1, (x)u2)),pm′(t1Lu1, l1, (x)l2M)), y,pm(v))

(Substitution lemma, x /∈ v and fact (35))
= pm(t1Lu1, l1, (x)t2M(t1Lu1, l1, (x)u2M, t1Lu1, l1, (x)l2M, (y)v)) (Fact (34))

Statement 2 of this proposition is proved together with property

l→∗ppm′(l),

by simultaneous induction on t and l. We illustrate the case where t is a gm-
application.

t1(u1, l1, (x)v1) →∗p pm(t1)(pm(u1),pm′(l1), (x)pm(v1)) (IH)
→∗p pm(t1)Lpm(u1),pm′(l1), (x)pm(v1)M (Lemma 2.8.2)
→∗p s(pm(t1)(pm(u1),pm′(l1)), x,pm(v1)) (Lemma C.3)
= pm(t1(u1, l1, (x)v1)).

Proposition C.13. For all t, u ∈ T Jm:

(1 ) if t→∗q u then qJ(t) = qJ(u);

(2 ) t→∗q q(t).

Proof. The proof of 1 is analogous to the case corresponding to permutation
(q) in the proof of Proposition C.2. It requires the fact

qJ(t(u)) = qJ(t)(qJ(u)), for all t, u ∈ T Jm.

Statement 2 is proved together with property

t(u, l, (x)v)→∗q qJ′(t, u, l, x, v), for all t, u, v ∈ T J and for all l ∈ LJ

by simultaneous induction on t and l; the proof is analogous to the proof of Propo-
sition C.4, but simpler.

The sequence of theorems in Subsection 4.1 (Theorems C.6 to C.9) can now be
analogously established for mappings p, q, pm and qJ, with te help of Propositions
C.10, C.11, C.12 and C.13.

Theorem C.14. For each of the following combinations of F , P , S and S ′

F P S S ′

pm p λJm λm

qJ q λJm λJ
p p λJ λ
q q λm λ

the properties below hold.

(1 ) For all t1, t2 ∈ S, F (t1) = F (t2) iff t1 ↔∗P t2.

(2 ) For all t ∈ S, t is a P -normal form iff t ∈ S ′.
(3 ) →P is confluent and terminating in S and, for all t ∈ S, ↓P (t) = F (t).
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