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Notation 
 

( );fi fi fiL αΑ  Area of the projection of the i-th semi-conical surface on a plane orthogonal to the laminate 

lin
fiΑ  area ascribed to the i-th semi-ellipse underlying the line whose equation is 2wY b=  

,
lin
fi kΑ  area ascribed to the i-th semi-ellipse of the k-th configuration underlying the line whose 

equation is 2wY b=  

nlin
fiΑ  Area ascribed to the i-th semi-ellipse underlying the i-th semi-elliptic curve ( )iY X  

,
nlin
fi kΑ  

area ascribed to the i-th semi-ellipse of the k-th configuration underlying the i-th semi-
elliptic curve ( ),i kY X  

kΑ  Matrix of the area ascribed to each ellipse in the k-th configuration 

fvA  Area of the FRP shear reinforcement within spacing fs  (after ACI 440.2R 2002) 

EC  Environmental-exposition reduction factor (after ACI 440.2R 2002) 

( );fi fi fiC L α  Equation of the semi-conical surface associated to the i-th laminate 

cD  Diameter of the circular cross section of the strengthened member 

E  Matrix of the coefficients of the equation of the semi-ellipses 

epE  Young’s Modulus of the epoxy adhesive 

fE  Young’s Modulus of the FRP 

( );αfi fi fiE L  Equation of the semi-ellipse intersection of the i-th semi-conical surface with the assumed 
crack plane 

1,i kE  First coefficient of the equation of the i-th semi-ellipse in the k-th configuration 

2,i kE  Second coefficient of the equation of the i-th semi-ellipse in the k-th configuration 

3,i kE  Third coefficient of the equation of the i-th semi-ellipse in the k-th configuration 

4,i kE  Fourth coefficient of the equation of the i-th semi-ellipse in the k-th configuration 

kE  Matrix of the coefficients of the equation of the semi-ellipses in the k-th configuration 

0E  Young’s Modulus of the concrete in tension 

sE  Steel Young’s Modulus 

F  
Matrix of the position fix  in the global reference system and the available bond length fiL  
of each laminate 

kF  matrix F  in the k-th configuration 

G  Matrix of the geometrical properties associated to each i-th semi-cone, in the crack plane 
reference system OXYZ  

fG  FRP bond stress-slip fracture energy 
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fkG  FRP bond stress-slip characteristic fracture energy 

kG  Matrix G  in the k-th configuration 

anL  Anchorage Length 

,an SLSL  Anchorage Length corresponding to the Serviceability Limit State (SLS) 

,an ULSL  Anchorage Length corresponding to the Ultimate Limit State (ULS) 

dL  Length of the shear crack in OXZ  

eL  FRP effective bond length (for Externally bonded, EB) 

fL  Actual total length of the FRP element 

fiL  Available bond length of the i-th laminate 

,fi kL  Available bond length of the i-th laminate in the k-th configuration 

,maxfiL  Maximum value of the available bond lengths for the specified case 

fL  Effective length of an NSM laminate corresponding to an effective strain of 4‰ 

,mintotL  Minimum value of the sum of the effective length of all the NSM laminates/rods crossing 
the crack 

,ij kM  Auxiliary second order coefficient between the i-th and j-th semi-ellipses’ equations in the 
k-th configuration 

kM  Auxiliary matrix of the second order coefficients ,ij kM  in the k-th configuration 

effN  Effective number of laminates intersecting the shear crack (after Nanni) 

fN  Number of laminates crossing the shear crack 

,f kN  Number of laminates crossing the shear crack in the k-th configuration on one side of the 
web 

,f evN  Even integer number of laminates that can cross the CDC 

,f oddN  Odd integer number of laminates that can cross the CDC  

,int
h
fN  Higher integer number of laminates that can cross the Critical Diagonal Crack 

,int
l
fN  Lower integer number of laminates that can cross the Critical Diagonal Crack 

,f realN  Real number of laminates that cross the Critical Diagonal Crack (CDC) 

,ij kN  Auxiliary first order coefficient between the i-th and j-th semi-ellipses’ equations in the k-th 
configuration 

kN  Matrix of the first order coefficients ,ij kN  in the k-th configuration 

OXYZ  Crack plane reference system 

,ij kQ  Auxiliary coefficient between the i-th and j-th semi-ellipses’ equations in the k-th 
configuration 

k
Q  matrix of the coefficients ,ij kQ  in the k-th configuration 

fiR  Radius of the base of the semi-cone associated to the i-th laminate 
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V  Matrix of the NSM shear strength contributions corresponding to each k-th configuration 

cV  Shear strength contribution provided by concrete 

fV  Ultimate shear strength contribution provided by the FRP system 

fiV  Ultimate shear strength contribution provided by th i-th element 

,f kV  NSM shear strength contribution in correspondence of the k-th configuration 

,
DM
f kV  NSM CFRP laminate ultimate shear resistance according to the Debonding Model in the 

k-th configuration 
p
fiV  Ultimate force that can be resisted by the i-th element parallely to its axis 

,
p
fi kV  Shear strength contribution provided by the i-th laminate of the k-th configuration parallely 

to its orientation 

,p cf
fiV  Ultimate force that can be resisted by the i-th element parallely to its axis due to concrete 

tensile fracture 
,p db

fiV  Ultimate force that can be resisted by the i-th element parallely to its axis due to debonding 

,p spl
fiV  Adhesive splitting-based component of the i-th laminate shear strength contribution 

parallely to its orientation 

,p tr
fiV  Ultimate force that can be resisted by the i-th element parallely to its axis due to tensile 

rupture of the element itself 

,max
DM
fV  Analytical maximum contribution to the overall shear resistance by NSM laminates 

according to the DM 

,min
DM
fV  Analytical minimum contribution to the overall shear resistance by NSM laminates 

according to the DM 
exp
fV  Experiemntal contribution to the overall shear resistance by NSM laminates 

,max
PM
fV  Analytical maximum contribution to the overall shear resistance by NSM laminates 

according to the PM 

,min
PM
fV  Analytical minimum contribution to the overall shear resistance by NSM laminates 

according to the PM 

p
kV  Matrix of the shear strength contributions, for the k-th configutation, ascribed to each i-th 

laminate parallely to their orientation 

sV  Shear strength contribution provided by the existing steel stirrups 

RV  Ultimate shear resistance of the RC element 

RdV  Design shear resistance of the strengthened RC element 

,Rd cV  Concrete contribution to the design shear resistance of the strengthened RC element 

,Rd sV  Stirrups contribution to the design shear resistance of the strengthened RC element 

,Rd fV  FRP contribution to the design shear resistance of the strengthened RC element 

,maxRdV  Maximum value of design shear resistance of the strengthened RC element 

SdV  Design shear force 

1fV  NSM FRP shear strength contribution according to debonding (after De Lorenzis) 

2fV  NSM FRP shear strength contribution according to aggregate interlock saving (after De 
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Lorenzis) 

fiX  Position of the laminate along the OX  axis 

,fi kX  fiX  in the k-th configuration 

3
1,
lin
i kX  Abscissa of the left intersection of the i-th semi-ellipse of the k-th configuration with the 

line 2wY b=  constituting effective integration extremity in the linear range 

3
2,
lin
i kX  Abscissa of the right intersection of the i-th semi-ellipse of the k-th configuration with the 

line 2wY b=  constituting effective integration extremity in the linear range 

4
1,
lin
i kX  Value of abscissa ( 0X = ) if constituting effective integration extremity in the linear range 

for the i-th semi-ellipse of the k-th configuration 

4
2,
lin
i kX  Value of abscissa ( dX L= ) if constituting effective integration extremity in the linear 

range for the i-th semi-ellipse of the k-th configuration 

1/ 2
,

lin
ij kX  

Abscissa of the first/second intersection point between the i-th and j-th semi-ellipses of the 
k-th configuration constituting integration extremities for the relevant i-th semi-ellipse in 
the linear range 

1/ 2
,

p
ij kX  Abscissa of the first/second intersection point between the i-th and j-th semi-ellipses in the 

k-th configuration 

lin
kX  Matrix of the abscissa values of the integration extremities in the linear range, for the k-th 

configuration 

1lin
kX  Matrix of the abscissa values of the first intersection point between couples of ellipses 

constituting effective integration extremities in the linear range 

2lin
kX  Matrix of the abscissa values of the second intersection point between couples of ellipses 

constituting effective integration extremities in the linear range 
3lin

kX  Matrix of the abscissa values of the intersection points of the semi-ellipses with the line 

4lin
kX  Matrix of the abscissa values 0X =  or dX L=  constituting effective integration extremity 

in the linear range 
nlin
kX  Matrix of the abscissa values of the integration extremities in the non linear range 

1nlin
kX  

Matrix of the abscissa values of the first intersection point between couples of ellipses 
constituting effective integration extremities in the non linear range 

2nlin
kX  Matrix of the abscissa values of the second intersection point between couples of ellipses 

constituting effective integration extremities in the non linear range 

1/ 2
,

nlin
ij kX  Abscissa of the first/second intersection point between the i-th and j-th semi-ellipses in the 

k-th configuration constituting integration extremities in the non linear range 

3nlin
kX  

Matrix of the abscissa values of the intersection points of the semi-ellipses with the line 
2wY b=  constituting effective integration extremities in the non linear range 

3
1,
nlin
i kX  

Abscissa of the left intersection of the i-th semi-ellipse of the k-th configuration with  the 
line 2wY b=  constituting effective integration extremity in the non linear range 

3
2,
nlin
i kX  

Abscissa of the right intersection of the i-th semi-ellipse of the k-th configuration with  the 
line 2wY b=  constituting effective integration extremity in the non linear range 

4nlin
kX  Matrix of the abscissa values 0X =  or dX L=  constituting effective integration extremity 

in the non linear range  

4
1,
nlin
i kX  Value of abscissa ( 0X = ) if constituting effective integration extremity in the non linear 

range for the i-th semi-ellipse of the k-th configuration 
4

2,
nlin
i kX  Value of abscissa ( dX L= ) if constituting effective integration extremity in the non linear 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 
 

 
 
6                                         Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

range for the i-th semi-ellipse of the k-th configuration 

5nlin
kX  Matrix of the abscissa values of the vertices of the semi-ellipses along their major semi-axis 

constituting effective integration extremity in the non linear range 

5
1,
nlin
i kX  

Value of abscissa of the left vertex of the i-th semi ellipse of the k-th configuration if it 
constitutes an effective integration extremity in the non linear range of the relevant semi-
ellipse 

5
2,
nlin
i kX  

Value of abscissa of the right vertex of the i-th semi ellipse of the k-th configuration if it 
constitutes an effective integration extremity in the non linear range of the relevant semi-
ellipse 

1,
q
i kX  Abscissa of the left intersection point of the i-th semi-ellipse with the line 2wY b=  

2,
q
i kX  Abscissa of the right intersection point of the i-th semi-ellipse with the line 2wY b=  

1p
kX  Matrix storing the abscissa of the first intersection point between each couple of semi 

ellipses in the k-th configuration 

2p
kX  Matrix storing the abscissa of the second intersection point between each couple of semi 

ellipses in the k-th configuration 

q
kX  Matrix storing the abscissa of the left and right intersection points between each semi 

ellipse and the straight line 2wY b=  in the k-th configuration 

oX  Position of the center of the i-th semi-ellipse along the OX  axis 

,oi kX  Position of the center of the i-th semi-ellipse along the OX axis in the tk-th configuration 

( )iY X  General expression of the equation of the i-th semi-ellipse in the OXY  crack plane 
reference system 

( ),i kY X  Equation of the i-th semi-ellipse in the generic k-th configuration in OXY  

2wY b=  Equation of the line trace of the mean plane of the beam on the assumed crack plane 

1,
e

i kY  Ordinate of the i-th semi-ellipse in correspondence of 0X =  in the k-th configuration 

2,
e

i kY  Ordinate of the i-th semi-ellipse in correspondence of dX L=  in the k-th configuration  

e
kY  

Matrix storing the ordinate of each semi-ellipse in correspondence of 0X =  and dX L= , 
in the k-th configuration 

a  Shear Span 

ia  Major semi-axis of the i-th semi-ellipse 

,i ka  Major semi-axis of the i-th semi-ellipse in the k-th configuration 

'
ea  Distance of the laminate from the edge of the specimen 

fa  Thickness of the cross section of the adopted FRP element 

ib  Minor semi-axis of the i-th semi-ellipse 

,i kb  Minor semi-axis of the i-th semi-ellipse in the generic k-th configuration 

d  Section effective depth 

cb  Width of the concrete specimen  

fb  Width of the cross section of the adopted FRP element 

wb  RC beam cross section web width 
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c  Concrete cover of the member cross section 

d  Beam cross section effective depth 

bd  Diameter of the NSM rods 

1Pie  Abscissa of an auxiliary point P  in the local reference system 1 2 3i i ioe e e  associated to the 
i-th semi-ellipse 

2Pie  Ordinate of an auxiliary point P  in the local reference system 1 2 3i i ioe e e  associated to the i-
th semi-ellipse 

1 ,Pi ke  Abscissa of an auxiliary point P  in the local reference system 1 , 2 , 3 ,i k i k i koe e e  associated to 
the i-th ellipse in the k-th configuration 

2 ,Pi ke  Ordinate of an auxiliary point P  in the local reference system 1 , 2 , 3 ,i k i k i koe e e  associated to 
the i-th ellipse in the k-th configuration 

bf  Bearing stress along the ribs of steel ribbed bars 

cf  Concrete mean cylindrical compressive strength 

ckf  Characteristic value of the concrete cylindrical compressive strength 

cmf  Concrete cylindrical mean compressive strength 

ctmf  Concrete mean tensile strength 

,ct spf  Mean value of the concrete splitting tensile strength 

,ep flf  Epoxy bending tensile strength 

,ep cf  Epoxy compressive strength 

fdf  FRP design ultimate strength 

fef  Effective stress in the FRP 

fddf  Ultimate debonding-based FRP design strength 

,fdd ridf  Reduced value of the ultimate FRP design strength 

fedf  Effective FRP design strength 

fuf  Design value of the ultimate tensile strength 

*
fuf  Value of the ultimate tensile strength provided by the supplier 

h  Depth of beam cross section 

wh  Beam cross section web height 

i  Counter of the FRP elements crossing the crack on one side of the web 

j  Counter of the FRP elements crossing the crack on one side of the web 

k  Counter for the three different dispositions of the laminates along the crack 

fk  FRP sheet geometric coefficient 

n  Number of layers of FRP per strip in the EB wet lay-up technology 

lin
kn  Matrix containing the number, integer, of real values constituting effective integration 

extremities for each semi-ellipse in the linear range 
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,
lin
i kn  Maximum number, integer, of real values constituting effective integration extremities for 

the i-th semi-ellipse of the k-th configuration in the linear range   

,
nlin
i kn  Maximum number, integer, of real values constituting effective integration extremities for 

the i-th semi-ellipse of the k-th configuration in the non linear range 

lin
kn  Maximum number, integer, of real values constituting effective integration extremities 

among all the semi-ellipses of the k-th configuration in the linear range 

nlin
kn  Matrix containing the integer number of real values constituting effective integration 

extremities for each semi-ellipse in the non linear range 

nlin
kn  Maximum number, integer, of real values constituting effective integration extremities 

among all the semi-ellipses of the k-th configuration in the non linear range 

1 2 3i i ioe e e  Local reference system of the i-th semi-ellipse 

1 , 2 , 3 ,i k i k i koe e e  Local reference system of the i-th semi-ellipse in the generic k-th configuration 

oxyz  Global reference system 

cr  Rounded corner radius of the RC member section 

fs  Spacing between subsequent FRP elements measured along the axis of the beam 

'
fs  Spacing between subsequent FRP elements measured orthogonally to their orientation 

st  Thickness of the slab of the beam cross section 

1v  Position, along the OX  axis, of the leftward vertex of the semi-ellipse along its major 
semi-axis 

1 ,i kv  Position of the leftward vertex of the i-th semi-ellipse along its major semi-axis in the k-th 
configuration 

2v  Position, along the OX  axis, of the leftward vertex of the semi-ellipse along its major 
semi-axis 

2 ,i kv  Position of the leftward vertex of the i-th semi-ellipse along its major semi-axis in the k-th 
configuration 

w  Crack width 

0w  Maximum crack opening at which concrete can no longer transfer tensile stress 

x  Matrix of the geometrical properties in the global reference system 

1fx  Position of the first laminate, along the web soffit, with respect to the assumed crack origin 

1,f kx  Position of the first laminate, along the web soffit, with respect to the assumed crack origin, 
in correspondence of the k-th configuration 

kfix ,  Position of the i-th laminate with respect to the crack origin in the global reference system 
oxyz  for the k-th configuration 

z  Beam cross section internal lever arm 

( )fi fiLα  Angle between the genratrices and the axis of the semi-conical surface associated with the 
i-th laminate 

,fi kα  Angle between the genratrices and the axis of the semi-conical surface associated with the 
i-th laminate in the k-th configuration 

β  Inclination of the FRP element with respect to the beam axis 

fuδ  FRP ultimate slip beyond which shear stress can no longer be transferred (EBR) 
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0δ  Maximum deformation at which concrete can no longer transfer force intension 

fδ  EB FRP slip at the peak of bond strength 

fdε  Designvalue of the FRP ultimate strain 

fddε  FRP debonding-based ultimate design strain 

feε  Mean value of the effective strain present in the FRP 

fedε  Design value of the effective strain of the FRP 

fekε  Characteristic value of the FRP effective strain 

fuε  FRP mean ultimate strain  

*
fuε  Value of the ultimate strain of the FRP provided by the manufacturer 

φ  Strength reduction factor required by ACI 318-02 

γ  Angle between the rib face and the bar axis, in a ribbed bar  

cγ  Concrete material partial safety factor 

fγ  Partial safety factor for the FRP material 

sγ  Steel material partial safety factor 

Rdγ  Partial safety factor for resistance model 

ν  Poisson’s ratio 

θ  Shear crack inclination with respect to the longitudinal axis of the beam 
expθ  Experiemntal value for the critical diagonal crack inclination angle 

fwρ  FRP shear reinforcement ratio 

slρ  Longitudinal steel reinforcement ratio 

swρ  Transversal steel reinforcement ratio 

( )τ δ  Local Bond Stress-Slip Relationship 

aτ  Shear Stress developed along the surface of the steel bar through adhesion 

afτ  Shear Strength of the Epoxy  

bτ  NSM laminate average bond strength 

( )b fLτ  Relationship between the average bond strength and the laminate available bond length  

fτ  Peak stress of the FRP local bond stress-slip relationship  

( ),b rod fiLτ  Adopted relationship between average bond strength and available bond length for the case 
of NSM rods 

( ),spl rod fiLτ  Adopted relationship between adhesive splitting-based average bond strength and available 
bond length for the case of NSM rods 

cτ  Shear stresses in the concrete surrounding embedded steel bars 

fψ  Reduction factor for the case of U-wraps according to the ACI 440-02 
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bF∆  Force transmitted by an elementary bond length bL∆   

X∆  Infinitesimal increment of the abscissa X  
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1 Employment of Near Surface Mounted CFRP Laminates  
The Shear Strengthening of existing reinforced concrete beams has been traditionally carried out so far mainly by 

means of the following two techniques: 1) external reinforcement, based on gluing steel plates to the surface of RC 

elements by means of structural adhesives, mainly epoxies; 2) adding external reinforced concrete coats that consist on 

wrapping the element with a reinforced concrete layer. 

The application of adhesive epoxy can be performed by either spreading the adhesive on both the surfaces to be pasted 

to each other or by injecting it in the voids in between. The bonded joint can also be improved by means of bolt shear 

connectors. In order to guarantee good bond conditions, a meticulous preparation is needed not only for the concrete 

surface but for the plate as well. It is a technique well known by technical community dealing with structural 

strengthening. It also involves the use of materials whose mechanical behaviour has already been extensively 

investigated. That technique, anyway, presents some drawbacks: due to the steel’s susceptibility to corrosion, it is very 

likely for the glued zone to undergo high deterioration; difficulty to handle weighty elements in the construction yard, 

especially if curved surfaces are involved; necessity of temporary supports during the curing time of the adhesive; 

limited dimensions of the elements due to transportation reasons and the consequent need for in-place executed joints. 

The coating technique is much more efficient as regards the protection of added reinforcement against both corrosion 

and fire exposition. Nevertheless, the increase in the cross sectional dimensions is not always admissible from an 

architectural point of view and it might also result incompatible with the use destination of the building to be retrofitted. 

Moreover, a deal of time is required for the concrete to gain an adequate value of strength before the structure can be 

put in service again. 

In the recent years the use of Fibre Reinforced Polymers (CFRP) in the strengthening of existing structures has spread 

worldwide due to the possibility of overcoming some of the drawbacks shown by the traditional techniques described 

above. The FRPs present high stiffness and tensile strength, low specific weight and good resistance to fatigue. The 

reduced specific weight facilitates both its transport and handling. The availability of these materials in practically 

unlimited sizes excludes the necessity of joints in situ. Their high resistance to corrosion makes them particularly 

suitable for application in aggressive environments such as costal zones. Moreover, due to their high mechanical 

properties, FRPs can guarantee the attainment of considerable increase in resistance by means of low addictions thus 

preserving the original architectural conception of the building. Some FRPs can be easily applied in case of curved 

surfaces, objective difficult to pursue by means of steel plates. Furthermore, retrofitting techniques employing FRPs can 

be carried out easily and quickly. 

Shear strength of existing reinforced concrete elements can be significantly increased by gluing FRP strips or sheets 

orthogonally to either their axis or the direction of the shear cracks, as already extensively recognised by the Research 

Community. In fact, different guidelines dealing with FRP strengthening of existing RC structures are available 

worldwide CNR DT 200 (2004), Australian Guidelines (2006), fib Model Code (2001), ACI Committee (2002). This 

technique, designated as externally bonded reinforcing (EBR), has already been extensively investigated. A huge 

amount of experimental programs (Monti and Liotta 2006, Liotta 2007, Bousselham and Chaalal 2004, 

Dias and Barros 2004a ) have shown that the external gluing of Carbon Fibre Reinforced Polymers (CFRP) allows the 

shear strength of RC beams to be considerably increased. However, due to the premature debonding occurring to the 

externally bonded FRP strips or sheets, the maximum stress mobilized is quite lower than their ultimate strength. 

Moreover, the failure modes associated to debonding are generally sudden and brittle. 
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In order to overcome these drawbacks and reduce the EBRs’ susceptibility to the action of fire or vandalism, new 

techniques of employment of FRPs have been proposed by the World Academic Community to date. 

In 2002 De Lorenzis, with the purpose of enhancing the effectiveness of CFRPs in the shear strengthening of RC 

beams, introduced CFRP rods inside grooves opened in the concrete cover of the lateral faces of the beams. Among the 

advantages obtained with respect to the previous EBR there were: a significant increase of the shear strength and a 

higher protection of the reinforcing elements. Conversely, the necessity to open deep grooves for installing the bars, 

constituted a considerable disadvantage. 

In 2004, Dias and Barros (2004b) proposed to introduce laminates into thin slits, thus extending to the case of shear 

strengthening the technique adopted till that moment mainly in the flexural strengthening of RC beams (Blaschko and 

Zilch (1999), Barros et al. (2006), El-Hacha and Rizkalla (2004)). The effectiveness of the insertion of CFRP strips in 

saw-cut slits within the concrete cover in fact, had been already acknowledged worldwide at that time, for flexural 

strengthening. 

Definitely the reasons why the use of the NSM technique (acronym for Near Surface Mounted, extensively adopted 

hereafter) is desirable with respect to the previous EBR can be summarized as follows: 

1. Avoiding the premature and brittle failure due to the phenomenon of debonding thus attaining more ductile 

failure modes; 

2. Improving the exploitation of the material by mobilizing, for equal strengthening ratio, stresses much closer to 

the strength of the FRP material in virtue of averting debonding, with consequent economical benefits; 

3. Possibility to have higher values of local bond strength with respect to EBR, so as remarked by Sena-Cruz and 

Barros (2002) and by Sena-Cruz (2004) by means of pull-out bending tests; 

4. Possibility to improve the overall structural behaviour of the strengthened RC element. In fact, the employment 

of NSM laminates has proven (Barros and Dias 2005) to increase the stiffness, the ultimate load and the 

corresponding deflection of the shear strengthened element; 

5. Extra protection against fire and vandalism. 

The NSM shear-strengthening system is applied by the following procedure, (Dias and Barros (2005b, 2006)) (see 

Fig. 1.1): 

1. using a diamond blade cutter, slits of about 5 mm width and 12 to 15 mm depth are opened in the concrete 

cover of the lateral surfaces of the beam’s web, according to the pre-defined geometrical arrangement for the 

laminates; 

2. slits are cleaned by compressed air in order to improve the bond performance of the adhesive to the concrete 

substrate; 

3. laminates are cleaned by acetone; 

4. epoxy adhesive is prepared according to supplier recommendations; 

5. slits are filled with the epoxy adhesive; 

6. epoxy adhesive is applied on the faces of the laminates; 

7. laminates are introduced into the slits and epoxy adhesive in excess is removed; 

The curing time for the adhesive, recommended by the supplier, should spend before testing. 
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1) Execution of the slits 2) Cleaning of the slits by compressed air 

  
3) Cleaning of the laminates by acetone 4) Filling up the slits with adhesive 

  
5) Application of the adhesive on the laminates 6) Introduction of the laminates 

  

7) Removal of the adhesive in excess 8) Curing time 
Fig. 1.1  –  Phases of the NSM CFRP laminate shear strengthening technology: phases  

(pictures taken from Dias and Barros (2005b)) 
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As regards the procedure to open the slits, it is currently executed by means of round diamond blade cutters and refined 

manually in the zone of connection between the web and the slab of T cross section beams. In that respect, in order to 

shorten the amount of time required to execute the retrofitting intervention, the production of purposely intended 

devices with a small diameter round diamond blade cutter is desirable for further developments. 

For the purpose of increasing the execution rapidity of the NSM technique, a device such as a gun-type applicator like 

those already in use in the field of the fastening technology, should be developed to fill the slits with the structural 

adhesive.  

The first experimental programs, aiming at assessing the efficacy of the NSM technique, (De Lorenzis 2002, 

De Lorenzis and Nanni 2001), employed CFRP rods instead of laminates. More recently, El-Hacha and Rizkalla (2004) 

demonstrated that rectangular cross section bars are more effective than round rods. 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 

 
 
15           Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

2 Physical Phenomena, Resisting Mechanisms and Parameters 
affecting the Shear Strength 

Before a method for calculating the shear resistance of NSM CFRP shear-strengthened RC members can be proposed, 

the main aspects influencing the FRP contribution to the shear-strength of RC beams strengthened by means of the 

NSM technique must be clearly singled out. This chapter is dedicated to this subject, taking into account the most 

accredited research findings currently available worldwide even if they are not strictly dedicated to the NSM but to the 

EBR, in case this latter comprehend similar mechanical behaviors. Moreover, some aspects, deemed important 

according to the “structural feeling” and “intuition” of the authors, are outlined and analyzed in depth even if they have 

not been taken into consideration by other researchers, up to now. 

2.1 Bond between CFRP Laminates and Concrete 
Bond performance is one of the main aspects affecting the ultimate load-carrying capacity of a strengthened reinforced 

concrete element, as well as its performance under serviceability limit state conditions. 

An extensive experimental-analytical program, aimed at developing a better insight in the bond performance of NSM 

CFRP laminates was carried out by Sena-Cruz and Barros (2002 and 2004) by means of pull-out bending tests under 

both monotonic and cyclic loading. In that occasion the influence of parameters such as bond length, concrete 

compressive strength and load type was analysed by using CFRP laminates whose cross-section was 1.4 mm thick and 

10 mm wide with smooth surface. In the tested specimens, a large slip in the laminate-concrete interface was observed. 

From a physical point of view, a fish-spine cracking pattern occurred in the adhesive (see Fig.-2.1 and Sena-Cruz 2004) 

due to the tangential stresses developed at the adhesive-concrete and CFRP-adhesive interfaces as a consequence of the 

stress transfer between concrete and CFRP which gradually yielded its failure and the consequent slip at the laminate-

concrete interface (see Fig. 2.2). The above described behaviour was pointed out by means of the photos taken by an 

optical microscope and reported hereafter. 

 

  
Fig. 2.1 – Crack pattern at the laminate-

adhesive-concrete bonding zone 
Fig. 2.2 – Failure of the epoxy adhesive 

 
Figure 2.3 schematically depicts the micro-mechanism developed in the adhesive that yields the aforementioned fish-

spine crack pattern. 
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Fig. 2.3 – Force distribution corresponding to the crack pattern in the epoxy adhesive. 

Note: tF  is the traction force at the adhesive; cF  is the compression force at the adhesive; cτ  is the shear stress at the 
interface. 

 

As can be gathered from Figures 2.4 and 2.5, for the tested specimens, the concrete compressive strength did not show 

influence at all on the bond stress-slip relationship while a clear dependence on the bond length, bL , emerged: both the 

peak pull-out force and the corresponding loaded end-slip increased with bL  (for further details see Sena-Cruz and 

Barros 2002).  

 

 
Fig. 2.4 – Influence of the bond length (a) and concrete strength (b) on the loaded end slip at peak pull-out force 

 
Fig. 2.5 – Influence of bond length (a) and concrete strength (b) on the pull-out force 
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Anyway it is worth underlying that, while the influence of concrete compressive strength on the bond is negligible for 

medium and high strength concretes whose mean compressive strength ranges from 30 to 70 MPa, the suspicion exists 

that this tendency can not be extrapolated for concretes of average compressive strength lower than 30 MPa. 

Furthermore, in the experimental programs by Sena-Cruz and Barros (2004a), the concrete was reinforced by steel 

fibres, which might have contributed to avoid crack formation and propagation to the concrete surrounding the bond 

zone. Therefore, in the case of concrete strength classes of cf  lower than 50 MPa, without any fibres reinforcement, the 

concrete tensile strength might have influence on the CFRP-concrete behaviour. In that occasion (2004a), Sena-Cruz 

and Barros justified the use of fibre-reinforced concrete arguing that, for the amount of fibres used, only the concrete 

post cracking tensile residual strength could be affected but, since concrete cracking was not expected to occur in the 

bonding zone, the influence of the presence of fibres on the bond behavior, would be marginal. Anyway, in the authors’ 

opinion, if the purpose is to isolate and study the phenomenon of debonding, the use of a fibre-reinforced concrete has 

no influence. In fact, the term “debonding” envisages failure occurring at the laminate/adhesive or adhesive/concrete 

interface, as well as within the adhesive. Debonding can be also regarded as a failure occurring along a surface parallel 

to the laminate, a few millimetres inside the surrounding concrete since a thin layer of concrete in contact with the 

adhesive has higher strength due to the adhesive penetration into its micro-structure. The pullout tests, currently 

underway, show that the debonding failure might be characterized by the simultaneous occurrence of more than one of 

these mechanisms. 

In the work by Sena-Cruz & Barros, an increase in the slit dimensions showed to be absolutely detrimental for the bond 

performance. In fact, the increase in the peak pull-out force with bL  was higher with narrower slits. The same remark 

has been done by Blaschko (2003) who suggested that the depth and width of the cut groove should be at most about 3 

mm larger than the width and thickness of the FRP laminate, so as to obtain an adhesive layer thickness of about 

1-2 mm. In this respect, also Paretti and Nanni (2004) recommended that the minimum width of a groove be no less than 

3 fa  and the minimum depth be no less than 1.5 fb . Where fa is the thickness and fb  the width of the laminate cross 

section. 

The local bond stress-slip ( )τ δ  relationship is well represented by the following formulae (Sena-Cruz and Barros 

2004a): 

( ) '
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 if 

m m
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 (2.1) 

where mτ  and mδ  are the peak bond strength and its corresponding slip, α  and 'α  are parameters defining the shape 

of the curves. The equation for mδ δ≤  was used by Eligehausen et al. (1983) and defines the bond behaviour up to 

peak stress (ascending branch). The equation for mδ δ>  was also adopted by DeLorenzis & Nanni (2002) and 

reproduces the post-peak bond behaviour (descending branch). This law was selected due to its simplicity and ability to 
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simulate the phenomena under discussion: the gradual post-peak descending branch actually exists when bond failure 

occurs at an interface. In that case, a significant amount of post-peak friction develops, due to interfacial friction. 

Sena Cruz & Barros (2004a) calibrated the main parameters of the above relationship on the basis of the collected 

experimental data and obtained the values indicated in Table 2.1, by a rigorous analytical approach. 

Table 2.1 – Values for the parameters of Equation (2.1) 
 

mτ  mδ  α  'α  
 

[MPa] [mm] [ ] [ ] 

Average 19.81 0.25 0.21 0.32 

C.O.V. 6.6 36.19 29.05 21.49 
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Fig. 2.6 – Bond stress-slip relationship calibrated by Sena & Barros (2004a) 

 
The local bond stress-slip relationship, represented in Figure 2.6, is generally referred to as type-I curve by the 

International Academic Community in order to distinguish it from the other two types: type-II and type III, more 

suitable for round ribbed FRP rods with high protrusions and sand-blasted bars, respectively (De Lorenzis 2004). 

Based on strain gauge intermediate points and free-end slip readings, Blaschko (2001) obtained local bond-slip curves 

for NSM strips very similar to the above mentioned type-I curve. However, by plotting the local bond-slip curves at 

different measurement locations along the bond length, he noted that the local bond strength tended to be larger close to 

the free end and smaller close to the loaded end. This was attributed to the influence of the transverse displacement of 

the surrounding concrete, which confirms the substantially three-dimensional and frictional nature of the bond. 

The results obtained by Sena Cruz & Barros for the bond strength are in good agreement with the predictions attainable 

by means of the predictive formula by Blaschko (2003): 

( )' '
max 0.2 150e af ea a mmτ τ= ≤  (2.2) 

in which afτ  is the shear strength of the epoxy and '
ea  is the distance of the centre of the laminate from the edge of the 

specimen. 
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In absence of edge effects (i.e. for ' 150ea mm≥ ) and for the typical values of the average shear strength of most 

common two-components epoxies ( MPa1.285.22 ≤≤ afτ ) that equation yields a local bond strength ranging between 

15.8 and 19.8 MPa, whose upper bound coincides with the one by Sena & Barros (19.81 MPa). 

One of the aspects that it is worth emphasizing is the ductility of the local bond stress-slip relationship with respect to 

the one characterizing the externally bonded FRP sheets due to the presence of a residual friction that allows a better 

exploitation of the material properties. 

In the case of EBR, the finite value of the area underlying the local bond stress-slip relationship (i.e. the fracture energy 

fG ) does not allow the tensile strength of the material to be fully exploited because this latter always exceeds the 

maximum value of stress that can be resisted by the bonded joint. Thus, an “effective bond length” exists in 

correspondence of which the maximum stress can be transmitted and beyond which any further increase in length does 

not produce any benefit (Monti et al. 2003). 

In the case of NSM laminates, the infinite value of fG  allows the maximum force transmissible by the bonded joint to 

increase by increasing the bond length, until the tensile strength of the FRP is attained. In other words, the ultimate 

force resistible by the joint can be increased by increasing the bond length, until the FRP tensile strength is attained.   

To assure a safe and economically valid design, the anchorage length should be evaluated so as to fulfil the 

requirements imposed by both serviceability and ultimate limit states: 

{ }ULSanSLSanan LLL ,, ;max=  (2.3) 

where SLSanL ,  and ULSanL ,  are the anchorage length at service and ultimate limit state, respectively (Sena-Cruz and 

Barros 2004b). 

Conventionally the serviceability limit state occurs at the onset of the loaded end slip while the ultimate limit state is 

referred to as the instant in which the slip reaches the free end, i.e. in the instant in which the peak load that can be 

resisted by the joint is reached. Once the relationship ( )τ δ  is reliably known, the aforementioned limit states can be 

easily determined by solving the differential equation governing the bond problem (Sena-Cruz and Barros 2004b). 

 

2.2 Shear span to depth ratio a/d 
The ratio a d  of the shear span, a ,  to the effective depth, d , of the beam cross section is one of the most important 

parameters affecting the shear resisting mechanisms. 

Many Authors have been investigating (Bousselham and Chaalal (2004); Chao et. al. 2005) the influence of that ratio 

on the behaviour of EBR FRP shear-strengthened beams obtaining interesting and general results extendible to the case 

of NSM laminate strips. 

The a d  ratio has great influence, in conjunction with other parameters such as the transverse steel reinforcement 

amount, on the inclination of the main shear failure crack i.e. on what the Australian Draft Guidelines (2006) designate 

as the Critical Diagonal Crack (CDC). The general observed trend is that the angle between the beam longitudinal axis 

and the CDC decreases with an increase in a d . The CDC can be imagined as having its origin in correspondence of its 

intersection with the longitudinal tensile reinforcement and its end in correspondence of the loading point. 
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The ratio a d  can also have great influence on the distribution of the width of the CDC along its length. It has been 

observed that when the ratio a d  increases, the crack width is less evenly distributed and presents a maximum in the 

vicinity of its origin. On the contrary, for lower values of a d , the crack with is evenly distributed along its length 

presenting a maximum at mid length (see Fig. 2.7). 

 

w

a

d

assumed crack origin

 
a) 

w

 
b) 

Fig. 2.7 – Distribution of the crack width along the crack length for low values a) and for high values b) of the ratio a d  

 
The value of a d  also influences the relative importance of the two main shear resisting mechanisms i.e.: arch 

mechanism and truss mechanism. 

In that respect, the critical threshold is the value of a d  = 2.5. For values 2.5a d ≥  the arch mechanism becomes 

negligible and contemporary the truss one becomes predominant while, on the contrary, for values 2.5a d <  the arch 

mechanism becomes predominant. 

Moreover, the influence of a d  on the gain in shear resistance ( 100f

R f

V
V V

⋅
−

) provided by the FRP system ( fV ) to the 

overall shear resistance ( RV ) has been extensively observed in the case of externally bonded FRP (Bousselham and 

Chaalal 2004).The gain in shear resistance increases by increasing a/d, which is due to the fact that, increasing the shear 

span to depth ratio, the relative importance of the truss mechanisms increases as well, thus outlining the inadequacy of 

the use of FRP to shear-strengthen deep beams whose prevailing resisting mechanism is the arch one. 

 

2.3 Longitudinal reinforcement ratio 
Te main aspects, regarding the importance of the amount of steel longitudinal reinforcement are: its influence on the 

concrete contribution to the overall shear strength of the RC element and its interaction with the FRP strengthening 

system. 

As regards the influence on the concrete shear strength contribution, by increasing the longitudinal reinforcement ratio, 

slρ , the amount of shear force resisted by concrete by means of: the resisting mechanism of aggregate interlock, the 

residual tensile stress along the crack, the shear resistance in the uncracked compression zone also increase. In fact, by 

increasing slρ  the average width of the critical diagonal crack diminishes and the depth of the compressed zone 

increases. 
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The amount of longitudinal reinforcing steel also influences the percentage of shear force resisted by dowel action: the 

relative transverse displacement of the two segments of the beam separated by the crack is resisted by the bridging 

reinforcement. Dowel action is particularly important in the case of using large size bars: their transverse rigidity and 

strength enhance that action. 

In the case of externally bonded FRP, an interaction between the shear resistance gain, fV , and the axial rigidity of the 

longitudinal reinforcement ( ssl Eρ ) was observed (Bousselham and Chaalal 2004): by increasing this latter, the 

enhancement of shear resistance provided by the strengthening system decreased. From a physical point of view, that 

observation can be explained as follows: by increasing the longitudinal reinforcement, resisting mechanisms proper to 

the concrete such as arch truss, aggregate interlock, plain concrete shear resistance become predominant so as the FRP 

contribution percentage becomes relatively less important. Moreover, when slρ  increases, the average crack width w  

decreases so as the FRP, either NSM or EBR, is activated at a less extent. 

 

2.4 Bond between Steel Ribbed Bars and surrounding Concrete 
Another resisting mechanism affecting the performance of reinforced concrete beams, in general, is the bond between 

steel reinforcing bars and the surrounding concrete (Park and Paulay 1975). The study of the bond between deformed 

steel bars and the surrounding concrete, can be extended to the case of the bond failure of NSM FRP rods. At the same, 

developing more insight in the understanding of the resisting mechanisms related to the bond between steel bars and 

concrete, can help singling out the physical behaviour of the interaction between the FRP system and the existing steel 

reinforcement, both longitudinal and transversal. 

In case of plain round bars, the bond performance relies on the following resisting mechanisms: 

• chemical adhesion between mortar paste and bar surface; 

• friction; 

• wedging action of small dislodged sand particles between the bars and the surrounding concrete. 

Even low stresses generally cause sufficient slip to break the adhesion. Once slip occurs, further bond can be developed 

only by means of friction and by the above mentioned wedging action. 

With the introduction of high strength steel and large diameter bars, the performance of bond has improved 

considerably but new problems have been introduced. Deformed bars have greatly increased bond capacity because of 

the interlocking of the ribs with the surrounding concrete. 

The bond strength developed between two ribs of a bar is associated with the following stresses (see Fig. 2.8): 

1. Shear stresses aτ  developed through adhesion along the surface of the bar; 

2. Bearing stresses bf  along the ribs of the bar; 

3. Shear stresses cτ , acting on the cylindrical concrete surface between adjacent ribs. 

The relation between these stresses and the force to be transferred to the concrete by bond over a short length of the bar 

between centers of subsequent ribs can be obtained from a simple equilibrium requirement as follows: 

( )
2 2

4
b b

b b a b b c
d d

F d b e f d eπ τ π π τ
′′ ′−′ ′′∆ = + + ≈  (2.4) 
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where (see Fig. 2.8): bF∆  is the increment of force transmissible by the bond length comprehended between two 

consecutive ribs, bd ′  is the diameter of the plain bar, ''
bd  is the diameter of the ribs, bd  the nominal diameter of the 

ribbed bar, e  is the distance between two consecutive ribs, b  and a  are, respectively, the width and height of a rib. 
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Fig. 2.8 – Stresses between two consecutive ribs of a deformed bar embedded in concrete 

 

As the load is being increased, the adhesion along the bar surface inevitably breaks down. The remaining frictional 

shear strength is very small in comparison with the bearing strength developed around the ribs; therefore aτ  can be 

ignored for practical purposes. The relationship between the remaining two important components of bond force 

development, bf  and cτ , can be simplified as follows: since 0.1b e≈  the rib spacing is approximately e  and, since 

0.05 ba d ′≈ , the bearing area of one rib is 
2 2

4
b b

b
d d

d aπ π
′′ ′−

≈ . 

Hence, from the equilibrium equation we obtain b b b b cF d a f d eπ π τ∆ = ≈ ; therefore, 

c b
a f
e

τ ≈  (2.5) 

 
The most satisfactory performance of a bar embedded in concrete over the short length e  was obtained when a e  is in 

the vicinity of 065.0 . When the ribs are high and they are spaced too closely, the shear stress cτ  will govern the 

behaviour and the bar will pull out. When the rib spacing is larger than approximately 10 times the rib’s height, the 

partly crushed concrete may form a wedge in front of the rib, and failure is normally brought about by splitting of the 

surrounding concrete. The concrete in front of the rib can sustain a bearing pressure several times the cylinder crushing 

strength because of the confined condition of the concrete (it was observed up to 4 times the concrete compressive 

strength). The two mechanisms associated with the rib, are illustrated in the Fig. 2.9. 
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Fig. 2.9 – Failure mechanisms at the ribs of deformed bars: a) 0.15a e > ; b) 0.1a e <  

     

Clearly the geometry of deformed bars must be such that a shear pullout failure cannot occur. 

Generally speaking, the parameters that may influence the bond performance are as follows: 

• The position of the bars with respect to the placing of the surrounding concrete; 

• Bar profiles and surface conditions; 

• The state of stress in the surrounding concrete; 

• The splitting failure.  

As can be gathered from the above argumentations, a significant role in the bond of ribbed bars, is played by the bearing 

stresses that the concrete in front of the ribs is capable of resisting. In this respect, an important factor is the relative 

placing of the bars with respect to the direction of casting of the fresh mixture of concrete. Since water and air present 

in the fresh mixture tend to move upwards during the curing process, there could be a water and air gain beneath the bar 

that would contribute to have a layer of spongy and porous concrete. In that respect, for example, the bond behaviour of 

a horizontal bar is expected to be worse than that of a vertical one. Moreover, the downward movement of the fresh 

mixture, also contributes to increase the settlement of the particles in the bottom of the cast element with respect to the 

upper part so as, generally, the bond performance is better for bottom bars than for top ones. The settlement of the fresh 

mixture is influenced, in turn, by the amount of bleeding of fresh concrete and the rate at which water is permitted to 

escape from the formwork.  

As regards the bar profile, it was demonstrated (Park and Paulay 1975) that, variations of the angle between the face of 

the rib and the axis of the bar (angle γ  in Fig. 2.8) do not seem to affect the bond strength, provided this angle is larger 
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than 70°. The influence of the surface conditions of the bar, in terms of amount of superficial rust or mill scale, have a 

marginal effect on the bond performance. 

The stresses in the concrete surrounding a deformed bar lead to cracks and deformations of the concrete, as illustrated in 

the Figure 2.10 for the case of a tension member. 
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Fig. 2.10 – Deformed concrete between transverse cracks of a tension member  

 

The bond stresses transmitted to the concrete, subject the cover thickness of concrete to eccentric tension. The 

deformations of the concrete resulting from the stresses so generated tend to pull the concrete away from this steel in 

the vicinity of the major crack (see Fig. 2.10). The tensile strength of the adhesive bond between steel and the mortar 

(orthogonally to the bar axis) is then reached and the surrounding concrete separates from the steel. Also numerous 

internal secondary cracks can form which may not propagate to the external surface of the concrete. In plain bars the 

bond stresses can be expected to disappear completely where separation between steel and concrete occurred. With 

deformed bars, bond forces have to be transmitted in this area solely by rib bearing as shown in Figure 2.11. 

 

Primary crack surface

separation between
bar and concretecenterline of reinforcing bar

 
Fig. 2.11 – Detail of Fig. 2.10: section through reinforcing bar and concrete, showing 

separation that occurs near a primary crack 

 

The separation between the bar and the concrete in the vicinity of the primary crack has been verified experimentally 

together with some sloping secondary cracks radiating from each rib. 

When the concrete separates itself from around a bar at a primary crack, the circumference of the concrete surface, 

previously in contact with the bar, increases; hence circumferential tensile stresses are induced. These stresses can lead 

to longitudinal splitting cracks. When the ultimate capacity in bond transfer is being approached, there is crushing in 

front of the ribs. The compacted powder, extending in front of the ribs at a distance of up to three times the rib height, 
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forms a flat wedge (see Fig. 2.9b) and this tends to push the concrete further away from the bar. Hence additional 

circumferential tensile stresses are generated which may bring about a splitting failure. 

Thus, one of the most important aspects is the splitting failure. Where adequate embedment length is provided in a large 

mass of concrete, it is not possible to produce a bond (pullout) failure with standard deformed bars. Rather, the bar will 

fracture at its loaded end. In most structural components, however, the area of concrete surrounding a bar or group of 

bars is relatively small (see Figure 2.12). In such a situation the common mode of failure is splitting, since the 

surrounding concrete cannot sustain the circumferential tensile stresses. 

A particular severe situation arises in the shear span of beams, where splitting can be induced along the flexural 

reinforcement by the combination of the following events: 

1. Circumferential tensile stresses generated in the vicinity of each flexural crack; 

2. Circumferential or transverse tensile stresses induced by wedging action of the deformations and by the 

compressed concrete at the ribs (Fig. 2.12b) when large bond forces need to be transferred; 

3. Transverse tensile stresses resulting from dowel action of the flexural reinforcement. This event is associated 

with shear displacement along diagonal cracks. 

A group of bars, especially when closely spaced, will create a more adverse situation than a single bar. This is 

illustrated in Figure 2.12 which presents typical observed splitting cracks. 
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Fig. 2.12 – Splitting cracks at failure. (a) Typical case. (b) In very wide beams. (c) With closely spaced bars. 

 

2.5 Amount of existing steel stirrups sw sEρ  and spacing 

A strong interaction exists between the transverse rigidity of pre-existent steel stirrups and the amount of FRP shear 

strengthening elements (Bousselham and Chaalal 2004). In fact, by increasing sswEρ , the FRP shear contribution 

diminishes. 

The above observation has a huge importance not only as regards the complete understanding of the physical behaviour 

of a beam shear-strengthened by introducing FRPs but also as regards the proposal of a predictive formula. 

In fact, most recent World Codes such as ACI 440 (2002),  fib Bulletin 14 (2001) and CNR DT 200 (2004), dealing 

with the subject of FRP strengthening of existing RC structures, calculate the shear resistance by simply superimposing 

the contributions provided by concrete, steel stirrups and FRP, neglecting their mutual interaction, even if the Australian 

Guidelines (2006) explicitly warn about the importance of that issue and suggests the adoption of suitable reduction 

factors. It may happen that, due to the different mechanical properties of FRP and steel, their maximum contribution is 
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not reached contemporarily in terms of either instant or deflection. In this respect, it is worth outlining that in real cases 

of existing RC structures retrofitted by means of FRPs, at the moment of the application, stirrups are already loaded 

presenting a certain value of stress and deformation. This occurrence does not regard most of the tests currently curried 

out. 

The existence of that interaction underlines the necessity of determining the optimum amount of FRP with respect to the 

existing transverse reinforcement in order to maximize the effectiveness of the strengthening technique. 

Moreover, it has to be outlined that it is being observed, during the tests currently carried out at the Laboratory of 

Structural Engineering of the University of Minho by PhD Student Salvador Dias, that, after the failure of the laminates 

crossing the critical diagonal crack, this latter rotates, assuming, as function of the spacing between stirrups, a steeper 

inclination. 

2.6 Concrete compressive strength 

The concrete compressive strength is extremely important since the contribution provided by concrete cV , to the beam 

overall shear strength rV , results to be the highest, among the several contributions. In fact, the shear strength of the 

beam is generally calculated by adding the contributions cV , fV , sV  ascribed to concrete, FRPs and existing stirrups, 

respectively. The relative predominance of the term cV  increases for beams with a short value of the ratio a d  between 

the shear span and the effective depth since, for these beams, the resisting mechanism of the arch results to be the most 

important. 

Anyway, it is worth outlining that generally, the term cV , derived from the shear strength of the reference beam without 

stirrups at all, includes the contribution, not negligible, provided by the dowel effect of the tensile longitudinal 

reinforcement, slρ . This is generally high enough since, the necessity to force the beam to fail in shear, prompts the 

adoption of large slρ . 

As observed by Sena-Cruz and Barros (2002), and already reported in paragraph 2.1, the concrete compressive strength 

has a negligible importance on the bond between CFRP laminates and concrete i.e. when NSM laminates fail by 

debonding. 

2.7 Concrete tensile strength 
Among the most recent works in the ambit of the shear strengthening of RC beams by means of the technique of NSM 

CFRP laminates, those by Dias and Barros (2005b) and by De Lorenzis and Rizzo (2006), outline the occurrence of  a 

failure mode characterized by the separation of the cover of the beam, containing the glued laminates, from the 

underlying core. The occurrence of that phenomenon spotlights the importance of the tensile strength of the concrete as 

one of the commanding parameters for the shear strength contribution by the NSM technique and rises the suspicion 

that the commanding failure mode may not be debonding, in opposition to the International Academic Community 

belief to date. 

Even if the tensile behaviour of concrete was formerly considered of minor importance to failure analysis, because of its 

higher capabilities to withstand compressive stresses, more recently, with the introduction of fracture mechanics, it has 

become clear that tensile properties play a dominant role in the failure of concrete structures. Prominent examples are 

anchorages and lap splices of reinforcing bars, slabs without shear reinforcement and the various kinds of anchors. 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 

 
 
27           Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

The tensile behaviour of concrete (CEB bulletin n° 210, 1996) is illustrated in Fig. 2.13. A deformation-controlled axial 

direct tension test may be performed on the specimen shown on the left side. The specimen is loaded with the force P  

and the total deformation is measured over the length l . At the left side the specimen is plotted for the load steps A , B  

and C . The load steps are also marked in the load-deformation curve at the right side. Load step A  is before peak load, 

load step B  at peak load and load step C  after peak load in the descending branch of the load-displacement curve. 

Already before the peak load is reached, some micro-cracking occurs (Fig. 2.13a). As the micro-cracking is uniformly 

distributed at the macro-level, a uniform strain over the length of the specimen may be assumed. The strain is plotted 

over the length of the specimen in Fig. 2.13 right next to the specimen. 

Immediately before the peak load, an accumulation of micro-cracks occurs at the weakest part of the specimen. At the 

macro-level this leads to an additional strain over the length h  of this weak part. A crack band of width h  develops 

(see Fig. 2.13b). 

Having passed the peak load, the crack band localizes more and more. The crack band width diminishes, and the 

deformation within the crack band increases. The final failure occurs due to one single crack. The total deformation of 

the specimen may be split up in the bulk deformation, which is almost linear elastic up to the peak, and the deformation 

at the crack band (see Fig. 2.13c). 

 

 
Fig. 2.13 – Tensile behaviour of concrete 

 

Hillerborg et al. (1976) introduced the “fictitious crack model”, according to which they collected the deformation of 

the crack band into the crack width w  of one single “fictitious” crack. The relation between the width of the “fictitious” 

crack and the stress is the wσ −  relation. Two mechanisms contribute to the stress transfer over the crack. As 

mentioned, it is actually a fictitious crack: the crack width is the collected deformation of a band of micro-cracks. 

Within this crack band, material bridges transfer the load. After the formation of a real single crack, the stress transfer is 

possible due to aggregate interlock. In most cases a crack will run along the interface between the aggregate grains and 

the cement matrix. The grains are pulled out of the matrix and, due to this, friction forces between grains and matrix 

occur. The grains act like friction blocks and transfer friction forces over the crack. 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 
 

 
 
28                                         Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

 

The bulk behaviour is described by the σ ε−  relation of Fig. 2.13. This relation is linear almost up to the ultimate load. 

The modulus of elasticity is equal to the initial tangent modulus of elasticity in compression. Poisson’s ratio is in the 

order of 0.15 0.25ν = − . Just before the ultimate load is reached, the σ ε−  relation bends off from the linear behaviour. 

For the stage of loading where the non linear behaviour starts showing, experimental results show great differences. In 

some experiments the nonlinearity starts at about half of the ultimate load, in other experiments the curve is linear up to 

the peak load. These differences in the experimental results are caused by different boundary test conditions. Any 

source of non-uniformity, like internal bending due to non-uniform cracking, eigenstresses due to differential shrinkage 

and temperature, notch effects, etc., cause non-linearities. The non-linear behaviour met in test specimens is more a 

structural behaviour than a material behaviour. Because of this, it seems acceptable to assume linear elastic material 

behaviour up to the ultimate load, for both the loading and unloading part. 

A large number of analytical models exist in the literature to model the wσ −  relation. For instance, brief introduction 

to those models can be found in the CEB Bulletin n°210 (1996). 

 

The typical load-displacement curve for concrete loaded axially in tension (CEB Bulletin n°201), measured in a 

displacement-controlled test is as shown in Fig. 2.14. 

 
Fig. 2.14 – Stress-deformation relation and fracture mechanics parameters 

 

The total behaviour can be characterized by the Young’s Modulus 0E , the tensile strength tf , the shape of the 

descending branch, the maximum deformation 0δ  at which stress can no longer be transferred and fracture energy 

fG (defined as the amount of energy necessary to create one unit of crack area, equal to the area under the curve in 

Fig. 2.14). Another parameter characterizing the behaviour of concrete in tension is 0w , the maximum crack opening at 

which stress can no longer be transferred (see Fig. 2.15) whose value generally ranges between 0.1 and 0.2 mm.  

As stated above, the stress transfer across the crack is explained by the phenomenon of aggregate interlock. In this 

context, aggregate interlock is the bonding action of aggregate particles across the crack that are being pulled out of 

matrix, and is accompanied by sliding forces. Because of this load-transfer mechanism, the contribution of interlock to 

the fracture energy can be expected to increase for more tortuous crack surfaces. 
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Fig.  2.15 – Stress-crack opening ( wσ − ) as derived from a stress-deformation (σ δ− ) relation   

 

 
Fig. 2.16 – Influence of crack path tortuosity and fibre bridging on the stress-deformation relation   

 

As shown in Fig. 2.16, in the case of a lightweight concrete in which cracks run through the aggregates, the crack path 

is smooth compared to the one of a normal concrete. For normal concrete, therefore, the descending branch lies above 

that for lightweight concrete. In fibre-reinforced concrete the crack surfaces are bridged through fibres, therefore the 

descending branch rises. Thus, the parameters that define the stress-deformation relation (Fig. 2.14) depend 

significantly on the concrete mix. In particular, the main influencing factors (CEB Bulletin n°201) are the maximum 

aggregate size, the type of aggregates (e.g. limestone or granite), the shape of aggregates (natural round or broken 

angular), their grading (fine or coarse grading curve), the water-cement ratio and the type of cement. Generally 

speaking, for a concrete with constant compressive strength the tensile strength and the fracture energy increase with 

increasing aggregate size (at least in the range 8-20 mm) and decreasing water-cement ratio. Also, the tensile strength 

and fracture energy may be higher for concrete made with crushed rock aggregates than with limestone aggregates. 

Thus, for constant compressive strength, the mechanical parameters characterizing the tensile behaviour of concrete 

may scatter considerably, depending on the concrete mix (grading curve, maximum aggregate size, size and type of 

aggregates). 

The tensile strength is also affected by curing of the concrete, and may be lower for wet (saturated) concrete than for 

concrete dried over a long period without restriction of the deformations. 
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Another significant influence on the behaviour of tensioned concrete is the age at loading. In general, the ratio of tensile 

strength to compressive strength is much higher for a young concrete than for a 28 days old concrete. With increasing 

age, the ratio between the tensile strength and the compressive strength, decreases slightly further and seems to 

stabilize. 

2.8 Beam size 
A large amount of data is available in the technical literature regarding experimental tests carried out in order to 

systematically evaluate the influence of the beam size on the concrete contribution to the shear resistance. 

In particular, Tompson and Frosch (2002) have been dedicated to the evaluation of the reliability of the concrete shear 

contribution predicted by means of the formulae provided by some Design Codes and too often obtained on the basis of 

regression of the experimental results regarding small cross-sectioned specimens. A fair influence of the beam effective 

depth on the concrete shear strength emerges: the larger the depth, the smaller the concrete contribution. 

2.9 Quality of the epoxy adhesive  
In most of the experimental programs carried out so far, in the ambit of the exploration of the NSM technique, the 

epoxy-based adhesive has been employed. Anyway, the suspicion exists, that the mechanical properties of the adhesive, 

and in particular the Young’s modulus, influence the performance of the shear strengthening system by NSM laminates. 

In fact, the stiffness of the adhesive can influence the length of the laminate in which the stresses are transmitted to the 

surrounding concrete. In that regard, for example, it is desirable, for further developments, to explore the employment 

of structural epoxy-based adhesives characterised by different values of the stiffness or completely different adhesives 

such as vinyl or polyester-based organic resins. Besides, these latter, are characterised by a shorter curing time, aspect, 

this latter, that can positively influence the competitiveness of the NSM technique from a practical point of view. 
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3 State of the Art regarding Predictive Models and Design Formulae to 
assess the FRP Contribution to the Shear Strength of RC beams 

Most of Design Codes currently available worldwide still lack both design formulae and predictive models as regards 

the evaluation of the NSM contribution to the overall shear resistance of retrofitted RC beams. On the contrary, the 

amount of research already carried out on the use of EBR FRP systems for the shear strengthening of RC beams is 

considerable, even if many aspects still need to be clarified. 

In the present chapter, a critical review of the available formulae is presented even if, in some cases, they are not strictly 

devoted to the technique of NSM, that is the main interest of the present document, since it can help develop a good 

insight in the resisting mechanisms associated with the use of FRP for the shear strengthening of RC beams. 

 

3.1 ACI Recommendations for EBR Technique 
The design recommendations contained in the ACI 440.2R (2002) are based on limit-states design principles. They aim 

at setting acceptable levels of safety against the occurrence of both serviceability limit states (excessive deflections, 

cracking) and ultimate limit states (failure, stress rupture, fatigue). For general principles regarding strength and 

serviceability requirements, load factors and strength reduction factors they refer to ACI 318 (2002) document. 

Additional reduction factors for the contribution of the FRP reinforcement are recommended by ACI 440.2R (2002) to 

reflect the lesser information available, to date, for the FRP systems compared with reinforced and prestressed concrete. 

The design ultimate mechanical properties of the adopted FRP material have to be first defined suitably reducing the 

values provided by the manufacturer as a function of the environmental conditions. In fact, the design ultimate tensile 

strength, fdf  , is obtained from: 

*
fd E fuf C f=  (3.1) 

where EC  is the environmental reduction factor and *
fuf  is the value of the tensile strength provided by the 

manufacturer. The values of the environmental reduction factors are listed as function of both the type of material and 

environment in paragraph 8 of ACI 440.2R (2002). 

Likewise, the design ultimate strain, fdε , is obtained from: 

*
fd E fuCε ε=  (3.2) 

where *
fuε  is the value of the ultimate strain provided by the manufacturer. 

The shear strength of existing concrete beams or columns is increased by wrapping or partially wrapping the members. 

The three types of FRP wrapping schemes used to increase the shear strength of prismatic, rectangular beams or 

columns are illustrated in Fig. 3.1. 
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Fig. 3.1 – Typical wrapping schemes for shear strengthening using FRP laminates    

 
Fig. 3.2 – Illustration of the dimensional variables used in shear-strengthening calculations for repair, 

retrofit, or strengthening using FRP laminates    

 

Completely wrapping the FRP system around the section on all four sides is the most efficient wrapping scheme and is 

most commonly used in column applications where access to all four sides of the column is usually available. In beam 

applications, where an integral slab makes it impractical to completely wrap the member, the shear strength can be 

improved by wrapping the FRP system around three sides of the member (U-wrap) or bonding to the two sides of the 

member. Although all the three techniques have been shown to improve the shear strength of a member, completely 

wrapping the section is the most efficient, followed by the three-sided U-wrap. Bonding to two sides of a beam is the 

least efficient scheme. In all wrapping schemes, the FRP system can be installed continuously along the span length of a 

member or placed as discrete strips. For external FRP reinforcement in the form of discrete strips, the center-to-center 

spacing between the strips should not exceed the sum of 4 fd b+ , where d  is the beam effective depth and fb  is the 

width of each strip. 

The design valu of the ultimate shear resistance RdV  of a RC member strengthened with an FRP system should exceed 

the design shear force SdV : 

Rd R SdV V Vφ= ⋅ ≥  (3.3) 

where φ  is the strength-reduction factor required by ACI 440.2R (2002). 

 
The ultimate shear strength of an FRP-strengthened RC member RV  can be determined by adding the contribution of 

the FRP, fV , to the contributions, cV , from the concrete and, sV , from the reinforcing steel (stirrups, ties or spirals). 

An additional reduction factor, fψ , is applied to the contribution of the FRP. 
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( )Rd c s f fV V V Vφ ψ= ⋅ + + ⋅  (3.4) 

where fψ  is equal to 0.95 for completely wrapped elements and 0.85 for three-sided U-wraps or bonded face piles. The 

contribution provided by the FRP reinforcement to the beam overall shear resistance is obtained by: 

( )sin cosfv fe f
f

f

A f d
V

s
β β⋅ ⋅ + ⋅

=  (3.5) 

where: fs  is the spacing of the wet lay-up strips of FRP evaluated along the axis of the beam; β  is the inclination of 

FRP elements with respect to the beam axis; fvA  is the area of FRP shear reinforcement within spacing fs : 

2fv f fA n a b= ⋅ ⋅ ⋅  (3.6) 

with n , fa  and fb  being, respectively, the number of layers per strip, the thickness of a layer and the width of the 

strips. The FRP effective stress, fef , i.e. the tensile stress present in the reinforcement at ultimate state, is calculated in 

accordance to the value of the effective strain, feε , that is the level of strain that can be developed in the FRP at 

ultimate: 

fe f fef E ε= ⋅  (3.7) 

The provisions recommend to determine feε  by taking into consideration all of the most likely failure modes and 

selecting the critical one. Anyway the recommendations also give guidance on determining that effective strain on the 

basis of the different configurations adopted. 

For completely wrapped members, whose critical failure mode has been observed to be the loss of aggregate interlock, 

the allowable value of deformation should be limited to 4‰: 

0.004 0.75fe fuε ε= ≤ ⋅  (3.8) 

For three and two side-bonded FRP wraps, the allowable value of the effective strain is intended to prevent the 

debonding failure and is calculated by means of a bond-reduction coefficient, νκ : 

0.004fe fuνε κ ε= ⋅ ≤  (3.9) 

The bond-reduction factor is a function of the concrete strength, the type of wrapping scheme used, and the stiffness of 

the laminate. It can be determined by: 

1 2 0.75
468

e

fu

k k L
νκ

ε
⋅ ⋅

= ≤
⋅

 (3.10) 

For the case of U-wrapping and by: 

1 2 0.75
11900

e

fu

k k L
νκ

ε
⋅ ⋅

= ≤
⋅

 (3.11) 

For the case of side-bonding. 

The active bond length, eL , i.e. the length over which the majority of the bond stress is maintained, is given by: 
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( ) 0.58
2500

e

f f

L
n a E

=
⋅ ⋅

 (3.12) 

For the U-wrapping and by: 

( ) 0.58
23300

e

f f

L
n a E

=
⋅ ⋅

 (3.13) 

For the case of side-bonding, where fE  is the Young’s modulus of the FRP. 

The bond-reduction factor also relies on two modification factors, 1k  and 2k , that account for the concrete strength and 

the type of wrapping scheme used, respectively. The 1k  modification factor is calculated by: 

2
3

1 4000
ckf

k ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.14) 

for the U-wrapping and by: 
2
3

1 27
ckf

k ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3.15) 

for the case of side-bonding, with ckf  being the characteristic value of the concrete compressive strength. 

Likewise, the 2k  modification factor is calculated by: 

2
f e

f

d L
k

d
−

=  (3.16) 

for the U-wrapping and by: 

2
2f e

f

d L
k

d
− ⋅

=  (3.17) 

for the case of side-bonding. 

 

The possibilty to adopt mechanical ancorages at the FRP extremities is allowed but it is also outlined that the effective 

strain in the FRP laminates should not overcome the limit value of 4‰. 

 

In case of adoption of spaced FRP strips, spacing should adhere to the limits as set by ACI 318-02 for internal steel 

shear reinforcement where the spacing is defined as the distance between the centrelines of the strips. 

 

The total shear reinforcement should be limited based on the criteria given for steel alone in ACI 318-02, i.e. fV  should 

be such as to satisfy the following limitations: 

8s f ck wV V f b d+ ≤ ⋅ ⋅ ⋅  (3.18) 

for the case of U-wrapping and: 

0.66s f ck wV V f b d+ ≤ ⋅ ⋅ ⋅  (3.19) 

for the side-donding. 
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It’s worth noting that the resisting mechanism underlying the above formulation is the classical Mörsch Truss applied 

with the assumption that the critical diagonal crack inclination is 45° with respect to the beam axis and, consequently, 

the number of strips effectively intersecting the crack is accounted for. 

 

3.2 fib Recommendations for EBR Technique 
The design shear capacity of a RC strengthened element may be calculated, in accordance with the EC2, as follows: 

{ }, , , ,maxmin ;Rd Rd c Rd s Rd f RdV V V V V= + +  (3.20) 

in which: ,Rd cV , sRdV , , fRdV ,  are the contributions provided, respectively, by the concrete, the steel stirrups and the 

FRP reinforcement, and max,RdV  is the resistance of the concrete compression strut. 

According to fib recommendations, the design FRP contribution to shear capacity can be estimated by means of the 

following formulation: 

( ), 0.9 cot cot sinRd f fed f fw wV E b dε ρ θ β β= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅  (3.21) 

where wb  is the width of the beam cross-section, d  is the beam cross section effective depth, θ  is the inclination of the 

shear crack assumed as 45°, β  is the angle between the principal fibre orientation and the longitudinal axis of the 

beam, fedε  is the design value of the FRP effective strain, fE  is the Young’s modulus of the FRP element, fwρ  is the 

reinforcement ratio equal to: 

2 f f
fw

w f

a b
b s

ρ
⋅ ⋅

=
⋅

 (3.22) 

for the case of FRP reinforcement in the form of strips or sheets of width fb  at a spacing fs , and given by: 

2 sinf
fw

w

a
b

β
ρ

⋅ ⋅
=  (3.23) 

for the case of continuously bonded shear reinforcement of thickness fa . 

The design effective strain can be computed, from its mean value feε  by applying two partial safety factors:  

0.8 fe fek
fed

f f

ε ε
ε

γ γ
⋅

= =  (3.24) 

0.8, that is necessary to obtain, in absence of sufficient data, the corresponding characteristic value, fekε , and the 

material safety factor, fγ , that, if failure involves FRP fracture, is listed in function of the type of fibres and, if 

debonding dominates, can be assumed equal to 1.3. Some researchers have proposed that the effective strain be limited 

to a maximum value, in the order of 6‰, to maintain the integrity of concrete and secure activation of aggregate 

interlock mechanism (e.g. Priestley and Seible 1995, Khalifa et al. 1998, Triantafillou and Antonopoulos 2000). Such 

limitation should be considered only if activation of this mechanism is of crucial importance. 

For the case of fully wrapped CFRP, in which the controlling mechanism is the FRP rupture, the mean value of the 

effective strain, feε , is calculated by: 
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0.32/3
0.17 cm

fe fu
f fw

f
E

ε ε
ρ

⎛ ⎞
= ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

 (3.25) 

in which cmf  is the mean cylindrical concrete compressive strength and fuε  is the ultimate FRP strain. 

For the case of side or U-shaped CFRP strips, the mean value of the effective strain, feε , is calculated by: 

0.56 0.32/ 3 2/ 3
3min 0.65 10 ; 0.17cm cm

fe fu
f fw f fw

f f
E E

ε ε
ρ ρ

−
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⋅ ⋅⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.26) 

in which the two expressions in parentheses contemplate, respectively, debonding and rupture failure modes of the FRP. 

For the case of fully wrapped AFRP, in which case the fracture failure mode controls, feε  is calculated by: 

0.472/ 3
0.048 cm

fe fu
f fw

f
E

ε ε
ρ

⎛ ⎞
= ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

 (3.27) 

Note that in all equations cmf  is in MPa and fE  is in GPa. 

 

For most practical cases, the above equations for the effective FRP strain give values that are above the yield strain of 

internal stirrups. For the sake of completeness fib document stresses that, if this is not the case, than the value of the 

effective strain should also be used for the calculation of the contribution of the internal steel stirrups. 

 
The spacing of strips, fs , if they are used vertically, should not exceed ( )0.9 2fd b⋅ −  for rectangular cross sections 

or ( )2s fd t b− −  for T-beams, where st  is the slab thickness. This limitation is meant to avoid that a diagonal crack 

may form without intercepting a strip. 

 
If the RC member has circular section, e.g. some columns, the FRP shear contribution (for FRP wrapped around the 

column) is controlled by the tensile rupture of the FRP jacket, but may be limited to a maximum value corresponding to 

excessive dilation of the concrete due to aggregate interlock (one of the key shear force transfer mechanism) at inclined 

cracks. By limiting the concrete dilation, that is the radical strain (which is equal to the FRP hoop strain) to a maximum 

value, say, maxε , one may easily show that for inclined cracks forming an angle of θ  with the column axis, the FRP 

contribution to shear capacity is as given by the following equation: 
2

max 1 cot
2 4

c
fd f fw

f

D
V E

ε π
ρ θ

γ
⋅

= ⋅ ⋅ ⋅ ⋅ ⋅  (3.28) 

where cD  is the column diameter. 

 
The predictive formula proposed by fib derives from the plain application of the Mörsch truss resisting mechanism. The 

possibility to take into account a shear crack inclination different than 45° is explicitly allowed. 

Barros & Dias (2005) have recently verified that a substantial overestimation is obtained when applying the fib 

formulation to some RC shear strengthened by the NSM technique. 
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3.3 CNR DT 200 Recommandations for EBR Technique 
The Italian Recommendations CNR DT 200, recently issued by the Italian National Research Council, start by outlining 

the brittleness of the failure governed by debonding of the externally bonded FRP strips or sheets to the concrete surface 

in both cracked and uncracked zones. 

In accordance with the most rigorous “Capacity Design” philosophy, an approach is proposed to avoid that bond failure 

occurrence precede either the shear or flexural ones. 

The design shear resistance of the strengthened beam is calculated as follows: 

{ }, , , ,maxmin ;Rd Rd c Rd s Rd f RdV V V V V= + +  (3.29) 

in which ,Rd cV , sRdV , , fRdV ,  are the design contributions provided respectively by the concrete, the steel stirrups and 

the FRP reinforcement and max,RdV  is the resistance of the concrete compression strut to be calculated in accordance to 

the current building codes. 

In case of a RC member with a rectangular cross-section and FRP side-bonding configuration, the design value of the 

FRP contribution to the shear capacity, ,Rd fV , is calculated by: 

{ }, '
1 sinmin 0.9 , 2

sin
f

Rd f w fed f
Rd f

b
V d h f a

s
β

γ θ
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (3.30) 

where Rdγ  is the partial safety factor, accounting for the uncertainties of the adopted mechanical model, that should be 

taken equal to 1.20, d  is the beam effective depth, wh  is the height of the beam web, fedf  is the effective FRP design 

strength to be calculated as further specified, fa  is the thickness of the adopted FRP system, β  is the fibers angle with 

respect to the member longitudinal axis, θ  represents the angle of shear crack (to be assumed equal to 45° unless a 

more detailed calculation is made), and fb  and '
fs  are the FRP width and spacing, respectively, measured orthogonally 

to the fibre direction (see Fig. 3.3). For a contiunous strengthening configuration, the ratio '
f fb s  should be set equal 

to one. 

 
Fig. 3.3 – Notation for shear strengthening using FRP strips    

 

In the case of a RC element with a rectangular cross section and U-wrapped or completely wrapped configurations, the 

FRP contribution to the shear capacity shall be calculated according to the Mörsch truss mechanism as follows: 
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( ), '
1 0.9 2 cot cot f

Rd f fed f
Rd f

b
V d f a

s
θ β

γ
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅  (3.31) 

where all symbols have the same meaning as those employed in the previous Eq. 3.30. 

For completely wrapped members having circular cross-sections of diameter cD  when fibres are placed orthogonally to 

the axis of the member ( 90β = ° ), the FRP contribution to the shear capacity, ,Rd fV , shall be calculated as follows: 

,
1 cot

2Rd f c fed f
Rd

V D f aπ θ
γ

= ⋅ ⋅ ⋅ ⋅ ⋅  (3.32) 

In all Equations 3.30 to 3.32 it is allowed to replace the term '
fs  with the term fs  measured along the member 

longitudinal axis, where ' sinf fs s β= ⋅ . 

 
The design effective strength of the FRPs is evaluated, for the side-bonded configuration, by means of the following 

equation: 

{ }

2
,

,
1 0.6

min 0.9 ,
rid eq eq

fed fdd
w rid eq

z l
f f

d h z

⎛ ⎞
⎜ ⎟= ⋅ ⋅ − ⋅
⎜ ⎟⋅ ⎝ ⎠

 (3.33) 

in which fddf  is the FRP design ultimate debonding-based strength to be determined as later specified, and: 

{ }, rid;    z min , sin ;    sin
/
fu

rid eq rid eq w e eq
fdd f

z z l z h L l
f E

δ
β β= + = − ⋅ = ⋅  (3.34) 

with the following symbols: ridz  is the reduced value of the internal lever arm, z  the internal lever arm ( 0.9z d= ⋅ ), 

wh  the web height , eL  is the effective bond length, eql  is the vertical projection of the bonded length that would be 

necessary if the fabric strain fdd fdd ff Eε =  was uniform; fuδ  is the slip at debonding to be assumed equal to 0.2 mm, 

fE  the elasticity modulus in the fibres direction and ,rid eqz  the equivalent value of the reduced internal lever arm. 

In case of U-shaped configuration, the effective design strength is evaluated as follows: 

{ }
sin11

3 min 0.9 ;
e

fed fdd
w

L
f f

d h
β⎡ ⎤⋅

= ⋅ − ⋅⎢ ⎥
⋅⎢ ⎥⎣ ⎦

 (3.35) 

while, in case of wrapping: 

{ } ( ) { }
sin sin1 11 1

6 min 0.9 ; 2 min 0.9 ;
e e

fed fdd R fd fdd
w w

L L
f f f f

d h d h
β β

φ
⎡ ⎤ ⎡ ⎤⋅ ⋅

= ⋅ − ⋅ + ⋅ ⋅ − ⋅ −⎢ ⎥ ⎢ ⎥
⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.36) 

where fdf  is the design ultimate strength of the FRP and: 

0.2 1.6 , 0 0.5c c
R

w w

r r
b b

φ = + ⋅ ≤ ≤  (3.37) 

where cr  is the corner radius of the section to be wrapped. Moreover, in Eq. 3.36, the second term should be considered 

only if greater than zero. 

The effective design strength, fedf , i.e. a reduced value of the debonding-based ultimate design strength, fddf  is 

introduced in order to prevent the FRP strips from debonding because of the brittleness of such failure mechanism. 
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For the case of a bond length value, fL , higher or equal to the optimal bond length, eL , and for the case of the FRP 

sheet end debonding failure mode (mode 1), the design effective strength is calculated by: 

21 f fk
fdd

ff c

E G
f

aγ γ

⋅ ⋅
= ⋅

⋅
 (3.38) 

where fγ  is the FRP material partial safety factor, cγ  is the partial safety factor for concrete and fkG  is the 

characteristic value of the specific fracture energy for the FRP-concrete interface calculated as follows: 

0.03fk f ck ctmG k f f= ⋅ ⋅ ⋅  (3.39) 

where ckf  is the characteristic cylindrical concrete compressive strength, ctmf  is the concrete mean tensile strength and 

fk  is the geometric coefficient. 

The effective bond length is calculated as follows: 

2
f f

e
ctm

E a
L

f
⋅

=
⋅

 (3.40) 

And the geometrical coefficient, fk : 

2
1

1
400

f

c
f

f

b
b

k
b

−
= ≥

+
 (3.41) 

in which fb  is the width of the FRP system and cb  is the width of the concrete element, see Fig. 3.4. 

 
Fig. 3.4 – Maximum force transferred between FRP and concrete 

 

For the cases in which the available bond length, fL , is shorter than the effective bond length, eL , the ultimate design 

strength shall be reduced according to the following equation: 

, 2f f
fdd rid fdd

e e

L L
f f

L L
⎛ ⎞

= ⋅ ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.42) 

To prevent failure from intermediate debonding mechanism (mode 2), the maximum strength calculated in the FRP 

system at ultimate shall be less than ,2fddf : 
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,2fdd cr fddf k f= ⋅  (3.43) 

where the reduction factor, crk , can be assumed equal to 3.0 if specific data are not available. 

Among the construction details, it is recommended that: for U-wrapped and completely wrapped configurations, a 

minimum radius of 20 mm should be provided when FRP sheets are installed around outside corners; for external FRP 

reinforcement in the form of discrete strips, the strip width, fb  and centre to centre spacing between strips, '
fs , should 

not exceed the following limitations, respectively: 

50 250fb mm≤ ≤  and { }' min 0.5 ,3 , 200f f f fb s d b b mm≤ ≤ ⋅ ⋅ +  (3.44) 

The above formulation was developed within a rigorous closed-form framework (Monti and Liotta 2006, Liotta 2007, 

Monti et al. 2004) by defining: a generalised failure criterion of an FRP strip/sheet bonded to a concrete surface; the 

local stress-slip constitutive law; the compatibility equations (i.e. the crack opening); the boundary conditions (i.e. the 

available bond lengths on both sides of the crack depending on the adopted configuration). 

The above solution proposed by Italian Research Council has been determined with formal rigour and the predictions 

obtained accordingly have shown a more than satisfactory agreement with the experimental results (Liotta 2007, Monti 

et al. 2004). 

This formulation has resulted absolutely innovative, in the ambit of the shear strengthening of RC concrete structures by 

means of EB FRP systems, mainly because of two points: first, it is based on the understanding of the mechanical 

failure modes, that, as stated above, can not always be modelled with the Mörsch truss and second, it was obtained in 

closed form taking into account not only equilibrium but also compatibility, constitutive law and boundary conditions.  

3.4 De Lorenzis’ analytical formulation for NSM Technique  
The formulation by De Lorenzis (De Lorenzis and Nanni 2001, De Lorenzis 2002) was proposed within a general 

pioneering evaluation of the innovative strengthening technique by means of Near Surface Mounted (NSM) FRP rods. 

The ultimate shear strength is calculated, in accordance with ACI provisions (ACI 318-95), by superimposing the 

contributions provided by the concrete, cV , by the transverse steel reinforcement, sV , and by the FRP rods, fV . The 

strength reduction factors to be applied to the ultimate strength contributions above are: 0.85  for both concrete and 

steel and 0.7  for the FRP in order to implicitly take into account the major uncertainties due to the relative novelty of 

this technique. Thus, the design shear resistance of the strengthened RC element, RdV , will be as follows: 

( )0.85 0.7Rd s c fV V V V= ⋅ + + ⋅  (3.45) 

De Lorenzis also recommends the following limits to be respected: 

4f ck wV f b d≤ ⋅ ⋅ ⋅  (3.46) 

8s f ck wV V f b d+ ≤ ⋅ ⋅ ⋅  (3.47) 

where ckf  is the characteristic value of the concrete compressive strength, wb  the web width and d  the cross section 

effective depth. The former limitation on the maximum amount of additional shear strength that may be achieved is 

defined as a percentage of the ultimate concrete shear strength contribution. It is a limitation that should get the designer 
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aware that it is better not to rely on additional FRP shear strength values that are too high with respect to the concrete 

shear strength. The latter limitation attempts to avoid excessive crack width by limiting the maximum shear resisted by 

stirrups. 

According to De Lorenzis, the ultimate shear contribution by the NSM FRP Rods has to be assumed equal to the 

minimum of two values: 1fV  determined taking into account the debonding failure mode (governed by splitting of the 

cover in the examined case of ribbed round bars) and 2fV , corresponding to the possibility that, avoided debonding, the 

maximum strain of 4‰ is reached in the rods. This latter is meant to avoid excessive width of the cracks to occur thus 

preserving the resisting contribution provided by concrete aggregate interlock. 

In the calculations a reduced value of the height, netd , of the cross-section is utilised: 

2net rd d c= − ⋅  (3.48) 

in which c  is the concrete cover and rd  is the height of the shear-strengthened part of the cross-section. In the case of 

vertical NSM rods, rd  coincides with the length of the rods. This reduction is intended to approximately account for 

the height of the Mörsch truss being lower than the actual height of the section. 

The term 1fV  is computed based on the following assumptions: 

• inclination angle of the shear cracks constant and equal to 45°; 

• even distribution of bond stresses along the FRP rods’ effective bond length, at ultimate; 

• the ultimate bond strength is reached in all of the rods intersected by the crack at ultimate. 

De Lorenzis adopted the assumption of evenly distributed bond strength on the basis of both experimental observations 

and analytical results: for low values of the bonded length (approximately less than 24 diameters), the ultimate load was 

observed to grow almost linearly with the bonded length thus justifying it. De Lorenzis also warns about the necessity 

to further verify the assumption of an even value of bond strength at ultimate in case of both bond stress-slip conditions 

( )τ δ  and bonded length values different than those she delt with. 

De Lorenzis uses the term “effective bond length” to refer to the shorter of the two parts in which the crack divides the 

rod. Since troughout the present document, the comparison between NSM and EBR is made, we will refer the same 

quantity as “available bond length”, to distinguish it from the effective bond length of the EBR technique. 

The shear force can be computed as the sum of the forces resisted by each of the FRP rods intersected by the shear 

crack: 

1 ,min2f b b totV d Lπ τ= ⋅ ⋅ ⋅ ⋅  (3.49) 

in which bd  is the nominal diameter of the adopted FRP rods, bτ  is the average bond strength and min,totL  is the 

minimum value of the effective lengths’ sum, i.e. the minimum value, function of the geometrical disposition of the 

assumed crack with respect to the rods, of the sum of the available bond length of the rods crossing the crack. 

Actually min,totL  depends on: the reduced height of the beam cross section, netd , the spacing of the rods calculated 

along the axis of the beam, fs , and their inclination, β , and can be computed, on the basis of geometrical 

considerations, as follows: 
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,mintot net fL d s= −  if 
3
net

f net
d

s d≤ ≤  (3.50) 

,min 2 4tot net fL d s= ⋅ − ⋅  if 
4 3
net net

f
d d

s≤ <  (3.51) 

for vertical rods and:  

( ),min
22

2tot net fL d s= ⋅ − ⋅  if 
2

2
3

net
f net

d
s d

⋅
≤ ≤ ⋅  (3.52) 

( ),min 2 2tot net fL d s= ⋅ ⋅ −  if 
2

2 3
net net

f
d d

s
⋅

≤ ≤  (3.53) 

for 45 degree-inclined rods. 

 

The term 2fV  is the NSM FRP shear strength contribution corresponding to a maximum effective strain of 4‰. It is 

calculated under the same assumptions adopted for 1fV , i.e.: 45-degree shear crack and even bond stress distribution at 

ultimate. 

The effective length of an FRP rod crossed by the crack and corresponding to a strain of 4‰, fL , can be calculated, by 

equilibrium considerations, as follows: 

0.001 b f
f

b

d E
L

τ
⋅

= ⋅  (3.54) 

When the available bond length of the i-th laminate, fiL , is higher than fL , this latter value will be considered. 

According to De Lorenzis’ provisions, if: 

0.002 b f
net

b

d E
d

τ
⋅

< ⋅  (3.55) 

in the case of vertical rods or if: 

2 0.001 b f
net

b

d E
d

τ
⋅

< ⋅ ⋅  (3.56) 

for the 45 degree-inclined rods, the evaluation of 2fV  is not necessary since the first term 1fV  prevails. 

2fV  has to be calculated in the most unfavourable position, that is in the position in which it is minimum. It can be 

shown that, the minimum value is: 

2 2f b b fV d Lπ τ= ⋅ ⋅ ⋅ ⋅  if 
2
net

f net
d

s d< <  (3.57) 

2
3 4

2 net f
f b b f

net

d s
V d L

d
π τ

⋅ − ⋅
= ⋅ ⋅ ⋅ ⋅ ⋅  if 

4 3
net net

f
d d

s< <  (3.58) 

for vertical rods and: 

2 2f b b fV d Lπ τ= ⋅ ⋅ ⋅ ⋅  if 2net f netd s d< < ⋅  (3.59) 

2
3 2

2 net f
f b b f

net

d s
V d L

d
π τ

⋅ − ⋅
= ⋅ ⋅ ⋅ ⋅ ⋅  if 

2
net

f net
d

s d< <  (3.60) 

for 45 degree-inclined rods. 
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The formulation by De Lorenzis was recently adapted to the case of NSM CFRP laminates by Barros and Dias (2005). 

The term 1fV  was calculated as follows: 

( )1 ,min4f f f b totV a b Lτ= ⋅ + ⋅ ⋅  (3.61) 

where fa  and fb are, respectively, the thickness and width of the NSM laminates cross section. 

The formula for the evaluation of 2fV  was also adapted to the case of rectangular cross-sectioned laminates by 

Barros and Dias (2005): 

( )2 4f f f b fV a b Lτ= ⋅ + ⋅ ⋅  if 
2
net

f net
d

s d< <  (3.62) 

( )2
3 4

4 net f
f f f b f

net

d s
V a b L

d
τ

⋅ − ⋅
= ⋅ + ⋅ ⋅ ⋅  if 

4 3
net net

f
d d

s< <  (3.63) 

for vertical rods and: 

( )2 4f f f b fV a b Lτ= ⋅ + ⋅ ⋅  if 2net f netd s d< < ⋅  (3.64) 

( )2
3 2

4 net f
f f f b f

net

d s
V a b L

d
τ

⋅ − ⋅
= ⋅ + ⋅ ⋅ ⋅  if 

2
net

f net
d

s d< <  (3.65) 

for 45 degree-inclined rods. 

Likewise, if: 

2net fd L< ⋅  (3.66) 

in the case of vertical laminates, or if: 

2net fd L< ⋅  (3.67) 

in the case of laminates at 45 degrees, it is not necessary for 2fV  to be calculated being 1fV  the commanding, 

minimum value. 

 

Within a work mainly devoted to the appraisal of the performance by the available predictive formulae, Barros and Dias 

Barros and Dias (2005) obtained a good agreement between experimental results and the predictions by De Lorenzis’ 

formula even if they had to modify the value of some parameters to take into account the specificities related to the use 

of NSM laminates instead of rods. In particular, they assumed a value of 16.1 MPa as average bond strength and an 

average strain at peak pullout force of 5.9‰. 

3.5 Formulation by Nanni et al. for NSM Technique 
In the ambit of a proposal for shear-strengthening existent Pre-stressed Concrete (PC) bridge girders by means of NSM 

CFRP rectangular cross-sectioned bars, Nanni et al. (2004) proposed a formulation to estimate the CFRP contribution to 

the overall shear resistance of the strengthened RC member, which was derived from the formulation of De Lorenzis, 

described in the previous section. The ultimate contribution of the laminates, fV , is obtained by the following equation: 
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( ) ,min4f f f b totV a b Lτ= ⋅ + ⋅ ⋅  (3.68) 

in which fa  and fb  are, respectively, the thickness and width of the bar cross section, bτ  is the average bond strength 

of the elements crossing the shear crack and min,totL  is the minimum possible value of the sum of the “effective length” 

of all the elements intersected by the shear crack: 

,min
1

effN

tot fi
i

L L
=

= ∑  (3.69) 

The “effective length”, fiL , as for De Lorenzis’ formulation, is the shorter of the two parts in which the crack divides 

the i-th intersected laminate. Hereinafter, it will be referred to as “available bond length”. The minimum value fiL , for 

the i-th laminate, is determined as follows: 

min ;                  1;...;       
cos sin 2

min ;         1 ;..;
cos sin 2
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f
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net f eff

s N
i L i

L
s N

l i L i N

β β

β β

⎧ ⎛ ⎞
⋅ =⎪ ⎜ ⎟⎜ ⎟+⎪ ⎝ ⎠= ⎨

⎛ ⎞ ⎛ ⎞⎪ − ⋅ = +⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠⎩

 (3.70) 

where β  is the inclination angle of the laminates with respect to the beam axis, i  is the ordinal number of the 

laminates crossing the crack and counted starting from the crack origin (see Fig. 3.5), fs  is the spacing of the laminates 

calculated along the beam axis. netl  is the net length of the laminates, intended to account for eventual cracking of the 

concrete cover and installation tolerances, calculated as follows: 

2
sinnet f

cl L
β

⋅
= −  (3.71) 

where fL  is the actual length of a laminate and c  is the thickness of the concrete cover. 

effN  is the effective number of the FRP bars intersected by the crack obtained by rounding off its actual value to the 

lowest integer: 

( )1 cot
lowest integer of eff

eff
f

l
N

s
β⋅ +

=  (3.72) 

in which: effl  is the vertical projection of the net length of the laminates, netl . 

The value fL  is determined by equilibrium conditions of the case in which the maximum allowable value of the 

effective strain ( 004.0=feε ) is reached in the bar: 

max 2
fe f f f

f f b

a b E
l

a b
ε

τ
⋅

= ⋅ ⋅
+

 (3.73) 

The limitation of the effective strain is meant to limit the width of the crack thus preserving the amount of shear 

resistance provided by the aggregate interlock resisting mechanism. 

The value suggested for the average bond strength is 6.90 MPa. The assumption of the inclination of 45° for the critical 

diagonal crack is implicit. Another implicit assumption is the even distribution of the bond strength along the length of 

the element: the limitations already outlined for the formulation by De Lorenzis are still valid. 
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The above geometrical expedient to determine the min,totL  by calculating the minimum integer number of bars actually 

intersected by the crack looks extremely elegant from an analytical point of view, even if it seems to be simply a 

refinement of the previous formulation by De Lorenzis (see paragraph 3.4). 

 

 
Fig. 3.5 – Concept of ,mintotL  

 

Barros and Dias (2006) already appraised the performance of the above formula in the case of NSM CFRP laminates 

obtaining too conservative results due to the low value of bτ  prescribed by Nanni et al. since it was determined in the 

case of FRP round bars glued by means of epoxy adhesive into square-sectioned grooves. In that case, the dominant 

bond mechanism was splitting of the epoxy cover that, for bigger dimensions of the cut slit, involved also the 

surrounding concrete (De Lorenzis and Nanni 2002). On the contrary, in the case of NSM CFRP laminates, the 

governing bond mechanism at failure is due to the damage of the interface laminate-epoxy (Sena-Cruz 2004). By using 

average bond strength and effective strain values obtained in pull-out bending tests carried out at the Structural 

Laboratory of the University of Minho, i.e. by using: MPa 1.16=bτ  and 0059.0=feε , Barros and Dias obtained a 

more satisfactory average safety factor of about 1.39. 

 

Apart from the improved formal elegance as regards the evaluation of the minimum total length with respect to the 

previous formulation by De Lorenzis, a conceptual limit seems not to be overcome yet: the resisting force is calculated 

by adding the contributions of the laminates crossing the crack evenly distributing the average bond strength on the 

shorter part of each bar irrespective of the length-dependence of the average bond strength. In that respect, it seems 

much more correct to multiply each effective length by the corresponding average bond strength. Moreover, it is not 

clear the reason why the shear resisting contribution provided by the NSM along the length of the bars is not projected 

on the vertical in order to obtain the vertical component. 

3.6 Australian Guidelines Draft’s Recommendations 
These Recommendations deal with the strengthening of RC beams and slabs by means of FRP elements both Externally 

Bonded (EB) and Near Surface Mounted (NSM) and are composed of two parallel parts: the Guideline itself and the 

Commentary. In the former, the authors provide general informations aiming at developing a deep knowledge of the 

main specificities of the mechanical behaviour of RC elements strengthened in shear or flexure by FRP elements and, in 
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the latter, they provide some among the more advanced design analytical expressions available to date. The 

Commentary is only meant to assist in the design and the designer is free to use any other approach that has been shown 

to be correct and safe and which satisfies the generic and fundamental principles outlined in the Guideline. 

The general formulation, reported in the Guideline, and applicable to both the case of EB and NSM, to evaluate the 

ultimate shear resistance of the strengthened beam, RV , is the following: 

u c c f f s sV V V k V k V= + ∆ + ⋅ + ⋅  (3.74) 

where, cV , is the contribution ascribed to concrete, fV  is the FRP contribution, sV  is the tranverse steel reinforcement 

contribution, cV∆  is the increment of concrete shear contribution due to the presence, if any, of longitudinal FRP 

elements, glued either on the beam soffit or the web faces, crossing the Critical Diagonal Crack (CDC), fk  is a 

coefficient that accounts for the interaction between subsequent FRP elements and sk  is a coefficient that accounts for 

the interaction between FRP elements and existing stirrups. The CDC is defined as a crack across which there is a rigid 

body displacement between the two parts in which the beam is divided (see Fig. 3.6 ). 

 

 
Fig. 3.6 – CDC and stress resultants in transveral plates 

 
Critical diagonal cracks are neither flexural cracks nor inclined flexural-shear cracks that occur over a relatively small 

portion of the depth of the beam. In contrast, a critical diagonal crack occurs over the full depth, or nearly the full depth, 

of the beam cross section. The reduction factor sk  accounts for the possibility that, in correspondence of the beam peak 

load, the deformation already occurred in the stirrups is not large enough to have yielded them so that their maximum 

strength cannot be entirely added to the resisting forces cV  and fV  provided by concrete and FRP, respectively. The 

coefficient fk  accounts for the possibility that the FRP strips/laminates may debond as a whole for a value of the 

overall shear capacity which is less than the mere sum, fV , of their individual capacities: 

sin
n n

p
f fi fi

i i

V V V β= = ⋅∑ ∑  (3.75) 

where n  is the number of plates crossing the CDC, fiV  is the shear strength contribution that can be provided by a 

single i-th element, i.e. the component, orthogonal to the beam axis, of the maximum force that can be resisted by the 

element along its axis p
fiV , and β  is the inclination of the FRP element with respect to the beam axis. The term cV∆  

takes into account the possible presence of longitudinal FRP elements crossing the CDC whose beneficial effect is to 
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add extra resistance to the crack widening thus incrementing the value of the shear strength provided by concrete 

aggregate interlock. In the case of longitudinal NSM elements, as opposed to the case of EBR, the term cV∆  is 

suggested to be taken equal to zero since the NSM elements, in virtue of a better bond behaviour, can bear higher 

deformations than EBR before debonding occurs. 

The resistance provided by the i-th FRP element p
fiV  is calculated assuming that it is the minimum resisting value 

between those ascribed respectively to debonding, ,p db
fiV , and tensile rupture, ,p tr

fiV , of the element itself: 

{ }, ,min ;p p tr p db
fi fi fiV V V=  (3.76) 

The commanding failure mechanism, on the basis of which the term ,p db
fiV  is calculated, is referred to as “Intermediate 

Crack (IC) debonding”. The intermediate crak, in Fig. 3.7, can be any crack that intersects the plate such as a flexural 

crack, flexural-shear crack, or critical diagonal crack and the widening of the intermediate crack of width w  can be due 

to flexural or shear deformations. 

 

 
Fig. 3.7 – Concept of Intermediate Crack (IC) 

 

When any new intermediate crack intersects a plate, localised debonding accompanied by interface slip δ  occurs at the 

concrete/plate interface as shown in Fig. 3.7, which allows the crack to go on widening. These localized interface 

debonding cracks are referred to as IC interface cracks. If those IC interface cracks are allowed to grow due to widening 

of the intermediate crack w , they can cause the plate to debond at an axial force ICP  which is, throughout the 

Australian Guidelines, referred to as “IC debonding resistance”. The IC debonding resistance, ICP , depends on the 

interface bond-slip characteristics shown as τ δ  in Fig. 3.7 and also shown in Fig. 3.9, where fτ  is the peak interface 

shear stress and fuδ  is the maximum interface slip that resists shear and beyond which the bond reduces to zero. These 

material interface characteristics, fτ  and fuδ , and their corresponding energy term, f fuτ δ⋅ , are generally derived 

directly from tests, such as the push-pull test shown in Fig. 3.10, and are the fundamental properties that govern not 

only the IC debonding strength ICP  but also the ductility of the plated section at IC debonding. 

It emerges that the authors of the Australian Guidelines adopt the definition of intermediate crack resistance ICP  in 

order to clearly distinguish this failure mechanism from the Plate End debonding (PE) that generally occurs for flexural 

strengthening elements at their free end, see Fig. 3.8.  
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Since in the case of shear, that is the main interest of the present document, the above intermediate crack debonding 

envisages debonding that starts propagating from the CDC, that is from the loaded end of the available bond length of 

the element crossing the crack, the corresponding resisting force, will be simply referred to throughout the text, in an 

attempt to uniformize the symbols, as debonding resistance and indicated by ,p db
fiV . 

 
Fig. 3.8 – Plate End (PE) debonding mechanism 

 
Fig. 3.9 – Fundamental interface bond-slip characteistics 

 
The debonding resistance of the i-th element in beams, whose contour geometrical condition differ from the ones met in 

a simple push-pull test, and parallel to the element length, ,p db
fiV , can be assumed equal to the value obtainable by 

means of a simple push-pull test since this latter generally constitutes a lower bound. The maximum debonding 

resistance is given by (Seracino et al. 2006): 

( ),
,

p db
f fu per db f f ffiV L E a bτ δ= ⋅ ⋅ ⋅ ⋅ ⋅  (3.77) 

where ,per dbL  is the perimeter length of the cross section of the debonding failure plane as shown in Fig. 3.11, fE  is 

the Young’s Modulus of the plate along its longitudinal axis and f fa b⋅  is the plate cross sectional area. 

 
Fig. 3.10 – Fundamental interface bond-slip characteristics 
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Fig. 3.11 – Perimeter length of idealised failure plane (cross section) 

 
To achieve the maximum debonding resistance, ,p db

fiV , a minimum bond length, eL , from the “crack face” in Fig. 3.12 

is required that can be calculate by the following expression (Seracino et al. 2006): 

,2
e

f per db

fu f f f

L
L

E a b

π
τ

δ

=
⋅

⋅
⋅ ⋅ ⋅

 
(3.78) 

It can be assumed that the variation of the debonding resistance is bilinear: being zero at 0fL = , increasing to a 

maximum of ,p db
fiV  at f eL L=  and constant at ,p db

fiV  when f eL L≥  as shown in Fig. 3.12. 

 

 
Fig. 3.12 – Idealized debonding resistance 

 
The minimum bond length, eL , is the minimum length of the element required to achieve the maximum debonding 

resistance ,p db
fiV . Unlike internal steel reinforcing bars, it is not always possible to increase the resisting force by 

increasing the bond length up to the tensile rupture of the element itself i.e. it can happen that, as function of the 

geometrical-mechanical parameters, the maximum load ,p db
fiV  is, in general, smaller than ,p tr

fiV . 

 

In the parallel Commentary, it is suggested that the above values ,p db
fiV  and eL  can be calculated by the approach 

adopted at the University of Adelaide, valid for both EBR and NSM. The mean value of the fracture energy-related 

term, f fuτ δ⋅ , in Eq. 3.77, can be calculate by means of the following expression: 
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( )
0.5

0.67,

,
0.73 f db

f fu cm
f db

b
f

a
τ δ

⎛ ⎞
⋅ = ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.79) 

where units are in N and mm and: cmf  is the average concrete cylindrical compressive strength, ,f dbb  and ,f dba  are, 

respectively, the depth and width of the debonding failure plane (see Fig. 3.11). ,f dbb  and ,f dba  are defined in Fig. 3.11 

where the failure plane whose cross section perimeter is ,per dbL  should be assumed to be 1 mm within concrete and 

from the plate (Seracino et al. 2006) as shown. The design characteristic value of the maximum force that can be 

reistsed by a single bonded element, which has a bond length equal at least to eL , is: 

( )
0.25

0.33,,
,

,
0.725 f dbp db

c per db f f ffki
f db

b
V f L E a b

a

⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.80) 

where the corresponding mean value can be obtained substituting the coefficient 0.725 with 0.853.  

For manufactured or pultruded plates, fE  and ( )f fa b⋅  are those of the plate itself. In case of wet lay-up systems, fa  

and fb  are the dimensions of the FRP layers only, without considering the adhesive thickness and fE  is the Young’s 

modulus of the FRP only. 

The minimum bond length eL  can be obtained by Eq. 3.78 with fτ  taken as: 

( )0.6,

,
0.8 0.078 f db

f c
f db

b
f

a
τ

⎛ ⎞
= + ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.81) 

where units are in N and mm and where fuδ , also required in Eq. 3.78, can be obtaind substituting Eq. 3.81 into 

Eq. 3.79.  

 

Alternatively, for the case of EBR only, the values of ,p db
fiV  and eL  can be calculated by the approach by Chen and 

Teng (Teng et al. 2002). In particular, ,p db
fiV  can be calculated by means of the following expression: 

,p db
EB f f f f cfiV b E a fα β= ⋅ ⋅ ⋅ ⋅ ⋅  (3.82) 

where units of N and mm must be used and where EBα  is equal to 0.427 for the mean value and 0.315 for the 95 

percentile characteristic value. The factor fβ  is a width coefficient given by: 

2
1

f c
f

f c

b b
b b

β
−

=
+

 (3.83) 

fE  is the Young’s modulus of the plate, fa  is the thickness of the plate, cb  and fb are the widths of the concrete 

element and the plate, respectively. When a number of parallel plates are bonded to a concrete surface or near the edge 

of a section, care must be taken to use an appropriate value of cb  as shown in Fig. 3.13. 
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Fig. 3.13 – Recommended concrete widths (Oelehers and Seracino 2004) 

 
It is not recommended to use Eq. 3.82 for plates thicker than 5 mm such as may be required when using thick steel 

plates to increase the beam stiffness. The effective bond length eL  required to achieve the maximum ,p db
fiV  is given by: 

f f
e

c

E a
L

f

⋅
=  (3.84) 

where units are in N and mm.  

When a vertical or transverse plate spans a CDC, as in Fig. 3.6, the rigid body shear deformations widen the CDC 

inducing axial forces in the crossing plates that are limited by ,p db
fiV . 

 
At this point the recommendations dissert about the suitability and efficiency of the several shear strengthening 

techniques. The wrapping and U-jacketing configurations are best suited for the externally bonded wet lay-up FRP 

technique. The side bonded configuration is suited for EB FRP or metal plates and NSM strips. In terms of efficiency, 

the wrapping configuration is best as failure is typically by FRP rupture. However, the wrapping configuration is often 

unpossible (unpractical) due to the presence of the integrally cast concrete slab unless narrow strips are used at a given 

spacing which are taken through the slab. In terms of the externally bonded technique, the next most efficient 

configuration is U-jacketing and failure is typically associated with debonding of the plates. However, due to the better 

interface shear stress transfer mechanism of near surface mounted strips, NSM strips bonded on the sides may be just as 

efficient as U-jacketing EB plates. It is important to note that when using the wrapping or U-jacketing technique, the 

corners of the concrete section must be properly rounded to avoid FRP rupture due to high bending stresses around the 

corners; usually a 10 mm minimum radius is recommended. U-jacketing plates must be continuous around the sides and 

tension face. If a U-jacket goes across the compression face, it should be treated as a side bonded plate. In wrapped FRP 

the overlap should preferably be in the compression face and of sufficient length. The free ends of externally bonded 

plates in the U-jacketing or side bonded configuration may be mechanically anchored so that rupture of the FRP is 

possible. However, local failure of the FRP and failure of the anchor must be considered. 
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At this point, the Guideline, after having extensively argued the maximum axial force that can be resisted by a single 

bonded plate, either EB or NSM, lacks a coherent conclusion, that is, a final formulation, coherent with the term 

calculated so far, ,p db
fiV , is missing. The Guidelines also briefly say that the plates can be considered as stirrups but they 

do not provide informations at all on how to adapt the stirrups formulation, based on the Mörsch truss, to the case of the 

length-dependent ultimate strength of plates unless all elements are assumed to have a bond lengh, across the CDC, 

long enough to let them reach the value ,p db
fiV . Anyway, in the parallel Commentary, it is suggested to use, expressly 

for the case of the EBR only, the formulation by Teng et al. (Teng et al. 2002). Thus, even if not explicitely suggested, 

maybe, the authors implicitely suggest to use, for the time being, the formulation by Teng et al. also for the case of 

NSM.  

 
According to the formulation by Teng et al., the FRP shear contribution fV , in Eq. 3.14, can be calculated, in the 

assumption of a CDC inclination of 45 degrees, as follows: 

( ), sin cos
2 f e

f fe f f
f

h
V f a b

s
β β⋅ +

= ⋅ ⋅ ⋅ ⋅  (3.85) 

where fa  is the thickness of the strip, fb  is the width of the strip (perpendicular to the fibre orientation), fs  is the 

horizontal centre-to-centre spacing of the strips and β  is the inclination of the fibres in the FRP to the longitudinal axis 

of the beam (see Fig. 3.14). For continuous FRP sheets it is: 

sin
f

f
b

s
β

=  (3.86) 

In Eq. 3.85, the term ,f eh  is the effective height of the sheet/plate bonded on the web of the RC beam and is given by 

the following expression: 

,f e b th z z= −  (3.87) 

where: 

0.9b fbz d h d= − + ⋅  (3.88) 

and: 

t ftz d=  (3.89) 

which is based on the assumption that the shear crack terminates 0.1 d⋅  from the compression face of the beam and 

where d  is the effective depth of the beam to the centroid of the internal tensile reinforcement, h  is the total depth of 

the beam, ftd  is the distance from the compression face of the beam to the “top” of the plate (that is, 0ftd =  for the 

wrapping technique) and fbd  is the distance from the compression face of the beam to the “bottom” of the plate (that is, 

fbd h=  for wrapping and U-jacketing techniques). 
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Fig. 3.14. – Notation for general shear strengthening scheme  

 
As the stress distribution in the plates intersecting the shear crack at ultimate is non-uniform, the term fef  in Eq. 3.85 is 
used to define the average stress in the plates and is given by: 
 

,maxfe ff D σ= ⋅  (3.90) 

where ,maxfσ  is the maximum stress that can be reached in the plate and D  is a stress distribution factor, both 

depending on whether failure is governed by rupture or debonding. 

 

If failure is governed by debonding, typically the case for the side bonded technique (and possible for U-jacketing), the 

stress distribution factor is given by: 

( )
( )

1 cos 22 1
sin 2

21 1

if
D

if

π λ
λ

π λ π λ

π λ
π λ

⎧ − ⋅
⋅ ≤⎪

⎪ ⋅ ⋅= ⎨
−⎪ − >⎪ ⋅⎩

 (3.91) 

in which: 

,maxfi eL Lλ =  (3.92) 

where eL  is the effective bond length already defined earlier and: 

,max
sin

2 sin

fe

fi
fe

h
for U jacketing

L
h

for side bonding

β

β

⎧
−⎪

⎪= ⎨
⎪
⎪ ⋅⎩

 (3.93) 

The maximum stress is given by: 

max
,max

0.8
minf

IC

f
σ

σ
⋅⎧

= ⎨
⎩

 (3.94) 

where ICσ  is the 95 percentile IC characteristic debonding stress as given in the Hong Kong approach, determinable by 

Eq. 3.82 i.e. ( ),p db
IC f ffV a bσ = ⋅  and maxf  is the ultimate strength of the element fuf . Note that, if ,maxfi eL L< , a 
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linear variation of the debonding resistance should be used as illustrated in Fig. 3.12. For EB FRP plates or sheets using 

Chen and Teng’s approach, the width coefficient to give ICσ  is given by: 

( )
( )

2 sin

1 sin
f f

f
f f

b s

b s

β
β

β

− ⋅
=

+ ⋅
 (3.95) 

where 0.707fβ =  for continuous FRP sheets. 

If failure is governed by FRP rupture, typically the case for the wrapping technique (and possibly for U-jacketing) the 

stress distribution factor is given by: 

0.5 1 t

b

z
D

z
⎛ ⎞

= ⋅ +⎜ ⎟
⎝ ⎠

 (3.96) 

and the maximum stress is: 

max
,max

max max

0.8

0.8
fu fu

f
f fu

f if

E if

ε ε
σ

ε ε ε

⋅ ≤⎧⎪= ⎨ ⋅ ⋅ >⎪⎩
 (3.97) 

where fuε  is the rupture strain of the plate and for maxε , which represents the maximum usable strain to control the 

shear crack width, it is recommended to take max 1.5%ε = .The 0.8 factor in Eq. 3.94 and 3.97, allows for factors not 

explicitly considered in the shear strength model. 

 
The formulation shown above, is intended for the shear spans in which the bending moment is positive. For negative 

moment regions, the various dimensional quantities employed, and respresented in Fig. 3.14, have to be measured from 

the bottom (compression) face of the beam. Furthermore, U-jackets wrapped around the bottom (compression) face of 

the beam should be considered as side-bonded only since, the part of the wrapping located in the compressed soffit, 

because of the transversal compression stresses, is expected to unglue from the concrete surface due to buckling. 

 
As regards the calculation of the term cV∆  in Eq. 3.74, the recommendations warn about the effective reliability of this 

term if only the length of the longitudinal plates, either on the soffit or on the web lateral faces, is such as to assure that 

their extension, on either side of the hypothetical CDC is such as to reach the minimum bond length eL . For those 

cases, and only if the longitudinal plates are externally bonded, cV∆  can be calculated as follows: 

{ }, ,

1 1

0.15 0.15 min ;
l ln n

p p db p tr
c fi fi fi

i i

V V V V
= =

∆ = ⋅ = ⋅∑ ∑  (3.98) 

Where p
fiV  is the maximum axial force that can be resisted by an FRP element along its length and ln  is the number of 

longitudinal FRP elements crossing the CDC.  

 
For a shear strengthening scheme using strips (that is, not continuous sheets) to be effective, it should be ensured that 

the strip spacing is less than half the horizontal distance spanned by the shear crack. This ensures that at least two strips 

intersect the shear crack, with at least one being effective. Hence, the maximum clear strip spacing is given by 

(Chen and Teng 2003): 
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( )1 cot
min 2sin

300

fe
f

f

hb
s

mm

β

β

⎧ ⋅ +⎛ ⎞ ⎪− ≤⎜ ⎟ ⎨⎜ ⎟
⎝ ⎠ ⎪

⎩

 (3.99) 

 

3.7 Conclusions  
Among the formulations analyzed in the present Chapter, the one provided by the Italian National Reasearch Council 

results to be the most satisfactory for the EBR shear strengthening of RC beams. It results to be innovative since it is a 

correct, closed-form, mathematical interpretation of the physical phenomena affecting the EBR systems at ultimate. On 

the contrary, the formulations proposed by the ACI 440 and fib seem to solve the problem in a simplistic way. In fact, 

they simply adopt the formula for steel stirrups to the case of externally bonded FRP regardless of the changed physical 

behaviour. Anyway, the Codes by ACI 440,  fib and Italian National Research Council completely neglect the case of 

the NSM, for the time being. 

The Australian Guidelines result interesting since they highlight the importance of issues such as the interaction 

between FRP elements and between FRP elements and existing stirrups. They also contemplate the possibility of using 

NSM FRP elements and provide, in that regard, some argumentations very useful to help develop insight in the subject. 

As regards the proposal of a formulation useful to predict, with enough accuracy, the FRP shear strength contribution, 

they suggest, in the parallel commentary, to adopt the one by Teng et al. (2002), expressly for the case of EBR while 

they do not explicitly say if the same formula can be extended to the case of NSM. 

Moreover, the Australian Guidelines stress the importance of verifying if there might be failure in the surrounding 

concrete and provide designers with some possibile formulae. 

Among the formulations specifically dedicated to the NSM technique, the formulation by Nanni et al. (2004) results to 

be a refinement of the previous formulation by De Lorenzis (2002). Anyway, given the observed failure modes recently 

observed by both De Lorenzis and Rizzo (2006) and Dias and Barros (2006), consisting in the detachment of the 

strengthened concrete cover from the core of the beam, those formulations do not seem to interpret the physical 

behavior consistently. In fact, both of them are based on the assumption that debonding is the only possible failure 

mode. Moreover, both the formulations by Nanni et al. and by De Lorenzis suggest calculating the NSM shear strength 

contribution as the minimum between two values: one based on the assumption that the NSM elements fail by 

debonding and the other on the limitation of the effective strain. They suggest adopting a maximum value of 4‰ so as 

to limit the crack width to such an extent that lets the concrete contribution by aggregate interlock to be preserved. 

In this respect, anyway, there is a big discrepancy between the values proposed by the several authors. In fact, for 

example, the fib document suggests to limit the effective strain to a value of 6‰ while, for instance, tha Australian 

Guidelines suggest to adopt a maximum value of 1.5% in order to control the crack width. Thus, in that respect, a 

unique trend can not be clearly singled out. 
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4 Debonding-based Predictive Model 
The Debonding-based Model (DM) herein developed to simulate the contribution provided by the NSM laminates to the 

shear resistance of the tested beams is derived from the design approach proposed by Nanni et al. (2004), discarding 

some details deemed suitable for a safe design rather than for a predictive model, such as: 

• a limitation on the laminate available bond length in order to limit its maximum effective strain to 4‰. 

• the reduction of the length of the laminate by twice the projection of the concrete cover thickness; 

The DM assumes debonding of laminates as the prevailing failure mechanism. This latter envisages failure occurring at 

the laminate/adhesive or adhesive/concrete interface, as well as within the adhesive (Sena Cruz and Barros 2004a). 

Debonding can be also regarded as a failure occurring along a surface parallel to the laminate, a few millimetres inside 

the surrounding concrete since a thin layer of concrete in contact with the adhesive has higher strength due to the 

adhesive penetration into its micro-structure. The pullout tests currently carried out show that the debonding failure 

might be characterized by the simultaneous occurrence of more than one of these mechanisms. 

Due to the post-peak residual bond strength of the local bond stress-slip relationship (see paragraph 2.1 and 

Sena-Cruz and Barros 2004a), it is possible to increase the available resisting force by increasing the bonded length 

until the laminate tensile strength is attained. Note that, for the EBR technique, the finite value of the area underlying 

the local bond stress-slip relationship (Monti et al. 2003, Monti 2006), i.e. the fracture energy, fG , does not allow the 

tensile strength of the material to be fully exploited since this latter nearly always exceeds the maximum value of stress 

that can be resisted by the bonded joint. For those cases, an “effective bond length” exists in correspondence of which 

the maximum stress can be transmitted and beyond which any further increase in length does not produce any benefit in 

terms of further increment of resisting force. 

As opposed to EBR, in the case of NSM laminates, the diagram of peak pull-out force versus bond length, ,p db
ffV L− , 

(Fig.°4.1) is expected to present an hardening branch until the laminate fails in tension. When peak pull-out force is 

converted into average bond strength, bτ , the resulting relationship between bτ  and fL  is characterized by two 

boundary values connected by a non linear descending branch, see Fig. 4.2. 
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Fig. 4.1 – Peak pull-out force versus bonded length 
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Fig. 4.2 – Average bond strength force versus bond length 

The above statement is, however, based on limited experimental evidence and further investigations on the bond 

behaviour between concrete and NSM CFRP laminates are required to confirm. 

In the following analytical developments, a relationship ( )b fLτ , calibrated on bond test results internationally 

available to date is taken into consideration (see Tables 4.1 to 4.2 and Fig. 4.2). 
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Table 4.1 – Bond test results available in literature to date. 

Tests by fL  ,p db
fiV bτ  

 [mm] [kN] [MPa] 
Sena-Cruz and Barros 2004a 40.00 15.00 17.47 

 " 15.50 18.06 
 " 15.70 18.29 
 60.00 22.80 17.71 
 " 19.90 15.46 
 " 18.90 14.68 
 80.00 22.40 13.05 
 " 26.40 15.38 
 " 25.60 14.91 

Sena-Cruz et al. 2006 60.00 18.70 13.67 
 90.00 23.90 11.65 
 120.00 27.70 10.12 

Teng et al. 2006 200.00 54.50 6.81 
 250.00 64.00 6.40 

 
Table 4.2 – Material properties in bond tests. 

CFRP laminates Adhesive Epoxy 
fb  fa  fE  fuf  epE  ,ep flf * ,ep cf ** Tests by 

 
[mm] [mm] [GPa] [GPa] [GPa] [MPa] [MPa] 

Sena-Cruz and Barros 2004a 9.34 1.39 158.30 2.74 5.1 25.80 44.40 
Sena-Cruz et al. 2006 10.00 1.40 171.00 2.83 - 21.80 67.50 

Teng et al. 2006 16.00 4.00 151.00 2.07 2.62 42.60 - 
* bending tensile strength; ** compressive strength 

 

For the sake of generality of the model, the possibility for the diagonal crack angle to be different than 45° (the value 

adopted by Nanni el al. 2004) is assumed. 

The “available bond length” of each laminate, fiL , is accounted for, i.e., the shorter length on either side of the crossing 

crack (see Figs. 4.3 to 4.5). Moreover, three different configurations of the laminates with respect to the assumed crack 

origin are considered in order to get a general approach for the relative position between the shear failure crack and the 

intersected laminates. 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 

 
 
59           Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

 

Fig. 4.3 – First geometrical configuration examined 

 

Fig. 4.4 – Second configuration examined. 
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Fig. 4.5 – Third configuration examined. 
 
Formulation 

The general parameters taking part in the assumed approach are (see Figs. 4.3 to 4.5): 

• fa  thickness of the laminates’ cross section; 

• fb  width of the laminates’ cross section; 

• wh  the height of the web of the beam cross section; 

• β  the inclination of the laminates with respect to the beam axis; 

• fs  the spacing of the laminates along the beam axis; 

• fuf  the laminates’ average tensile strength; 

• θ  the assumed crack angle that is, according to experimental evidence, dependent on both the beam “shear 

span-to-depth” ratio and the amount of existing steel stirrups (if the shear crack was not formed when CFRP 

laminates are applied, the CFRP shear strengthening configuration also affects the value of θ ); 

• ( )b fLτ  relationship between the average bond strength and the available bond length of the laminate; 

• kfx ,1  the position of the first laminate with respect to the assumed crack origin with 3,2,1=k  i.e., the 

possible configurations of the laminates to identify the upper and lower bound of the NSM shear 

contribution; 
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• kfN ,  the effective integer number of laminates crossing the shear crack in the kth configuration with 

3,2,1=k  (see Appendix A). 

The analytical expression adopted to determine the contribution provided by the NSM laminates to the shear resistance 

of the strengthened beam is: 

( ) ( ){ }
,

, , ,
1

2 . sin . min 2 . . . ; . .
f kN

DM
f k f f fi k b fi k f f fu

i
V a b L L a b fβ τ

=
= +∑  (4.1) 

This expression takes into account the contribution of the laminates at both lateral faces of the beam web. The 

debonding-based maximum force is limited by the tensile rupture of the laminate itself. 

The number of laminates that can intersect the shear critical diagonal crack, constituted by a real number, can be 

determined by the following Eq. 4.2 (see Fig. 4.3): 

( )
,

cot cotw
f real

f

h
N

s
θ β⋅ +

=  (4.2) 

The number of laminates that can actually cross the shear crack is constituted by an integer that can assume two values: 
l
fN int,  and h

fN int, , differing by one unit and determinable respectively by rounding off realfN ,  to the lowest and to the 

highest integer. In the case in which realfN ,  is an integer, realf
h
f NN ,,int =  and 1,int, −= realf

l
f NN . The above 

numbers l
fN ,int  and h

fN ,int  result to be, in an order not definable a priori and function of the values assumed by wh , 

θ , and fs , an odd and an even number or vice-versa, herein indicated as oddfN ,  and evfN , . Even if the possible 

values of the number of laminates that can effectively intersect the crack are two only, it is necessary to maintain both 

the above denominations ( l
fN ,int  and h

fN ,int  or oddfN ,  and evfN , ) in order to single out more easily the possible 

configurations assumed by the laminates with respect to the crack, as further specified hereafter. 

Given the crack angle, ,
DM

f kV  is computed for three different laminates arrangements, identified by the parameters kfx ,1  

and kfN , , in order to evaluate its possible variation as function of the laminates/crack geometrical configuration. 

The pair 1, ,( ; )f k f kx N can assume the following values, as function of 3,2,1=k : 
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 (4.3) 

The above three pairs include, respectively:  

• the possibility for the laminates to attain the minimum total available bond length (Fig. 4.3); 

• the possibility that an even number of laminates be disposed symmetrically with respect to the crack axis 

(Fig. 4.4); 

• the case in which one laminate has the maximum length i.e., it intersects the crack at its mid-length (Fig. 4.5). 
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For each of the above configurations, a value of the NSM shear contribution can be computed: ,
ana
f kV  with 3,2,1=k . 

Among those three values, the maximum, ,max
ana
fV , and the minimum, ,min

ana
fV , can be selected to define the actual 

contribution range for each analyzed beam. 

The position of each laminate along the assumed x-axis is (see Figs. 4.3 to 4.5): 

( ), 1, ,1        for         1;......;fi k f k f f kx x i s i N= + − =  (4.4) 

and its available bond length, i.e. the shorter length on either side of the crossing crack, is obtained by (see Appendix 

A): 

1, ,

,

1, ,

sin
[ ( 1) ]          for      (cot cot )     

sin( ) 2

sin
[ ( 1) ]     for      (cot cot )

sin( ) 2

w
f k f fi k

fi k
w

f f k f fi k

h
x i s x   

L
h

L x i s x  

θ
θ β

θ β

θ
θ β

θ β

+ − < +
+

=

− + − ≥ +
+

⎧
⎪⎪
⎨
⎪
⎪⎩

 (4.5) 

The adopted relationship between average bond strength (in MPa) and bond length (in mm) is the following (Fig. 4.2): 

( ) ( )-0.60233

19.28                                            0 40

0.355 174.613 .                  40f

f

b
f f

L
L

L L
τ

< <⎧⎪= ⎨
+ ≥⎪⎩

 (4.6) 

Table 4.2 shows that the laminates used in the pull-out tests taken to calibrate the ( )b fLτ  law had similar mechanical 

properties. However, the properties of the adhesive used in the experimental programs by 

Sena-Cruz and Barros (2004a) and by Sena-Cruz et al. (2006) differ from those by Teng et al. (2006), but the data of 

Table 4.1 represented in Fig. 4.2, indicate that these differences had marginal influence on the ( )b fLτ  trend. Since a 

pure debonding failure mechanism occurred in the tests of all these programs, the concrete strength class had no 

influence on the ( )b fLτ  ( Sena-Cruz and Barros 2004a, Sena-Cruz et al. 2006). 

At the same time, for each one of the three configurations taken into consideration, the effective strain in the laminates 

can be computed from equilibrium, resulting: 

( ) ( ) 3,2,1 for              
2 ,

1
,,

,
, =

+
= ∑

=

kLL
EbaN

ba kfN

i
kfikfib

fffkf

ff
kf τε  (4.7) 

where fE  is the Young’s modulus of the CFRP laminates. 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 

 
 
63           Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

 

5 In search for confirmations 
By attending both the tests currently carried out by PhD Student Salvador Dias in the Laboratory for Structures of the 

Department of Civil Engineering at the University of Minho and the fruitful discussions held weekly with Prof. Joaquim 

Barros, an idea started to catch our attention. Hereinafter, the main features of the above mentioned physical-analytical 

idea are shown by means of experimental observations, analogies with literature findings and comparisons with other 

analytical models worldwide available to date. 

5.1 Experimental Relevance and Literature Analogies 
In most of the NSM shear strengthened beams tested so far (e.g. Dias and Barros 2005b), the failure governed by pure 

debonding mechanism was observed only for low percentage of laminates while the failure governed by the separation 

of the NSM reinforced concrete cover on both the sides of the web often occurred for high percentages of CFRP 

reinforcement. From a physical point of view, the former is reasonably expected to occur when the spacing between 

subsequent laminates is high meanwhile the latter is more likely to occur when the NSM laminates are closer to each 

other. Those two main failure mechanisms observed can be clearly supported by the photographic documentation 

collected at UMinho, as shown by the pictures in Figs. from 5.1 to 5.6 (Dias and Barros 2005b). 

  
Fig. 5.1 – Laminates inclined at 45° (Dias and Barros 2005b): a) debonding (beam 2S_3LI45); b) concrete tensile 

failure (beam 2S_8LI45) 

 
Fig. 5.2 – Further detail of beam 2S_8LI45 
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Fig. 5.3 – Laminates inclination of 60°: a) debonding (beam 2S_3LI60); b) concrete tensile failure (beam 2S_8LI60) 

 
Fig. 5.4 – Further detail of beam 2S_8LI60 

 

Fig. 5.5 – Laminates inclined at 90°: a) debonding (beam 2S_3LV); b) concrete tensile failure (beam 2S_8LV) 

Fig. 5.6 – Further detail of beam 2S_8LV 
 

Observing the tested beams much closer, it can be unequivocally realized that, for high amount of laminates, failure is 

characterized by concrete tensile fracture. By extensively searching the literature available to date, a physical similitude 

with failure modes already observed in the experiments carried out in the field of the Fastening Technology, arises. 
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Among the fastenings, those showing much more similitude with the NSM technique are the adhesive bonded ones: 

consisting of steel rods installed into holes drilled generally in the soffit of RC elements and filled with a structural 

adhesive. The transfer of tensile stresses form the bar to the surrounding concrete relies on the bond characteristics 

rod-adhesive-concrete. 

In the case of adhesive anchors (Cook et al. 1993, Cook et al. 1998, CEB Bulletin n°201-1994) three failure modes 

have been observed: fracture of the steel anchor, cone failure of the surrounding concrete with or without pullout of an 

adhesive core, pull-out of an adhesive core, see Fig. 5.7. 

  

a) b) 

  

c) d) 

Fig. 5.7 – Failure modes for adhesive anchors: a) adhesive anchor; b) steel failure; c) concrete cone failure with 
or without pullout of an adhesive core; d) pull-out of adhesive anchor (Cook et al. 1993) 

 

In the case of the NSM technique for shear strengthening, the fracture of the laminate was never observed, so far,  due 

to the short length, for most of the small cross-sectioned RC beams tested up to now, of the laminates crossing the 

critical shear crack. The remaining two failure modes are absolutely identical to those observed in the tests carried out 

at UMinho. 

The conical failure surface is the envelope of the tensile isostatic lines and the commanding parameter is the concrete 

tensile strength spread upon it. When the embedded length and the local bond stress-slip behaviour at both the 

bar-adhesive and adhesive-concrete interfaces is strong enough to prevent debonding from occurring, failure occurs in 

the concrete due to the overcoming of its tensile strength. This similitude has been extensively exploited hereinafter in 
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order to obtain analytical expressions capable to guarantee a good compromise between accuracy and computational 

simplicity. In the case of the NSM shear strengthened beams, it seems reasonable to expect the occurrence of the same 

phenomena as above. In fact, the shear crack can be thought as an inclined discontinuity plane slicing the web and 

crossed by the adhesive bonded NSM laminates which oppose to the crack opening and are consequently subjected 

mainly to axial tensile force. In the case of NSM laminates, the concrete fracture surface is expected to be semi-conical 

because of the changed geometrical contour conditions with respect to the fastenings (see Fig. 5.8). The concrete tensile 

strength is distributed throughout the semi-conical surface ascribed to each i-th laminate and orthogonally to the 

assumed fracture surface, see Fig. 5.9. Moreover, between the two parts in which the crack actually divides each 

laminate, the shorter one, herein named as “available bond length”, results to be the weaker. 

Figure 5.8 represents a simple scheme of the assumed model which, for the sake of simplicity, is shown for the 

simplifying case in which both the crack and the laminates are inclined at 45° with respect to the longitudinal axis of the 

beam. 

 
Fig. 5.8 – Scheme of the concrete fracture model 

 
Fig. 5.9 – Concrete tensile strength distributed orthogonally in each point of the fracture surface and its components 

parallel to the laminate and to the crack plane (drawn in some points only, for sake of simplicity) 
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The hypothesis regarding the formation of a semi-conical fracture surface can be also supported by experimental 

relevance regarding another research project being currently carried out at UMinho by Master Student João Lima and 

aiming at the evaluation of the relation between the crack opening width and the strains effectively mobilized in the 

CFRP NSM Laminate. The above mentioned test program comprehends a specimen prototype that consists of a plain 

concrete cylinder presenting a thin notch along the loading plane, see Fig. 5.10 and 5.11. The CFRP NSM laminates are 

glued into thin slits to assess the influence of the inclination between the crack plane (forced to coincide with the 

loading plane) and the plane containing the laminates. The specimen is subjected to diametral compression similar to 

the Brasilian Test Configuration. Hereafter a simple scheme of the test set-up and some post-test inspection pictures are 

shown. (For further details see the Master Thesis by João Lima). 

  

Fig. 5.10 – Test set-up with respectively front and  
lateral view (type A) 

Fig. 5.11 – Test set-up with respectively front and  
lateral view (type B) 

 

  
Fig. 5.12 – Specimen S2: semi-conical fracture surface (Master Thesis by João Lima) 

 

Returning to the proposed model for the mechanical simulation of NSM shear strengthened RC beams, since the 

position of those semi-conical surfaces (Fig. 5.8) is symmetric with respect to the mean vertical plane of the cross 

section, the horizontal outward components of the tensile strength vectors are balanced only from an overall standpoint 

and not locally. In Fig. 5.13, a section of the semi-conical fracture surfaces by a plane parallel to the crack is shown for 
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the simple case in which the inclination of both the crack and the laminates with respect to the beam longitudinal axis 

results to be of 45°. In fact, in this case, the intersection of a semi-conical surface with the plane simulating the critical 

diagonal crack (CDC) is represented by a semi-circumference and not a semi-ellipse. 

 

 
Fig. 5.13 – Section of semi-conical fracture surfaces by a plane parallel to the shear crack with horizontal components 

of tensile stresses respectively parallel and normal to the web faces. 
 

The local unbalance of the horizontal tensile stress component orthogonal to the web can justify the outward expulsion 

of the concrete cover in both the uppermost and lowermost parts of the strengthened sides of the web. This can also be 

verified by observing the photographic documentation regarding the post-test inspection (see Figs. 5.2, 5.4 and 5.6). 

The splitting circumferential tensile stresses developed around the longitudinal bars have also contributed to the 

outward expulsion of the concrete cover in the lowermost edge of the web lateral faces. This is more evident as larger is 

the diameter of the tensile longitudinal bars. In fact, in the tested beams, in order to make them fail by shear, the bottom 

longitudinal flexural reinforcement is composed of large diameter bars. For those reinforcing bars, the tensile 

circumferential stresses due to local wedge effect around the ribs (see paragraph 2.4), flexural cracks and dowel action, 

are very high and strongly contribute to circumscribe the vertical splitting cracks along the concrete cover at ultimate, 

see Fig. 5.14. 

 
Fig. 5.14 – Cross-section of the tested beams and location of splitting cracks. 

 

Moreover, there is the suspicion that the presence of a high amount of stirrups located almost in the same vertical plane 

as the longitudinal bars (see Figs. 5.14 and 5.15), also contributes, by means of the corresponding splitting 

circumferential tensile stresses, induced in the surrounding concrete, to circumscribe the concrete fracture at the 

interface between the concrete cover and the core of the beam. Higher is the amount of existing stirrups, due to their 
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circumferential splitting tensile stresses, more extended is a micro-crack plane, running parallel to the web faces and at 

a depth almost as large as the cover, within the web. 

 
Fig. 5.15 – Section of a strengthened beam parallel to the shear crack and splitting cracks 

surrounding stirrups. 
 

This micro-fracture surface, prevents the semi-conical surfaces to go deeper inside the core of the web, thus limiting the 

shear strength contribution that can be provided by the NSM system. On the contrary, when the amount of stirrups is 

limited, it is more likely for the semi-conical surfaces to develop deeper inside the core of the beam with a consequent 

increase of the NSM contribution to the shear resistance of the beam. From a computational standpoint, and in 

accordance with the modelling strategy herein proposed, when the amount of stirrups is limited, the envelope of the 

fracture surface is larger, thus providing a higher shear strength contribution, for an equal amount of laminates. In that 

respect, an analytical model in accordance with this approach, can simply take into account the interaction with stirrups 

by assuming semi-conical surfaces with a steeper inclination of their generatrices, when closer to the stirrups. As 

regards this interpretation of the phenomenon of interaction between stirrups and laminates, it has also to be outlined 

that, when applying the NSM technique to shear-strengthen an existing RC beam, stirrups are already loaded and 

deformed at a certain extent. Thus, the micro-fracture plane separating the concrete cover from the core, already exists. 

On the contrary, when testing an NSM shear strengthened RC beam in laboratory, generally stirrups and laminates start 

being loaded contemporarirly. In this respect, it is aspected that the interaction between stirrups and laminates be higher 

in the restoration of a real RC structure. 

 
This approach also permits to easily take into account the interaction between subsequent laminates because when they 

are very close to each other, the semi-conical surfaces intersect each other: thus the reduction in efficacy can easily be 

taken into account calculating the reduced overall fracture surface accordingly. In fact, as the spacing between 

subsequent laminates is reduced, their semi-conical fracture surfaces overlap each other and the resulting envelope 

fracture surface progressively becomes smaller than the mere summation of each of them (see Fig. 5.16). This 

detrimental interaction between laminates can be easily taken into account by calculating the resulting semi-conical 

surface ascribed to each laminate accordingly. For very short values of the spacing, the resulting concrete failure surface 
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is almost parallel to the web face of the beam, which is in agreement with the failure mode observed experimentally, 

consisting in the detachment of the concrete cover from the underlying core of the beam (see Figs. 5.2,5.4,5.6). 

 
Fig. 5.16 – Interaction between laminates: inside view of the fracture surface resulting from  

the overlapping of semi-conical fracture surfaces on one side of the web. 
 

Given those observations, an analytical analysis was carried out in order to check the validity of that approach, by 

comparing the obtained analytical values with experimental data. If confirmed by fitting experimental values, the model 

herein described can be utilized to carry out parametric analyses by taking into account some of the most relevant 

aspects such as: 

1. Interaction between subsequent laminates; 

2. Variation of the assumed crack inclination angle. 

3. Variation of the concrete tensile strength; 

4. Variation of the semi-conical aperture angle; 

5. Interaction with stirrups. 

5.2 Some Analytical Details 
To evaluate the maximum force actually transferable by NSM laminates, until concrete fracture failure mode occurs, it 

is necessary to determine the shorter part of each laminate crossing the crack, the corresponding semi-conical surface, 

multiply the resulting revolution area by the concrete tensile strength, project it on the direction of the laminates and 

consequently assume its vertical component as the shear strength contribution. By developing those calculations, (see 

Appendix A) it can be realized that, in order to determine the maximum resisting force in the direction of the laminates, 

the same result can be obtained by simply multiplying the absolute value of the concrete tensile strength by the area of 

the base of the semi-cone orthogonal to the laminate direction. Thus, for the i-th laminate the maximum force along its 

length, due to concrete fracture, ,p cf
fiV , can be simply calculated, for the case in which both the crack and the laminate 

are disposed at 45° with respect to the beam axis, as follows: 
2 2 2

,

2 2
fi fi fip cf

ctm ctmfi
R L tg

V f f
π π α⋅ ⋅ ⋅

= ⋅ = ⋅  (5.1) 
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where: fiR  is the radius of the base of the semi-conical surface asociated with the i-th laminate, ctmf  is the concrete 

mean tensile strength, fiL  is the available bond length associated with the i-th laminate and fiα  is the aperture angle of 

the i-th semi-conical surface. 

Since the calculation of the semi-conical surface reduces to the calculation of the area of its intersection with a plane 

orthogonal to its axis, it can be shown (see Appendix A), that it results substantially independent of the effective shape 

of the surface, providing the method with a high generality. 

 

The general parameters entering the assumed approach are: θ  the assumed crack inclination angle that is, generally 

speaking, dependent on the shear span to depth ratio (see Paragraph 2.2) but can be assumed equal to 45° without 

introducing excessive mistakes; β  the inclination of the NSM laminates with respect to the beam axis; the height, wh , 

and width, wb , of the web of the cross section; fs  the spacing of the laminates calculated along the axis of the beam; 

fiα  the angle between the axis and the generatrix of the semi-conical surface; ctmf  the concrete mean tensile strength. 

 

In this phase of the present study, to appraise the validity of the proposed approach, it is worth evaluating the total area 

of the ellipses, intersection of the cones with the crack plane, in correspondence of several values of the position 1fx  of 

the first laminate with respect to the assumed crack origin point in order to determine its maximum and minimum 

values. In that respect, some attempts have been carried out in order to single out the values of 1fx  (with ff sx ≤≤ 10 ) 

in correspondence of which it is necessary to position the first laminate to obtain the maximum, minimum and average 

values of the overall concrete fracture area above. It has been observed that a general rule cannot be drawn neither for 

maximum and minimum values nor for the average because the relationship between the total area (inclusive of 

eventual overlapping of the semi-conical surfaces associated with laminates placed at both lateral faces of the web) with 

respect to 1fx  is non-linear and the singular points are not always located in the same position. One of the graphs 

employed for the attempts mentioned above is shown in Fig. 5.17 for the following values of the various parameters: 

180wb mm= ; 300wh mm= ; 25α = ° ; 90β = ° ; 45θ = ° ; 160fs mm= . 
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Fig. 5.17 – Determination of the position of the first laminate with respect to the crack origin 
to get the singular points of the envelope surface of the semi-cones associated with laminates. 
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Anyway, a general rule can be followed to determine the singular points in correspondence of which the maximum and 

minimum relatives are located. 

The real number of laminates, ,f realN , crossing the crack can be determined as follows: 

( )
,

cot cotw
f real

f

h
N

s
θ β⋅ +

=  (5.2) 

where: wh  is the height of the cross section web; fs  is the spacing between laminates; θ  is the assumed crack 

inclination angle and β  is the inclination of the NSM laminates with respect to the beam axis. 

The effective integer number of laminates, fN , that can actually intersect the crack is ,int ,int
l h
f f fN N N≤ ≤  where 

,int
l
fN  is the lower round off integer and ,int

h
fN  is the higher round off one of ,f realN . In the case in which ,f realN  is an 

integer, it is: ,int ,
h
f f realN N=  and ,int , 1l

f f realN N= − . The above two integers are, in an order not definable a priori, an 

odd and an even number, herein indicated as ,f oddN  and ,f evN , respectively. 

The singular points of the overall area are in correspondence to one of the following values of 1fx  (see Appendix A): 
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 (5.3) 

 

in which (see Chapter 4 and Figs. 4.3 to 4.5) the second case contemplates the possibility that the even number of 

laminates be disposed symmetrically with respect to the crack line’s axis and the third case contemplates the case that 

one laminate has the maximum length i.e. it intersects the crack line at its mid-length. The term fL  is the actual total 

length of the employed laminate. For further details see also Appendix A. 

 

In a general way, the available bond length of the i-th laminate crossed by the crack can be calculated according to the 

analytical method already adopted by both De Lorenzis and Nanni et al. and summarized as follows: 
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 (5.4) 

The formula above, when the shear crack angle is assumed equal to 45°, modifies as follows: 
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 (5.5) 

For further details see Appendix A. 
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Since we are in the phase corresponding to the “exploration” of the truthfulness and reliability of the possibilities of the 

proposed approach, the overall area ,f totE  of the intersection of the semi-cones with the crack plane has been 

computed, for the sake of simplicity and relative quickness, by means of tools such as AuoCAD and MathCAD. 

The calculated area, has been subsequently projected on the plane normal ,f totA  to the axis of the cones and multiplied 

by the concrete mean tensile strength, ctmf , see Fig. 5.18. Thus, the contribution of the NSM laminates for the shear 

resistance of a RC beam has been calculated, then, by the following equations: 

( ), , sinf tot f totA E β θ= ⋅ +  (5.6) 

,2 sinf f tot ctmV A f β= ⋅ ⋅ ⋅  (5.7) 

 

 
Fig. 5.18 – Projection of the semi-conical surface on a plane orthogonal to the laminate 

 

5.3 Calibration of the semi-conical surface angle 
By extensively searching the recent publications in the most qualified technical magazines about the employment of 

CFRP NSM Laminates, an interesting work (Teng et al. 2006) was found regarding some bond tests carried out in the 

Polytechnic University of Hong Kong, China. The details regarding both the test set-up and the characteristics of the 

materials employed in the above quoted article are summarized in the Appendix B of the present Report. In that work it 

is reported of two failure modes: debonding for the embedment lengths of 200 and 250 mm while the failure of the 

remaining specimens was by shear fracture within the concrete prism. The above mentioned work does not further 

explain the boundary conditions of the tested specimens affected by shear fracture but it is deemed reasonable thinking 

of a pseudo semi-conical concrete fracture surface. 

The available results of those tests, together with the assumed assumption regarding the failure surface, was used to 

calibrate the projecting angle α  between the axis and the generatrices of the semi-conical surface by means of a 

back-analysis. The above calibration was carried out as follows: since, from that article (Teng et al. 2006), it could not 

be gathered how the shear fracture surface looked like, some assumptions were made. 
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1st hypothesis 

At first (see Fig. 5.19), it was assumed that the semi-conical surface was such as to intersect the front face of the 

prism-shaped specimen i.e. the base radius is within the minimum dimension of the cross-section: mmR 750 ≤< . 

 

 

a) b) 

 
 

c) d) 
Fig. 5.19 – First hypothesis, adopted scheme: a) overall view; b) front view; c) top view;  

d) lateral view. (dimensions in mm) 
 

In that case, the following formula was adopted to appraise the angle α : 

2 2 2
2

2
        arc

2 2
ult

ult ctm ctm
ctm

F
F R f L tg f tg

L f
π π α α

π
⋅

= ⋅ ⋅ = ⋅ ⋅ ⋅ → =
⋅ ⋅

 (5.8) 

If from the back-analysis of the obtained angle’s value it results that the radius is larger than 75 mm, the above 

assumption is not valid and the we need to assume that the semi-conical surface intersects the lateral faces of the 

specimen. In this latter hypothesis, i.e. for 75 150R mm< ≤ another formula was adopted: 

2nd Hypothesis 

This second hypothesis contemplates the possibility that the semi-conical surface is such as to intersect the lateral faces 

of the prism, see Fig. 5.20. 

Assuming the angle, β , between the radius and the median of the cross section (see Fig. 5.19 b), it results: 

βsen
R 75

=  (5.9) 

( )2 275   with   measured in degrees
360

A h R βπ β⋅
= ⋅ + ⋅ ⋅  (5.10) 
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( ) ( )2
2

2

75275 cot
360ult ctm ctmF A f f

sen
ββ π

β

⎡ ⎤⋅⎢ ⎥= ⋅ = ⋅ + ⋅ ⋅ ⋅
⎢ ⎥⎣ ⎦

 (5.11) 

and Eq. 5.11 was solved by attempts. 

 

  

a) b) 

 

 

c) d) 
Fig. 5.20 – Second hypothesis, adopted scheme: a) overall view; b) front view; c) top view;  

d) lateral view. (dimensions in mm) 
 

Since in the article by Teng et al. (2006), the value of the concrete mean splitting tensile strength is provided, in order to 

obtain the axial tensile strength, the conversion formula provided by the CEB Model Code 90 (1993) was used i.e.: 

,0.9ctm ct spf f= ⋅  (5.12) 
obtaining a value of 3.06ctmf MPa=  for the concrete mean tensile strength. By applying the simple method shown 

above, the values of the angle α  listed in Table 5.1 were obtained. 

Table 5.1  – Obtained estimates of the angle α . 
Lb α 

[mm] [°] 

30,00 32,26 
100,00 27,98 
150,00 25,23 

 Mean  28,49 
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The above values are in agreement with the idea that the angle increases by reducing the embedment length. Obviously 

those values are only grossly indicative but in this phase of the study are deemed useful enough. On the basis of those 

data, the flowing relationship between the angle fiα  (in degrees) and the bond length fiL  (in mm) was adopted: 

32.31                          for    0 30

33.973 0.0587 .             30 < 150 

25.17                                       150

fi

fi fi fi

fi

L

L L

L

α

⎧ ≤ ≤
⎪⎪= − ≤⎨
⎪ >⎪⎩

 (5.13) 

That is represented in Fig. 5.21: 
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Fig. 5.21  –  Length dependency of the angle ( )fi fiLα  

 

Due to the narrowness of data available, for the ranges of bond lengths 30fiL <  and  150fiL > , a conservative constant 

value equal respectively to 32.31° and 25.17° was assumed. 

 

5.4 Appraisal of the “idea” 
To appraise the reliability of the above described approach, before developing the analytical details, the values of the 

increment of shear strength, for the beams tested up to now at UMinho, by Dias and Barros, were compared with the 

values obtained by both the pure debonding predictive model (DM of Chapter 4) and the one considering the concrete 

fracture surfaces as delineated above. Since the maximum value of the available bond length that can be reached in the 

beams tested is larger than the maximum value of bond length 150 mm, to which a value of 25.17°  corresponds, a value 

of °= 25α  was assumed. 

It is worth outlining that in the following calculations, the adopted value of ctmf  was deduced from the mean 

compressive strength, according to CEB-FIP Model Code 90. This is not deemed a correct procedure because the 

concrete tensile strength itself generally presents a high scatter when it is measured directly (see Paragraph 2.7). When 

it is deduced by another quantity already affected by scatter like the compressive strength, the scatter increases and gets 

difficult to control, in statistical terms. Moreover, the beams analyzed, are those belonging to the first, explorative, 

series by Barros and Dias (2006), those belonging to the second series, by Dias and Barros (2005a), and the third series, 

by Dias and Barros (2006). 
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Note that the relationship ( )b fiLτ  adopted to draw the graphs reported hereafter (see Figs. 5.23-25) was a previous 

version slightly different than the one reported in Eq. 4.6 i.e., the following. 

( )
18.13                                        0 40

42.66 6.65 ln                    40 225
fi

b fi
fi fi

L
L

L L
τ

< <⎧⎪= ⎨ − ⋅ ≤ ≤⎪⎩
 (5.14) 

The beams of the several series are labelled according to the following scheme: the first letters indicate the type of 

section (if rectangular “Ret” or T-shaped “T”), then the height of the section in mm, the inclination of laminates and the 

value of concrete average tensile strength. 
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Fig. 5.23  –  Beams of the 1st series, by Barros and Dias (2006)  

 

Analyzing Figs. 5.23 to 5.25, it arises that, for the beams taken into consideration, independently of the shape and 

height of the cross section, the inclination of laminates and concrete mechanical properties, the estimates provided by 

the proposed modelling strategy are in better agreement with the experimentally recorded values of the NSM shear 

strength contribution with respect to the DM. In fact, in most of the analyzed cases, the experimental values lie within 

the range of analytical values. It can also be gathered that, for most of the beams analyzed, the values predicted by the 

DM overestimate the experimental ones, as more as smaller the spacing. 
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Fig. 5.24  –  Beams of the 2nd series, by Dias and Barros (2005a) 
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Fig. 5.25  –  Beams of the 3rd  series, by Dias and Barros (2006)  
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5.5 Influence of Concrete Tensile Strength 
According to the model presented, for the following values of the various parameters: 45θ = ° ; 25α = ° ; 180wb mm= ; 

300wh mm=  and 45β = ° , a parametric study was carried out by varying the mechanical properties of the concrete, 

see Fig. 5.26. In fact, the NSM shear strength contributions, calculated by the “proposed approach”, for concrete 

classes C12, C20, C50, C70, according to the classification by CEB Model Code 90, are compared with those provided 

by the DM (Chapter 4). Note that, in graphs of Fig 5.26, the DM was applied according to the definition of the model as 

provided in Chapter 4 but the ( )b fLτ  adopted was slightly different than the one represented by Eq. 4.6 (see Eq. 5.14) 

but this is not detrimental to the main purpose of the present Chapter i.e. the evaluation of the “idea”. 
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Fig. 5.26  –  Comparison between analytical values of fV  by the “proposed approach” and those by the DM for 

concrete classes C12, C20, C50, C70. 
 
From this simple parametric study, it arises that, a formulation based on the assumption that debonding is the only 

possible failure mode, that completely neglects the mechanical properties of concrete, provides values of the NSM shear 

strength contribution that present a variable safety factor. In fact, for a concrete class C12, the DM dangerously 

overestimates the maximum concrete-fracture-based NSM shear strength contribution for a wide range of spacing 

values. For stronger concrete, such as C70, the DM provides reasonable estimates for a wider range of values of fs  but, 

for low values of the spacing, it still greatly overestimates the concrete-fracture-based NSM shear strength contribution. 
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5.6 Conclusions 
From the study carried out in this Chapter it emerges that, the idea that CFRP laminates near surface mounted are 

susceptible to fail due to the concrete fracture is confirmed, by experimental evidence, literature analogies and 

analytical comparisons. Concrete surrounding laminates fails along semi-conical fracture surfaces, envelope of the 

tension isostatics, when its tensile strength is exceeded. This failure mode can highly limit the NSM shear strength 

contribution since it prevents debonding failure, to which higher strengths can be ascribed, to occur.  

It also emerges that debonding can happen if only the mechanical properties of concrete are relatively very high and the 

percentage of laminates low. In this respect, a coherent analytical formulation should take into consideration all the 

possible failure modes undergone by NSM CFRP laminates. 

The proposed modelling strategy allows the issue of the interaction between subsequent laminates to be easily taken 

into account. When the spacing between laminates is decreased, their semi-conical concrete fracture surfaces overlap 

and the fracture surface ascribed to each of them can be calculated accordingly. 

It also has to be outlined that, according to the interpretation of the phenomena proposed, the interaction 

stirrups/laminates is a very important issue that needs to be further addressed. The higher the amount of stirrups (better: 

the closer their spacing) the lower is the NSM shear strength contribution provided by the same amount of laminates. 

This should be ascribed to the micro-splitting-cracks that form around the stirrups that, when they are very close to each 

other, almost form a discontinuity plane between the concrete cover and the core of the beam web. In this respect, the 

situation is even worse in the case of existing real structures since stirrups, at the moment of the strengthening 

intervention, are already loaded and strained, at a certain extent, so as a micro-crack plane that separates the concrete 

cover from the core of the beam already exists. 
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6 Analytical Predictive Model Proposed 
Given both the complexity of the behaviour of RC beams failing in shear from a general point of view and the further 

complications introduced by the presence of brittle materials, such as the CFRP Laminates glued by an epoxy adhesive 

into thin shallow slits cut in the concrete cover, a complete 3D Finite Element Analysis allowing for the Non-Linear 

behaviour of both the various materials involved and the bond between these latter, remains the strongest tool for 

research purposes but too computational-time consuming and requiring expert users. 

Provided that, hereafter a relatively simple analytical model is proposed on the basis of the observations shown in the 

previous chapter that, if confirmed by further investigations both experimental and numerical, can constitute a useful 

and computationally not excessively demanding analysis tool. 

Some details already presented in the previous Chapter 5, where the main features of the Model physical fundamentals 

were delineated, are briefly repeated hereinafter, for the sake of an easy reading. 

 

6.1 Neglecting the interaction with stirrups 
The Proposed Model (PM) assumes as possible failure modes: tensile rupture of the laminate, debonding and concrete 

tensile fracture, see Fig. 6.1 and Chapter 5. 

 
a) b) c) 

Fig. 6.1 – Assumed possible failure modes undergone by the NSM laminates: a) laminate tensile rupture; b) debonding; 
c) concrete semi-conical tensile fracture 

 
As regards the RC beam strengthened in shear by the NSM technique, the critical diagonal crack can be schematized 

like a plane slicing the web of the beam in two parts sewn together by the crossing laminates (see Fig. 5.8). The 

laminates may fail along their “available bond length” by one of the above failure modes. As regards the concrete 

tensile fracture failure mode, the assumption is done that the semi-conical fracture surface starts propagating from the 

inner tip of the available bond length, see Fig. 6.1c. The concrete average tensile strength, ctmf , is distributed 

throughout each of the resulting semi-conical fracture surfaces and orthogonally to them in each point, see Fig. 5.9.  
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The NSM shear strength contribution, fV , can be calculated by adding the contribution ascribed to each laminate, p
fiV , 

and parallel to its orientation, and projecting the resulting force orthogonally to the beam axis, according to the 

following formula: 

1

2 sin
fN

p
f fi

i

V Vβ
=

= ⋅ ⋅ ∑  (6.1) 

where β  is the inclination of the laminates and fN  is the number of laminates crossing the shear crack. 

The contribution provided by each laminate, p
fiV , can be assumed as the minimum among the three possible 

contributions ascribed, respectively, to debonding, ,p db
fiV , tensile rupture of the laminate, ,p tr

fiV , or concrete tensile 

fracture, ,p cf
fiV , i.e.: 

{ }, , ,min ; ;p p db p tr p cf
fi fi fi fiV V V V=  (6.2)

The debonding-based term, ,p db
fiV , ascribed to each i-th laminate and parallel to its orientation can be computed as 

follows: 

( ), ( )2 b f fi
p db

f ffi L LV a b τ ⋅= ⋅ + ⋅  (6.3)

where fa  and fb  are, respectively, the thickness and width of the laminates’ cross section and ( )b fLτ  is the 

length-dependent value of the average bond strength, determined based on the physical interpretation of the most recent 

experimental results regarding debonding, see Chapter 4, and equal to ( fL  in mm and bτ  in MPa): 

( ) ( )-0.60233

19.28                                            0 40

0.355 174.613                  40f

f

b
f f

L
L

L L
τ

< <⎧⎪= ⎨
+ ⋅ ≥⎪⎩

 (6.4) 

The tensile rupture-based term, ,p tr
fiV , ascribed to each i-th laminate and parallel to its orientation is equal to: 

,p tr
f f fufiV a b f= ⋅ ⋅  (6.5)

where fuf  is the adopted CFRP laminates’ tensile strength. 

The concrete fracture-based term, ,p cf
fiV , ascribed to each laminate and parallel to its orientation, can be calculated 

distributing the component of the concrete average tensile strength parallel to the laminate, i.e., sinctm fif α⋅ , throughout 

the resulting relevant semi-conical surface and integrating, according to the following formula (Fig. 2b): 

( )
( )

,

;

sin
fi fi fi

p cf
ctm fi fifi

C L

V f dC
α

α= ⋅ ⋅∫  (6.6) 

where ( );fi fi fiC L α  concisely denotes the semi-conical surface associated to the i-th laminate and fiα  is the angle 

between the generatrices and the axis of the semi-cone attributed to the i-th laminate. 

The angle between the axis of the semi-conical surface and its generatrices, fα , calibrated on the basis of the 

interpretation of some experimental results available to date (see Paragraph 5.3), ranges approximately between 20° and 
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30° and shows a length-dependency on the available bond length, fL , but, in this respect, further investigations are 

required. 

The relationship between the angle, fiα  (in degrees), and the available bond length, fiL  (in mm), assumed in the 

present work, is the following: 

32.31                          for    0 30

33.973 0.0587             30 < 150 

25.17                                       150

fi

fi fi fi

fi

L

L L

L

α

⎧ ≤ ≤
⎪⎪= − ⋅ ≤⎨
⎪ >⎪⎩

 (6.7) 

 

If attention is focused on one laminate only, in the case in which it results to be orthogonal to the crack plane and in 

complete absence of interaction with the contiguous ones, the shear strength contribution parallel to its orientation, p
fiV , 

can be calculated by: 

( ) 2 2( ) ;min 2 ;
2b fi fi

p
f f f f fu ctm fi fifi L LV a b a b f f tg Lτ

π α⋅
⎧ ⎫⎛ ⎞= ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 (6.8) 

that, for instance, for the materials adopted by Dias and Barros 2006, is plotted in Fig. 6.3. It arises that, in that case: for 

a value of the available bond length up to 200 mm the prevailing failure mode is the concrete semi-conical fracture; for 

a value between 200 and 310mm the failure mode is debonding, and for an available bond length higher than 310mm the 

laminates are expected to fail by tensile rupture. Due to the interaction between contiguous laminates, when laminates 

spacing decreases, the curve regarding the concrete tensile fracture opens downwards, thus reducing the range of length 

values in correspondence of which debonding is expected to be the commanding failure mode. 
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Fig. 6.3 – Expected failure mode as function of the available bond length 

 
The terms ,p tr

fiV  and ,p db
fiV , based on the phenomenon of tensile rupture and debonding of the laminate, respectively, 

are intrinsically independent of the interaction between subsequent laminates that, on the contrary, affects the concrete 

fracture-based term, ,p cf
fiV . 
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As the spacing between subsequent laminates is reduced, their semi-conical fracture surfaces overlap and the resulting 

envelope area progressively becomes smaller than the mere summation of each of them (see Paragraph 5.1 and 

Fig. 5.15). This detrimental interaction between laminates can be easily taken into account by calculating the resulting 

semi-conical surface ascribed to each laminate accordingly. 

In the above Eq. 6.6, the operation of integrating the component of the concrete tensile strength parallel to the laminate 

( )sinctm fif α⋅  throughout the surface is equivalent to projecting the surface on a plane orthogonal to the laminate and 

multiplying it by the absolute value of the strength i.e. (see Paragraph 5.2 and Appendix A): 

sinfi fi fid dC αΑ = ⋅  
 

(6.9) 

 

Thus, introducing (6.9) into (6.6) results: 

( )
( ) ( )

( ),

; ;

sin ;
fi fi fi fi fi fi

p cf
fi fi ctm ctm fi ctm fi fi fifi

C L L

V dC f f d f L
α α

α α
Α

= ⋅ ⋅ = ⋅ Α = ⋅ Α∫ ∫  (6.10) 

where ( );fi fi fiL αΑ  is the area, function of both the “available bond length” fiL  and the angle fiα , obtained by 

projecting the semi-conical surface on a plane orthogonal to the laminate (see Fig. 5.18). 

Since the intersection of each semi-conical surface with the crack plane is constituted by a semi-ellipse, that becomes a 

semi-circle in the particular case in which the laminate results to be orthogonal to the crack plane, the above area 

( );fi fi fiL αΑ  can be evaluated by calculating the area of the semi-ellipse and then projecting this latter on the plane 

orthogonal to the laminate (see Fig. 5.17). Thus, the calculation of the contribution ascribed to the i-th laminate parallel 

to its length is reduced to the evaluation of the area underlying the relevant semi ellipse i.e.: 

( )
( )

,

;

sin
fi fi fi

p cf
ctm fifi

E L

V f dE
α

θ β= + ⋅ ⋅ ∫  (6.11) 

where ( );αfi fi fiE L  is the equation of the semi-ellipse, intersection of the i-th semi-conical surface with the assumed 

crack plane. 

This simplification is extremely powerful from a computational standpoint since allows the interaction between 

laminates to be easily accounted for. In function of the main geometrical parameters wh , wb , fs , fiL  and ( )fi fiLα , 

see Fig. 6.2, that interaction can be either mono-directional, longitudinal or transversal, or bi-directional. The 

longitudinal interaction can occur when, due to the reduced spacing with respect to the height of the web, the 

semi-cones associated to adjacent laminates located at the same side of the web, and consequently their relevant 

semi-ellipses, overlap along their major semi-axis (see for instance the semi-ellipses 5 and 6 of the example of Fig. 6.4). 

The transversal interaction can occur when, for slender beam cross sections of high w wh b  ratio, the semi-ellipses 

symmetrically placed on the opposite sides of the web, intersect each other along their minor semi-axis (see the 

semi-ellipse 1 of Fig. 6.4). In this latter case, the area of the i-th semi-ellipse is limited, upwards, by the line 2wY b= , 

i.e. the trace, on the shear crack plane, of the vertical plane passing through the beam axis. In the most general case, in 

which bidirectional interaction might occur, the area on the shear crack plane associated to the i-th laminate, would be 
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composed of two terms: one, nlin
fiΑ , limited upwards by the non-linear branch of the relevant semi-ellipse ( )iY X  and 

another, lin
fiΑ , limited by the line 2wY b=  (see the semi-ellipses 1, 6 and 7 of Fig. 6.4). 

 
Fig. 6.4 – Example: definition of half crack plane and linear and non-linear range of integration for each ellipse 

 

Hence, due to the most general case of bi-directional interaction, the area of the semi-ellipse associated to the i-th 

laminate is calculated as follows: 

( )
( )

;fi fi fi

nlin lin
fi fi fi

E L

dE
α

= Α + Α∫
 

(6.12) 

Ultimately, Eq. (6.1) can be re-written as follows: 

( ) ( ) ( ) ( ){ }
1

1

2 sin

2 sin min 2 ; ; sin

f

f

N
p

f fi
i

N
nlin lin

f f fi b fi f f fu i i ctm
i

V V

a b L L a b f f

β

β τ θ β

=

=

= ⋅ ⋅ =

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ Α + Α ⋅ + ⋅

∑

∑
 (6.13) 

In that expression, the most complicated task is represented by the evaluation of the term ( )nlin lin
i iΑ + Α  ascribed to 

each i-th laminate. The algorithm, whose summarizing folw chart is represented in Fig. 6.5, is developed so as to make 

the above task easy by calculating the necessary informations step by step. This also makes the whole algorithm easy to 

be programmed. 

Moreover, the model is developed taking into consideration the three geometrical configurations, for 1,2,3k = , already 

introduced in Chapter 4 (see Figs. 4.3 to 4.5), of the present work. This is reflected by the digit after comma present in 

the subscript of each configuration-dependent quantity. 

Apart from the possible interaction of the laminates between each other, the analytical development of the PM takes all 

the necessary precautions in order to result the most robust, general and reliable as possible (see Appendix E). 
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( ); ; ; ;w f fi fih s Lβ θ α⎡ ⎤
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( )
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k
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⎡ ⎤
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Fig. 6.5 – Flow chart of the several Blocks of operations to be execute in sequence 

 

Input Data 

The general parameters entering the assumed approach are: 

• wh , the height of the web in the case of a T cross section beam. For a rectangular cross section beam, wh  is 

the vertical component of the laminate length, i.e., sinw fh L β= , where fL  is the laminate length; 

• wb , the width of the web of the beam cross section in the case of a T beam. For a rectangular cross section 

beam, wb  is the cross section width; 

• β , the inclination of the laminates with respect to the beam axis; 

• fs , the spacing of the laminates along the beam axis; 

• θ , the assumed crack angle; 
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• ( )fi fiLα , the relationship between the angle, formed by the axis and the generatrices of the i-th semi-conical 

surface, and the available bond length of the laminate; 

• ctmf , the concrete average tensile strength; 

• fa , the thickness of the laminate cross section; 

• fb , the width of the laminate cross section; 

• fuf , the laminate tensile strength; 

• ( )b fLτ , the relationship between the average bond strength and the available bond length of the laminate. 

The formulation requires the use of the following two cartesian reference systems (see Fig. 6.2a): 

• oxyz  the “global reference system” whose origin is placed in the assumed crack origin and whose plane oxy  

lies on the intrados of the prism schematizing the beam web; 

• OXYZ  the “crack plane reference system” whose origin is placed in the assumed crack origin and whose plane 

OXY  lies on the plane schematizing the crack. 

Moreover, it is necessary to define, in the plane OXY , the “local reference system”, 1 2i i io e e , for each i-th semi-ellipse 

(see Fig. 6.6). 

 

Block 1: Definition of the geometrical quantities in the global reference system oxyz  

The output of this Block of calculation is composed of four matrices summarizing the prominent geometrical quantities 

defined in the global reference system: 

• x  is a 3 2×  dimension matrix, the first column of which stores the position of the first laminate with respect to 

the assumed crack origin, for the three possible laminates’ configurations, 1,f kx , see Figs. 4.3-4.5 and 

Eq. (4.3) of Chapter 4, while the second column includes the corresponding number of laminates crossing the 

shear failure crack, ,f kN , see Eq. (4.3); 

• F  is a 3fN ×  dimension matrix. For a generic k-th configuration, the first column of kF  includes the 

position of the laminates, ,fi kx , the second column stores the available bond length of the laminates, ,fi kL  

(see Eqs. (4.4) and (4.5) of Chapter 4), and the third column includes the values of the angle ,fi kα . In the 

present model, the i  char in the subscript of any symbol refers the i-th laminate and its associated 

semi-ellipse. For the generic k-th configuration it is ,1,......, f ki N= . 
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Block 2: Definition of the geometrical properties in the crack plane reference system OXYZ  

 

 
Fig. 6.6 – Example of Fig. 6.4: definition of the geometrical quantities in OXY  and the ellipse local reference system 

1 2i i io e e  

 

Once the geometry and the number of laminates to be allowed for have been determined as described above, it is 

necessary, for the further developments, to determine the equations, in the plane OXY , of the semi-ellipses generated 

by slicing the semi-conical surfaces with the inclined plane simulating the major shear crack. 

To easily determine the equations of the semi-ellipses in the crack plane reference system, the prominent geometrical 

quantities, for each i-th laminate, are stored in the corresponding i-th row of the kG  matrix, that is, the G  matrix in the 

k-th configuration, of , 8f kN ×  dimensions. The first column of the kG  matrix has the position of each laminate singled 

out along the OX  axis of the crack plane reference system, fiX  (see Fig. 6.6). For a generic i-th laminate, ,fi kX  can be 

evaluated by, (for further details see Appendix D): 

( ) ( ), 1,
sin 1

sinfi k f k fX x i sβ
β θ

⎡ ⎤= ⋅ + − ⋅⎣ ⎦+
 (6.14) 

The second column includes the length of the major semi-axis of the semi-ellipse, a . For a generic i-th laminate, ,i ka  

can be determined from: 

( ) ( )
,

, ,
, ,

1 1sin
2 sin sin
fi k

i k fi k
fi k fi k

L
a α

α β θ θ β α

⎡ ⎤
⎢ ⎥= ⋅ ⋅ +
⎢ ⎥+ + + −⎣ ⎦

 (6.15) 

The third column stores the values of the position, along the OX  axis, of the center of the i-th ellipse oX . For a generic 

i-th ellipse ,oi kX  can be calculated from (see Appendix D): 

( )
( ) ( )

( )
( ) ( ) ( )

,
, , , ,

,

,
, , , ,

,

sin
      for  cot cot  

2sin

sin
cot cot  for  cot cot  

sin 2sin

fi k w
oi k fi k i k fi k

fi k

fi kw w
oi k w fi k i k fi k

fi k

h
X x a x

h h
X h x a  x

β α
θ β

β θ α

β α
θ β θ β

θ β θ α

⎧ − ⎛ ⎞⎪ = ⋅ + < ⋅ +⎜ ⎟⎪ + − ⎝ ⎠⎪
⎨

−⎪ ⎛ ⎞⎡ ⎤= − ⋅ ⋅ + − − ≥ ⋅ +⎪ ⎜ ⎟⎣ ⎦+ − ⎝ ⎠⎪⎩

 (6.16) 
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The fourth column includes the values of the abscissa, 1Pe , in the local reference system of the semi-ellipse 1 2 3oe e e , of 

an auxiliary point P  necessary to write the equation of the relevant ellipse. For a generic i-th ellipse of the k-th 

geometrical configuration, 1 ,Pi ke can be calculated from: 

1 , , ,Pi k fi k oi ke X X= −  (6.17) 

The fifth column stores the values of the ordinate, in the local reference system of the semi-ellipse, 1 2 3oe e e , of an 

auxiliary point P  necessary to write the equation of the relevant ellipse, 2Pe . For a generic i-th ellipse, 2 ,Pi ke  can be 

calculated from: 

2 , , ,tanPi k fi k fi ke L α= ⋅  (6.18) 

The sixth column includes the values of the length of the minor semi-axis of the semi-ellipse, b . For a generic i-th 

semi-ellipse, ,i kb  can be calculated from: 

( )
2 2
, 2 ,

, 2 2
, 1 ,

i k Pi k
i k

i k Pi k

a e
b

a e

⋅
=

−
 (6.19) 

The seventh column includes the values of the position, along the OX  axis, of the leftward vertex of the semi-ellipse 

along its major axis, 1v . For a generic i-th semi-ellipse 1 ,i kv  can be calculated from: 

1 , , ,i k oi k i kv X a= −  (6.20) 

The eight column includes the values of the position, along the OX  axis, of the rightward vertex of the semi-ellipse 

along its major axis, 2v . For a generic i-th semi-ellipse 2 ,i kv  can be calculated from: 

2 , , ,i k oi k i kv X a= +  (6.21) 

 

Block 3: Determination of the equations of the semi-ellipses in the crack plane reference system OXYZ  

At this point, it’s necessary to determine the analytical equation, in the OXYZ  reference system, of each semi-ellipse 

corresponding to the various laminates. The explicit form of ( );αfi fi fiE L  of Eq. 6.11, is: 

( )
( )2

1, 3, 4,
,

2,

i k i k i k
i k

i k

E X E X E
Y X

E

⋅ + ⋅ +
= + −  (6.22)

To determine the above equation in the crack plane reference system, it is only necessary to operate a change from the 

local reference system 1 2i i io e e  to OXY , once the analytical expression of the ellipse ha been written in the former (see 

Appendix D).  

The coefficients of the semi-ellipses are stored in the E  matrix that, for the k-th configuration ( kE ) has , 4f kN ×  

dimensions. The first to fourth columns of the E  matrix store the values of the coefficients of the semi-ellipses. For a 

generic i-th semi-ellipse of the k-th configuration, these coefficients can be calculated from, see Appendix D: 
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2
1, ,i k i kE b=  (6.23) 

2
2, ,i k i kE a=  (6.24)

2
3, , ,2i k i k oi kE b X= − ⋅ ⋅  (6.25)

2 2 2 2
4, , , , ,i k i k oi k i k i kE b X a b= ⋅ − ⋅  (6.26)

 

Block 4: Determination of the Auxiliary Matrices  

It is worth determining, even if they are not strictly necessary for the implementation of the algorithm, some auxiliary 

matrices i.e. 1p
kX , 2p

kX , q
kX , e

kY , kM , kN , 
k

Q  since they condense some operations that, otherwise, should be 

repeated several times. These matrices, will be useful to determine, in the following steps, the matrices of the effective 

integration points’ abscissa nlin
kX  and lin

kX  defining respectively the intervals of integration of each semi-ellipse in the 

“non-linear” and in the “linear” range. 

 

Step 1: Determination of the auxiliary intersection points 1p
kX  and 2p

kX  

The matrices 1p
kX  and 2p

kX , that are the matrices 1pX  and 2pX  in the k-th configuration, contain, in the i-th row, the 

abscissa value of all the intersection points, if any, of the i-th ellipse with the j-th one for ,1...... f kj N= ; ,1...... f ki N=  

and 1,2,3k = . 

When the solving system for the intersection points between the i-th and j-th ellipses is written: 

2 2
1, 2, 3, 4,

2 2
1, 2, 3, 4,

0

0
i k i k i k i k

j k j k j k j k

E X E Y E X E

E X E Y E X E

⎧ + + + =⎪
⎨

+ + + =⎪⎩
 (6.27)

the solving equation obtained by substituting the former, 
( )2

1, 3, 4,2

2,

i k i k i k

i k

E X E X E
Y

E

+ +
= − , in the latter is as follows: 

( ) ( ) ( )2
1, 2, 1, 2, 2, 3, 2, 3, 2, 4, 2, 4, 0j k i k i k j k i k j k j k i k i k j k j k i kE E E E X E E E E X E E E E⋅ − ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅ − ⋅ =  ( 6.28)

that results to be, in general, a second-order equation, meaning that, in general, the two ellipses can intersect each other 

in two values of the abscissa, corresponding to a total of four points in the whole plane OXY  composed of four 

quadrants, because of the symmetry with respect to the axis 0Y =  (see Fig. 6.7). Since we are interested in what 

regards the semi-ellipses located in the half crack plane, 0Y ≥ , in case the solving equation results to be a second-order 

one, only two points are effectively useful for our purposes (see Fig. 6.7a). 

There can also be the case in which the solving equation is of the first order and in that case there are a total of two 

points in the whole plane OXY  but one point only meets our interest because located in the half-space 0Y ≥  (see 

Fig. 6.7b). 
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a) 

 
b) 

Fig. 6.7 – Intersection between two semi-ellipses ellipses: a) two intersection point; b) one intersection point 

 

In the general case of a second order solving equation, i.e. if the following condition is satisfied: 

( )1, 2, 1, 2, 0j k i k i k j kE E E E⋅ − ⋅ ≠  (6.29)

There are two real distinct solutions 1
,

p
ij kX  and 2

,
p

ij kX  equal respectively to: 

( )
( )

2, 3, 2, 3, ,1
,

1, 2, 1, 2,2
i k j k j k i k ij kp

ij k
j k i k i k j k

E E E E
X

E E E E

− ⋅ − ⋅ − ∆
=

⋅ ⋅ − ⋅
 (6.30)

and 

( )
( )

2, 3, 2, 3, ,2
,

1, 2, 1, 2,2
i k j k j k i k ij kp

ij k
j k i k i k j k

E E E E
X

E E E E

− ⋅ − ⋅ + ∆
=

⋅ ⋅ − ⋅
 (6.31)

where the radicand, ,ij k∆ , of the above expressions should be positive: 

2
, 2, 3, 3, 2, 1, 2, 1, 2, 2, 4, 2, 4,4 0ij k i k j k i k j k j k i k i k j k i k j k j k i kE E E E E E E E E E E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆ = ⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ >⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (6.32)

Note that in the above analytical expression the possibility, for , 0ij k∆ = , that the i-th and j-th ellipses result to be 

tangent to each other is excluded because of no interest for our purposes. In fact, that tangency can happen in a point 

located along the X  axis (see cases 3 and 5 of Appendix E) or in a point with 0 dX L< <  and 0 2wY b≤ ≤  (see cases 

16-18 of Appendix E). 
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Anyway, the present algorithm, discarding the cases of double real root of Eq. (6.28), contemplating the possibility of 

internal tangency along the X axis or in another point ( 0 dX L< <  and 2wY b≥ ), works, as can be gathered from the 

above particular cases listed in Appendix E. 

If the solving equation, Eq. (6.28), results to be of the first order, meaning that the two semi-ellipses intersect each other 

in one point only in the half plane 0Y ≥ , i.e. if it is: 

( )1, 2, 1, 2, 0j k i k i k j kE E E E⋅ − ⋅ =  (6.33)

the solving equation is: 

( ) ( )2, 3, 2, 3, 2, 4, 2, 4, 0i k j k j k i k i k j k j k i kE E E E X E E E E⋅ − ⋅ ⋅ + ⋅ − ⋅ =  (6.34)

The above equation provides a real value if the following condition is satisfied: 

( )2, 3, 2, 3, 0i k j k j k i kE E E E⋅ − ⋅ ≠  (6.35)

and the corresponding real and unique value of the abscissa is: 

( )
( )

2, 4, 2, 4,1
,

2, 3, 2, 3,

i k j k j k i kp
ij k

i k j k j k i k

E E E E
X

E E E E

⋅ − ⋅
= −

⋅ − ⋅
 (6.36)

and: 
2
, *p

ij kX =  (6.37)

that is, the second solution is attributed a “non-value”, e.g. an asterisk. Note that a “non-value” term is not zero since 

this latter has a physical meaning representing the position, in OXZ , of the assumed crack origin. 

In general, one point in a two-dimensional space has two coordinates thus, it is necessary to verify if the value of the 

ordinate assumed by the i-th semi-ellipse ( )1/ 2
, ,

p
i k ij kY X , in correspondence of 1/ 2

,
p

ij kX , is effectively a real number 

because it might happen that the above solving equations return a real value for the abscissa but in order for the point to 

actually exist, it is necessary that both coordinates be effectively real numbers. Where the symbol 1/ 2
,

p
ij kX  syntetically 

represents both 1
,

p
ij kX  and 2

,
p

ij kX . 

The value of the ordinate ( )1/ 2
, ,

p
i k ij kY X  results to be a real number if both of the following conditions are satisfied: 

2, 0i kE ≠  (6.38)

and: 

( ) ( )21/ 2 1/ 2
1, 3, 4,, ,

2,

. .
0

p p
i k i k i kij k ij k

i k

E X E X E

E

⎡ ⎤+ +⎢ ⎥⎣ ⎦− >  (6.39)

Moreover, this condition, excludes the points of intersection whose ordinate should be equal to zero because this case is 

contemplated in Block 5 in which the abscissa of the vertices along the axis 0Y =  are analysed i.e. ( ), ,oi k i kX am . 

If the value 1/ 2
,

p
ij kX  is real and it corresponds to a real value for the ordinate of the i-th ellipse ( )1/ 2

, ,
p

i k ij kY X , and this 

latter is higher than zero, it is stored in the corresponding j-th column of thei-th row of the corresponding matrix of the 
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auxiliary intersection points, 1p
kX  or 2p

kX . The cells referring to intersections not existing have to be filled with a 

"non-value”. 

Note that Eq. (6.39) intentionally lacks the sign of equality in order to carry out a first selection of the points of 

intersection between ellipses since the points of intersection lying on the X  axis are unuseful for our purposes. In fact, 

we will also take into consideration the vertices of the ellipses along the X  axis and these latter are more useful and 

include, at the same time, the case in which two or more ellipses intersect each other along  X . 

Hence, in general, the output of this step is constituted of two square symmetric matrices 1p
kX  and 2p

kX  that for the 

Example of Fig. 6.4, will be as follows, see Fig. 6.8: 

1
12

1
21

1 2

1
56

1 1
65 67

1
76

* * * * * * * * * * * * *
* * * * * * * * * * * * *

* * * * * * * * * * * * * *
* * * * * * * ; * * * * * * *

* * * * * * ** * * * * *
* * * * * * ** * * * *
* * * * * * ** * * * * *

p

p

p p

p

p p

p

X

X

X X
X

X X

X

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (6.40)

 

 

Fig. 6.8 – Intersection points of the ellipses between each other whose abscissa is contained in 1pX  and 2pX  

 

Step 2: Determination of the auxiliary intersection points of each ellipse qX  with the straight line 2wY b=  

qX  is a 2fN ×  dimensions matrix containing, in each i-th row, the abscissa of the left 1
q
iX  and right 2

q
iX  intersection, 

if actually existing, of the relevant i-th semi-ellipse with the straight line 2wY b= . For the general k-th configuration, 

the first column term of the i-th row, 1,
q
i kX , and the second column one, 2,

q
i kX , of the q

kX  matrix are calculated, as 

follows. 

The i-th semi-ellipse actually intersects the line 2wY b=  if the following conditions are satisfied: 

( )
1,

2 2
, 3, 1, 2, 4,

0

4 4 0

i k

i k i k i k i k w i k

E

E E E b E

≠⎧⎪
⎨

∆ = − ⋅ ⋅ ⋅ + ≥⎪⎩
 (6.41)

and the corresponding abscissa values are determined as follows: 
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( )2 2
3, 3, 1, 2, 4,

1,
1,

4 . . 4

2 .
i k i k i k i k w i kq

i k
i k

E E E E b E
X

E

− − − +
=  (6.42)

( )2 2
3, 3, 1, 2, 4,

2,
1,

4 . . 4

2 .
i k i k i k i k w i kq

i k
i k

E E E E b E
X

E

− + − +
=  (6.43)

In the eventuality that the second condition of Eq. (6.41) results to be equal to zero, the two values of the abscissa are 

equal contemplating the possibility that the semi-ellipse results tangent to the boundary line 2wY b= . This case is 

among the ones contemplated in Appendix D. 

For the Example of Fig. 6.4, the matrix qX  will be as follows, see Fig. 6.9: 

11 12

61 62

71 72

* *
* *
* *
* *

q q

q

q q

q q

X X

X

X X

X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.44)

 

Fig. 6.9 – Intersection points of the semi-ellipses with line 2wY b=  whose abscissa is contained in qX  

 

Step 3: Determination of the auxiliary intersection points e
kY  of each semi-ellipse with the boundary lines 0Χ = and 

 dΧ L=  

eY  is a 2fN ×  dimensions matrix containing, in each i-th row, the ordinate assumed by the i-th semi-ellipse in 

correspondence of 0X = , and in correspondence of dX L= , if the semi-ellipse actually passes through those abscissa 

values. For the generic k-th configuration, the first term 1,
e

i kY  of the i-th row of the e
kY  matrix is a real number, 

indicating that the relevant semi-ellipse effectively passes through 0X =  if the following condition is satisfied: 
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2,

4,

2,

0

0

i k

i k

i k

E

E
E

≠⎧
⎪
⎨− ≥⎪
⎩

 (6.45)

The latter of the conditions above also contemplates the possibility that the i-th ellipse intersects the line  0=Χ  in 

correspondence of the origin, i.e. in 0Y = . 

If the above conditions of existence are satisfied, the value of the abscissa is obtained as follows: 

4,
1,

2,

i ke
i k

i k

E
Y

E
= + −  (6.46)

In which the positive sign in front of the square root is justified by the fact that we are only interested in the intersection 

point of the i-th ellipse with the boundary line 0Χ =  that lies above the axis 0Y = . Likewise, the conditions of 

existence for the second point of intersection, 2,
e

i kY , are the followings: 

( )
2,

2
4, 3, 1,

2,

0

. .
0

i k

i k i k d i k d

i k

E

E E L E L

E

≠⎧
⎪⎪

+ +⎨
− ≥⎪

⎪⎩

 (6.47)

If the conditions above are satisfied, the value 2,
e

i kY  is obtained as follows: 

( )2
1, 3, 4,

2,
2,

. .i k d i k d i ke
i k

i k

E L E L E
Y

E

+ +
= + −  (6.48)

If the conditions above are not satisfied, the i-th semi-ellipse does not intersect the boundary line dLΧ =  and the 

corresponding cell of the matrix e
kY  has to be filled with a ”non-value”. For the Example of Fig. 6.4, the matrix eY  will 

be as follows, see fig. 6.10: 

11

72

*
* *
* *
* *
* *
* *

*

e

e

e

Y

Y

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.49)
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Fig. 6.10 – Intersection points of the semi-ellipses with boundary lines 0Χ =  and dLΧ =  whose ordinate is contained 

in eY  

 

Step 3: Determination of the auxiliary matrices kM  kN  and 
k

Q  

M , N , Q  are f fN N×  dimensions matrices containing, respectively, the coefficients ijM , ijN  and ijQ  with 

, 1,...., fi j N= . For the generic k-th configuration, the general terms ,ij kM , ,ij kN , ,ij kQ  of the kM , kN  and 
k

Q  

matrices are calculated respectively by the following Eqs.: 

1,1,
,

2, 2,

j ki k
ij k

i k j k

EE
M

E E

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6.50) 

3,3,
,

2, 2,

j ki k
ij k

i k j k

EE
N

E E

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6.51) 

4,4,
,

2, 2,

j ki k
ij k

i k j k

EE
Q

E E

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (6.52) 

where 1,i kE , 2,i kE , 3,i kE , 4,i kE  and 1,j kE , 2,j kE , 3,j kE , 4,j kE  are, respectively, the coefficients of the i-th and j-th 

semi-ellipses in the k-th configuration stored in the relevant rows of the kE  matrix. 

 

Block 5: Determination of the Matrix of the Effective Integration Points in the non linear range nlin
kX  

nlinX  is a nlin
fN n×  dimensions matrix containing, in the i-th row, the couples of abscissa values constituting limits of 

the integration intervals for the relevant i-th semi-ellipse equation ( )iY X . For the k-th configuration, the matrix nlin
kX  

has ,
nlin

f k kN n×  dimensions where nlin
kn  is the maximum number of real values of integration limits amongst all the 

,f kN  ellipses of that configuration (an even number). To evaluate nlin
kX , five other auxiliary matrices 1nlin

kX , 2nlin
kX , 

3nlin
kX , 4nlin

kX , 5nlin
kX  have to be determined, first, based on both the auxiliary ones 1p

kX , 2p
kX , q

kX , e
kY , kM , kN , 

k
Q , output of the previous block of calculations, and the matrix of the semi-ellipses geometrical properties, kG . Then, 

the Non Linear range auxiliary matrices, 1nlin
kX , 2nlin

kX , 3nlin
kX , 4nlin

kX , 5nlin
kX , will be joined in the final one nlin

kX  

with 1,2,3k = . 
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The several steps to be taken in sequence, in order to accept and store the abscissa of the aforementioned auxiliary 

points, are as indicated in the flow chart of Fig. 6.11. The scheme represented by the that flow chart is absolutely 

general and summarises the conceptual steps to be undertaken to get the abscissa values, among the auxiliary ones 

already calculated, that are useful to determine the area ascribed to each i-th semi-ellipse. Thus, it refers to both the 

Linear and Non-Linear ranges of integration. However, the acceptance conditions assume different formal features 

depending on what range of integration, Linear either Non Linear, we are taking into consideration. 

 
Fig. 6.11 – General steps to check the effectiveness of the Auxiliary points for  

the Lin or NLin integration ranges. 
 

Step 1: Determination of the matrices of the effective intersection points between ellipses 1nlin
kX  and 2nlin

kX  

1nlinX  and 2nlinX  are two f fN N×  dimensions matrices containing, in the i-th row, the abscissa values, amongst those 

already calculated and stored in the corresponding i-th row, respectively, of the auxiliary matrices 1pX  and 2pX , that, 

according to the acceptance conditions hereafter specified, effectively constitute useful integration limits for the 

relevant i-th semi-ellipse equation. In the following, the symbols 1/ 2
,

p
ij kX  and  1/ 2

,
nlin
ij kX  will be used to synthetically 

indicate both the first and second intersection between the i-th and j-th semi-ellipses (see Step 1 of Block 4). For the 

k-th configuration, the general j-th term 1/ 2
,

nlin
ij kX  of the i-th row of the 1/ 2nlin

kX  matrix is set equal to the corresponding 

term 1/ 2
,

p
ij kX  of the corresponding auxiliary matrix 1/ 2p

kX , i.e.: 

1/ 21/ 2
, ,

pnlin
ij k ij kX X=  (6.53)

if 1/ 2
,

p
ij kX  is such as to satisfy, for the i-th semi-ellipse, the following acceptance conditions: 

1. The corresponding point has to be placed inside the range of interest for the Non Linear integration; 
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2. The corresponding point has to lie upon the upper contour line; 

3. The corresponding point has to constitute effective integration extremity; 

4. It has not to be equal to the values already stored in the i-th row. 

The auxiliary intersection point between the i-th and the j-th semi-ellipses, whose abscissa value is 1/ 2
,

p
ij kX  is accepted, 

for the i-th semi-ellipse, if the following conditions are fulfilled: 

( )
( ) ( )

( )
( )

( ) ( )

1/ 2 1/ 2
,, ,

1/ 2 1/ 2
, , ,, ,

1/ 2
,

1/ 2
, ,

1/ 2 1/ 2
, , ,, ,

1) 0 and 0
2

2)     for   1

0 and

0 < and
2

 1, , and

3) or

p p w
d i kij k ij k

p p
i k h k f kij k ij k

p
dij k

p w
i k ij k

p p
i k h k f kij k ij k

b
X L Y X

Y X Y X h ....N

X X L

b
Y X X

Y X X Y X X h ... N h i

< < < <

≥ ∀ =

⎧ < + ∆ <
⎪
⎪⎪ < + ∆⎨
⎪
⎪ + ∆ > + ∆ ∀ = ≠
⎪⎩

( )
( )

( ) ( )
( )

1/ 2
,

1/ 2
, ,

1/ 2 1/ 2
, , ,, ,

1/ 2 1/ 2
,,

0 and

0 < and
2

 1, , and

4) with 1,....., 1

p
dij k

p w
i k ij k

p p
i k h k f kij k ij k

p nlin
ig kij k

X X L

b
Y X X

Y X X Y X X h ... N h i

X X g j

⎧
⎪
⎪
⎪
⎪
⎪ ⎧
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪⎨ ⎪⎪ ⎨⎪ ⎪⎪ ⎧ < − ∆ <⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪ < − ∆⎨⎪⎪ ⎪⎪⎪ ⎪⎪ − ∆ > − ∆ ∀ = ≠⎪ ⎪⎩⎩⎪
⎪ ≠ = −⎩

 (6.54)

in which the term X∆  indicates an infinitesimally small length along the OX  axis. If at least one of the above 

conditions is not fulfilled by the auxiliary value 1/ 2
,

p
ij kX , the corresponding effective term 1/ 2

,
nlin
ij kX  has to be set equal to 

“non-value”. 

As regards the first condition, actually it should be ( )1/ 2
, ,0

2
p w

i k ij k
b

Y X< <  but the left inequality is already contemplated 

in the calculations that select the auxiliary intersection points between ellipses (see Step 1 of Block 4) thus, in the 

following analytical expressions it will be omitted. The rightward inequality is necessary because the intersection 

between semi-ellipses in correspondence of the line 
2
wb

Y =  is not interesting for the integration of the semi-ellipses in 

their non-linear range and furthermore, that eventuality is already contemplated in the case of the intersections with 

2
wb

Y = . 

The second condition checks if the the intersection point, whose abscissa is abscissa 1/ 2
,

p
ij kX , effectively lies on the 

border line and simply verifies if the value of the ordinate assumed by the i-th semi-ellipse is higher or equal to the 

ordinate that any other h-th semi-ellipse assumes there. 

The third condition checks if the point effectively constitutes a useful integration extremity for the i-th ellipse i.e. if, on 

either the left side ( )1/ 2
,

p
ij kX X− ∆  or on the right side ( )1/ 2

,
p

ij kX X+ ∆ , the i-th semi-ellipse is higher than any other 

semi-ellipse passing through the point ( )1/ 2
,

p
ij kX X∆m  (see Fig.6. 12). 
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Fig. 6.12 – Check of the effectiveness of the intersection point between the i-th and j-th ellipses 1/ 2
,

p
ij kX  

for the integration of ( ),i kY X  in its non linear range 
 

The fourth condition aims at avoiding to store, in the j-th column of the i-th row of the matrix 1/ 2nlin
kX  of the effective 

points, a value that has already been stored in that row so far as for example could be the case of several ellipses 

intersecting each other in the same point. In that case, like the one shown by Fig. 6.13, the same value, ( 1 1
12 13
p pX X= ), 

might be stored twice. On the contrary, the algorithm has to select couples of abscissa values. This selection could also 

be done in the final step of this Block 5 in which the final matrix nlin
kX  of the effective integration points is built but 

maybe it is preferable to carry out it now, while analyzing the values 1/ 2
,

p
ij kX  on the i-th row from left to right. In this 

way the determination, later on, of the number of columns nlin
kn  of the final matrix nlin

kX , will be carried out more 

easily. 

 
Fig. 6.13 – Necessity of the fourth condition 

 

The conditions (6.54) yield the following analytical expressions: 
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( )
( ) ( )
( )

( )
( ) ( )

1/ 2 1/ 2
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, , , ,, ,
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p
dij k
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ih k ih k ih k fij k ij k

b
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b
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,,

and

or

0 and
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. . 0  1 and

with 1,....., 1

k

p
dij k

p w
i k ij k

p p
ih k ih k ih k f kij k ij k

p nlin
ig kij k

h i

X X L

b
Y X X

M X X N X X Q h ....N h i

X X g j

⎧
⎪
⎪

⎧⎧
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⎨
⎪⎧ < − ∆ <⎪⎪⎪⎪⎪⎪ < − ∆⎨⎪

⎪⎪
⎪⎪ − ∆ + − ∆ + < ∀ = ≠⎪⎪⎩⎩

≠ = −

⎪
⎪
⎪
⎪
⎪
⎪
⎪
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⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

 (6.55) 

For further details regarding the origin of the above formulae, see Appendix D. The output of this 1st step is constituted 

of the matrices 1nlin
kX  and 2nlin

kX , for 1,2,3k = , containing, in each i-th row, the values of the abscissa of the effective 

intersection points of the i-th ellipse with the j-th one for ,1.... f kj N= . The adjective “effective” is used to mean that it 

is a point effectively useful to determine the area corresponding to the i-th semi-ellipse and delimitated upwards by the 

relevant non-linear curve ( ),i kY X . For the example of Fig. 6.4, they will be as follows, see Fig. 6.14: 

1
12

1
21

1 2

1
56

1
65

* * * * * * * * * * * * *
* * * * * * * * * * * * *

* * * * * * * * * * * * * *
;* * * * * * * * * * * * * *

* * * * * * ** * * * * *
* * * * * * ** * * * * *
* * * * * * ** * * * * * *

p

p

nlin nlin

p

p

X

X

X X

X

X

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (6.56)

 

 
Fig. 6.14 – Intersection points between the semi-ellipses useful for the Non Linear integration, whose abscissa is stored 

in matrices 1nlinX  and 2nlinX  
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Step 2: Determination of the effective intersection points of each ellipse 3nlin
kX  with the straight line 2wY b=  

3nlinX  is a 2fN ×  matrix containing, in the first and second column of the i-th row, 3
1
nlin
iX  and 3

2
nlin
iX , the abscissa 

values of the left and right intersection points of the relevant semi-ellipse with the straight line 2wY b=  that result 

effective for the integration of the corresponding equation ( )iY X . For the k-th configuration, the term 3
1,
nlin
i kX  of the i-th 

row of the 3nlin
kX  matrix is set equal to the corresponding term 1,

q
i kX , i.e.: 

3
1, 1,

qnlin
i k i kX X=  (6.57) 

if 1,
q
i kX  is such as to satisfy the acceptance conditions. 

Those general acceptance conditions, already introduced for the previous matrices, are as follows: 

1. The corresponding point has to be placed inside the range of interest for the Non Linear integration; 

2. The corresponding point has to lie upon the upper contour line; 

3. It has to constitute effective integration extremity. 

They yield the following analytical expressions: 

( ) ( )
( )
( )
( ) ( )

1,

, , ,1, 1,

1,

, 1,

, , ,1, 1,

1) 0

2)     for   1, ,

0 and

3) and
2

1,.,

q
di k

q q
i k j k f ki k i k

q
di k

q w
i k i k

q q
i k j k f ki k i k

X L

Y X Y X j . N

X X L

b
Y X X

Y X X Y X X j N j i

⎧
⎪

≤ ≤⎪
⎪

≥ ∀ =⎪
⎪⎪ ⎧⎨ < − ∆ <

⎪⎪
⎪⎪ ⎪ − ∆ <⎨⎪
⎪⎪
⎪⎪ − ∆ > − ∆ ∀ = ≠
⎪⎪ ⎩⎩

 (6.58)

where the first condition simply defines the range of interest that comprehends the eventuality that the semi-ellipse 

intersects the straight line 2wY b=  in correspondence of the two vertices of the rectangle of interest 0;
2
wb⎛ ⎞

⎜ ⎟
⎝ ⎠

 and 

;
2
w

d
b

L⎛ ⎞
⎜ ⎟
⎝ ⎠

. The equality signs are, in that respect required, even because this possibility is not contemplated in any of 

the other matrices of the present Block 5. The second condition checks if the point lies on the upper border line. The 

third condition checks if, on the left side of the abscissa 1,
q
i kX , at an infinitesimal distance X∆  from it, the i-th ellipse 

results to be constituting the border. This latter is verified if the value of the ordinate there assumed by the i-th ellipse, 

results higher than any other ellipse and below 2wY b= . Moreover, as the first expression of the third condition 

shows, the decremented value of the abscissa has to be comprehended between, but not equal to, the extremities 0X =  

and dX L= . As to the second expression of the third condition, note that the limitation ( ), 1, 0q
i k i kY X X− ∆ >  has been 

omitted because, since we are in a point infinitesimally left of 1,
q
i kX , it is superfluous to verify that. 

The conditions above yield the following analytical expressions: 
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ij k ij k ij k f ki k i k

X L

M X N X Q j N

X X L

b
Y X X
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⎪
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< − ∆ <⎨
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⎪ − ∆ + − ∆ + < ∀ = ≠
⎩

 (6.59)

Likewise, the term 3
2,
nlin
i kX  is set equal to the corresponding auxiliary term 2,

q
i kX , i.e.: 

3
2, 2,

qnlin
i k i kX X=  (6.60)

if 2,
q
i kX  meets the following acceptance condition: 

( ) ( )
( )
( )
( ) ( )
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 (6.61)

The conditions above yield the following analytical expressions: 
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 (6.62)

If those conditions are not fulfilled, the corresponding cell 3
2,
nlin
i kX  has to be filled with a “non-value”. 

For the Example of Fig. 6.4, the matrix 3nlinX  will be as follows, see Fig. 6.15: 

12

3

61

72

*
* *
* *
* *
* *

*

*

q

nlin

q

q

X

X

X

X

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.63)
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Fig. 6.15 – Intersection points of the semi-ellipses with line 2wY b=  useful for the Non Linear integration, whose 

abscissa is contained in 3nlinX  

 

Step 3: Determination of the effective intersection points of each ellipse with the boundary lines 0  and  dΧ Χ L= =  

4nlinX  is a 2fN ×  dimensions matrix containing, in the first cell of the i-th row, the null abscissa value, 4
1 0nlin
iX = , 

and the dL  value in the second cell, 4
2
nlin
i dX L= , if those values result to be effective integration limits for the relevant 

semi-ellipse ( )iY X . The horizontal extremities of the crack plane, 0=X  and = dX L  in correspondence of which, 

according to the above Block 4, the ordinates assumed by the i-th ellipse have been calculated and stored in the 

corresponding row of the matrix e
kY , will constitute extremities of the non linear integration intervals if the intersection 

points are such as to satisfy the usual general conditions, repeated hereafter for the sake of clarity: 

1. They have to be placed inside the range of interest for the Non Linear integration; 

2. They have to lie upon the upper contour line; 

3. They have to constitute effective integration extremities. 

For the generic k-th configuration, the first column term of the i-th row, 4
1,
nlin
i kX , of the 4nlin

kX  matrix has to be set equal 

to zero, i.e.: 

4
1, 0nlin
i kX =  (6.64)

if the ordinate value, 1,
e

i kY , contained in the corresponding cell of the e
kY  matrix satisfies the above conditions, that, 

written in mathematical terms, are like follows: 
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1, 1, ,

,

, , ,

1) 0
2

2)   for   1

0 0 and
23)

0 0 1

e w
i k

e e
i k j k f k

w
i k

i k j k f k

b
Y

Y Y j ....N

b
Y X

Y X Y X j ....N j i

⎧
⎪
⎪ < <
⎪
⎪⎪ ≥ ∀ =⎨
⎪ ⎧⎪ < + ∆ <⎪⎪ ⎨
⎪ ⎪ + ∆ > + ∆ ∀ = ≠⎪ ⎩⎩

  (6.65)

that yield the following analytical expressions: 
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. . 0 1,. ,

e w
i k

ij k f k

w
i k

ij k ij k ij k f k

b
Y

Q j .... N

b
Y X

M X N X Q j .... N j i

⎧ < <⎪
⎪

≤ ∀ =⎪⎪
⎨
⎪ < ∆ <
⎪
⎪

∆ + ∆ + < ∀ = ≠⎪⎩

 (6.66)

otherwise the value 0=X  has not to be taken into consideration for the respective i-th ellipse’s non linear range, i.e. 

the corresponding cell 4
1,
nlin
i kX  ha sto be filled with a “non-value”. 

Likewise, for the generic k-th configuration, the second column term of the i-th row, 4
2,
nlin
i kX , of the 4nlin

kX  matrix has 

to be set equal to dL , i.e.: 

4
2,
nlin
i k dX L=  (6.67)

if the ordinate value, 2,
e

i kY , contained in the corresponding cell of the e
kY  matrix satisfies the following conditions: 

( )

( ) ( )

2,

2, 2, ,

,

, , ,

1) 0
2

2)   for   1

0 and
23)

1

e w
i k

e e
i k j k f k

w
i k d

i k d j k d f k

b
Y

Y Y j ....N

b
Y L X

Y L X Y L X j ....N j i

⎧
⎪
⎪ < <
⎪
⎪⎪ ≥ ∀ =⎨
⎪ ⎧⎪ < − ∆ <⎪⎪ ⎨
⎪ ⎪ − ∆ > − ∆ ∀ = ≠⎪ ⎩⎩

 (6.68)

that yield the following analytical expressions: 

( )

( ) ( )

2,

2
, , , ,

,

2
, , , ,

0
2

. . 0      1,.....,

0
2

. . 0 1, .,

e w
i k

ij k d ij k d ij k f k

w
i k d

ij k d ij k d ij k f k

b
Y

M L N L Q j N

b
Y L X
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⎧ < <⎪
⎪
⎪ + + ≤ ∀ =⎪
⎨
⎪ < − ∆ <
⎪
⎪

− ∆ + − ∆ + < ∀ = ≠⎪⎩

 (6.69)

The final result of this step is a matrix 4nlin
kX  with 1,2,3k =  in which, in general, there will be rows whose first value 

can be zero or “non-value” and whose second term can be dL  or “non-value”. 

For the Example of Fig. 6.4, the matrix 4nlinX  will be as follows, see Fig. 6.16: 

4

* *
* *
* *
* *
* *
* *
*

nlin

d

X

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6.70)
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Fig. 6.16 – Intersection points of the semi-ellipses with boundary lines 0Χ =  and dLΧ =  useful for the Non Linear 

integration, whose abscissa is contained in 4nlinX  

 

Step 4: Determination of the effective points of intersection 5nlin
kX  of each ellipse with the axis 0Y =  of the crack 

plane reference system 

From the output matrix kG  of the Block 2, it is necessary to process the abscissa ( ), ,oi k i kX am  of the vertices of each 

ellipse with the X  axis, i.e. its vertices on the major semi-axis, stored respectively in the 7th and 8th columns and accept 

or discard them if they result respectively useful or unuseful for the integration of the i-th ellipse in its non-linear range. 

The points whose abscissa is ( ), ,oi k i kX a−  and ( ), ,oi k i kX a+  are effective points in the sense that they constitute 

integration limits for i-th ellipse, if they satisfy the following conditions of acceptance: 

1. They are comprehended in the range of interest;  

2. Any other j-th ellipse, with 1...... fj N= , either does not pass through it or passes and assumes null ordinate 

0Y = ; 

3. It constitutes an effective integration extremity. 

As to the third condition, ( ), ,oi k i kX a−  results to be useful for the non linear integration of the i-th ellipse if, in an 

abscissa value infinitesimally more rightwards i.e. ( ), ,oi k i kX a X− + ∆ , the corresponding i-th ellipse constitutes the 

upper border line. Likewise, the vertex ( ), ,oi k i kX a+ , results to be useful for the i-th ellipse if this latter constitutes the 

upper border line for ( ), ,oi k i kX a X+ − ∆ . 

5nlinX  is a 2fN ×  dimensions matrix containing the abscissa of the vertices of the major semi-axis of the semi-ellipse 

that constitute effective integration extremities for the ellipses. For the k-th configuration, the first column term of the i-

th row, 5
1,
nlin
i kX , of the 5nlin

kX  matrix has to be set equal to the term 7,i kG , stored in the seventh column cell of the 

corresponding i-th row of the matrix kG  i.e.: 

5
1, 7,
nlin
i k i kX G=  (6.71)

if it is such as to satisfy the following conditions: 
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( ) ( )

( ) ( )
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, 7, , 7, ,

7,

, 7, , 7, ,

0

0 or  is not real   for   1;.....;  
0

for  1;.....;   and   

i k d

j k i k j k i k f k

i k d

i k i k j k i k f k

G L

Y G Y G j N

G X L

Y G X Y G X j N j i

⎧
⎪ ≤ ≤⎪
⎪⎪ = =⎨
⎪ < + ∆ <⎧⎪⎪

⎨⎪ + ∆ > + ∆ = ≠⎪⎪⎩⎩

 (6.72)

that yield the following analytical expressions: 

( ) ( )

( )
( ) ( )

7,

2
1, 7, 3, 7, 4,

,
2,

7,

2
, 7, , 7, , ,

0

. .
- 0       1;.....;

  

0

. . 0   1;.....;   and   

i k d

j k i k j k i k j k

f k
j k

i k d

ij k i k ij k i k ij k f k

G L

E G E G E
j N

E

G X L

M G X N G X Q j N j i

≤ ≤⎧
⎪

⎡ ⎤⎪ + +⎢ ⎥⎪ ⎣ ⎦ ≤ ∀ =⎪
⎨
⎪

< + ∆ <⎪
⎪
⎪ + ∆ + + ∆ + < ∀ = ≠⎩

 (6.73)

If the above conditions are not met, it is necessary to assume “non-value” in order to discard the previous auxiliary 

value. 

Likewise, for the k-th configuration, the second column term of the i-th row, 5
2,
nlin
i kX , of the 5nlin

kX  matrix has to be set 

equal to the term 8,i kG , stored in the eight-th column cell of the corresponding i-th row of the matrix kG  i.e.: 

5
2, 8,
nlin
i k i kX G=  (6.74)

if it is such as to satisfy the following conditions: 

( )

( ) ( )

8,

, 8, ,

8,

, 8, , 8, ,

0

0    for   1;.....;  
0

for  1;.....;   and   

i k d

j k i k f k

i k d

i k i k j k i k f k

G L

Y G j N

G X L

Y G X Y G X j N j i

⎧
⎪ ≤ ≤⎪
⎪⎪ ≤ =⎨
⎪ < − ∆ <⎧⎪⎪

⎨⎪ − ∆ > − ∆ = ≠⎪⎪⎩⎩

 (6.75)

that yield the following analytical expressions: 

( ) ( )

( )
( ) ( )
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1, 8, 3, 8, 4,

,
2,

8,

2
, 8, , 8, , ,
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. .
- 0       1;.....;
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. . 0   1;.....;   and   

i k d

j k i k j k i k j k

f k
j k

i k d

ij k i k ij k i k ij k f k

G L

E G E G E
j N

E

G X L

M G X N G X Q j N j i

≤ ≤⎧
⎪

⎡ ⎤⎪ + +⎢ ⎥⎪ ⎣ ⎦ ≤ ∀ =⎪
⎨
⎪

< − ∆ <⎪
⎪
⎪ − ∆ + − ∆ + < ∀ = ≠⎩

 (6.76)

If the above conditions are not met, it is necessary to fulfil the cell 5
2,
nlin
i kX  with a “non-value” in order to discard the 

previous auxiliary value. For the Example of Fig. 6.4, the matrix 5nlinX  will be as follows, see Fig. 6.17: 
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2 2

5
4 4 4 4

5 5

* *
*
* *

*
* *
* *

o

nlin
o o

o

X a

X X a X a
X a

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6.77)

 
Fig. 6.17 – Vertices of the semi-ellipses on the line 0Y =  useful for the Non Linear integration, whose abscissa is 

contained in 5nlinX  

 

Step 5: Determination of the final matrix of the Non Linear effective integration points nlin
kX  

Once all the auxiliary matrices for the integration points in the Non-Linear range 1nlin
kX , 2nlin

kX , 3nlin
kX , 4nlin

kX , 

5nlin
kX , are determined as above specified, they are ready to be joined in the matrix nlin

kX  containing, in each i-th row, 

the couples of points that define the integration intervals for the relevant i-th ellipse equation ( ),i kY X . 

It is necessary to determine, first, the vector nlin
kn  for 1,2,3k = . 

nlinn  is a 1fN ×  vector containing, in the i-th row, the maximum number of real abscissa values constituting effective 

integration limits for the relevant i-th semi-ellipse equation (the integrand function is nonlinear in the X variable). For 

the k-th configuration, the general i-th term, ,
nlin
i kn , of the nlin

kn  vector is equal to the number of real values present 

amongst all the terms stored in the corresponding i-th row of all the auxiliary matrices, i.e.: 

{ }1 2 3 4 5
, , , , , ,real numbers ; ; ; ;nlin nlin nlin nlin nlin nlin

i k i k i k i k i k i kn X X X X X=  (6.78)

The number of columns of the nlin
kX  matrix, nlin

kn , is equal to the maximum number of effective values among all the 

semi-ellipses for the k-th configuration, i.e.: 

{ }, ,max  with  1;...;nlin nlin
k i k f kn n i N= =  (6.79)

The nlin
kX  matrix  is then built by joining, for each i-th row corresponding to the i-th semi-ellipse, the effective terms, 

discarding the “non-values”, present in the corresponding i-th row of the auxiliary matrices 1nlin
kX , 2nlin

kX , 3nlin
kX , 
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4nlin
kX , 5nlin

kX  and sorting them in increasing order. For instance, the intermediate informations nlinn , nlinn  and the 

final matrix nlin
kX  for the example of Fig. 6.4 are as follows, see Fig. 6.18: 

1
12 12

1
2 221

4 4 4 4
1

5 5 56
1

65 61

72

2
2

* *0
; 2;2

2
2
2

p q

p
o

nlin nlinnlin
o o

p
o

p q

q
d

X X

X X a

X a X an n X
X a X

X X

X L

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− += = =⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (6.80) 

 

 

Fig. 6.18 – Determination of the effective matrix of the integration points in the non-linear range nlinX   

 

Block 6: Determination of the Matrix of the Effective Integration Points in the Linear range lin
kX  

The input of this Block is constituted of the previously determined auxiliary matrices: 1p
kX , 2p

kX , q
kX , e

kY , kM , kN , 

k
Q  with 1,2,3k = . The output will be composed of the auxiliary matrices containing the abscissa of the effective 

integration points for each semi-ellipse in its corresponding linear range of integration i.e.: 1lin
kX , 2lin

kX , 3lin
kX , 4lin

kX . 

Then, those four matrices will be joined in one only: lin
kX  with 1,2,3k = . 

linX  is a lin
fN n×  dimensions matrix containing, in the i-th row, the couples of abscissa values constituting limits of 

the integration intervals, in correspondence of the i-th semi-ellipse, of the equation 2wY b= . For the generic k-th 

configuration, the matrix lin
kX  has ,

lin
f k kN n×  dimensions where lin

kn  is the maximum number (even) of real values of 

integration limits amongst all the ,f kN  semi-ellipses of that configuration. To evaluate lin
kX , four other auxiliary 
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matrices 1lin
kX , 2lin

kX , 3lin
kX , 4lin

kX  have to be determined, first, based on the auxiliary ones 1p
kX , 2p

kX , q
kX , e

kY , 

kM , kN , 
k

Q , already built. 

Step 1: Determination of the matrices of the effective intersection points between ellipses 1lin
kX  2lin

kX  

1linX  and 2linX  are two f fN N×  dimensions matrices containing, in the i-th row, the abscissa values, amongst those 

already calculated and stored in the corresponding i-th row of the auxiliary matrices 1pX  and 2pX , respectively, that, 

according to the acceptance conditions hereafter specified, effectively constitute useful integration limits for the linear 

range ascribed to the relevant i-th semi-ellipse. For the k-th configuration, the general j-th term 1/ 2
,

lin
ij kX  of the i-th row 

of the 1/ 2lin
kX  matrix is set equal to the corresponding term 1/ 2

,
p

ij kX  of the corresponding auxiliary matrix 1/ 2p
kX , i.e.: 

1/ 21/ 2
, ,

plin
ij k ij kX X=  (6.81) 

if 1/ 2
,

p
ij kX  is such as to satisfy, for the i-th semi-ellipse, the following acceptance conditions: 

1. The corresponding point is comprehended in the range of interest;  

2. The point is located on the upper border line; 

3. The point constitutes effective integration extremity for the i-th semi-ellipse in the linear integration range; 

4. It is not equal to the values already stored in the i-th row. 

The auxiliary intersection point between the i-th and j-th semi-ellipses, whose abscissa value is 1/ 2
,

p
ij kX , is accepted, for 

the i-th semi-ellipse, if the following conditions are fulfilled: 

( )
( ) ( )
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X L
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Y X X

Y X X Y X X h N h i

X X g j

⎧
⎪
⎪
⎪
⎪
⎪ ⎧
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪⎨ ⎪⎪ ⎨⎪ ⎪⎪ ⎧ − ∆ <⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪ − ∆⎨⎪⎪ ⎪⎪⎪ ⎪⎪ − ∆ > − ∆ ∀ = ≠⎪ ⎪⎩⎩⎪
⎪ ≠ = −⎩

 (6.82)

The first condition verifies if the point lies within the range of interest. Note that the absence of equality signs in 
1/ 2
,0 p

dij kX L< <  means that points of intersection between semi-ellipses lying on the border lines 0X =  and dX L=  

are unuseful for this case since they have already been contemplated elsewhere (see Step 3 of the present Block 6 of 
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calculations). At the same time, for the Linear integration range, only the intersection points lying above the line 

2wY b=  are useful. 

The second condition checks if the point effectively lies on the upper border line and simply verifies if the value of the 

ordinate assumed by the i-th semi-ellipse is higher than or equal to the ordinate that any other h-th semi-ellipse assumes 

there. 

The third condition checks if the general point 1/ 2
,

p
ij kX  effectively constitutes a useful integration extremity for the i-th 

semi-ellipse i.e. if, on either the left side ( )1/ 2
,

p
ij kX X− ∆  or on the right side ( )1/ 2

,
p

ij kX X− ∆ , the i-th ellipse is higher than 

any other ellipse passing through it. 

The fourth condition aims at avoiding to store, in the i-th row of the matrix of the effective points, 1/ 2lin
kX  a value 

1/ 2
,

p
ij kX  that has already been stored as intersection with another j-th ellipse whose ordinal number g is lower than the 

current value assumed by the counter j. This is for example the case in which several ellipses intersect each other in the 

same point (see, for instance, Fig. 6.13 for the Non-Linear case). In that case, the same value might be stored twice, 

creating problems in the next steps of the algorithm since there could be an odd number of integration extremities. On 

the contrary, the algorithm has to select couples of abscissa values. This selection could also be done in the final step of 

this Block in which the final matrix lin
kX  of the effective integration points is determined but maybe it is preferable to 

carry out it now (while analyzing the values 1/ 2
,

p
ij kX  on the i-th row from left to right). 

Conditions (6.82) yield the following analytical expressions: 
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 (6.83)

as usual, if the auxiliary abscissa value 1/ 2
,

p
ij kX  does not fulfil all conditions (6.83), the corresponding cell 1/ 2

,
lin
ij kX  has to 

be filled with a “non-value”. For further details on the origin of the above formulae, see Appendices A and D. 

For the example of Fig. 6.4, they will be as follows, see Fig. 6.19: 
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 (6.84)

 

 
Fig. 6.19 – Intersection points between the semi-ellipses, useful for the Linear integration, whose abscissa is stored in 

matrices 1linX  and 2linX  

 

Step 2: Determination of the effective intersection points of each ellipse 3lin
kX  with the straight line 2wY b=  

It is necessary to determine, among the previously determined auxiliary points of intersection of each ellipse with the 

straight line, whose abscissa is stored in q
kX , those satisfying the following conditions: 

1. They have to be placed inside the range of interest for the Linear integration; 

2. They have to lie upon the upper contour line; 

3. They have to constitute effective linear integration extremities. 
3linX  is a 2fN ×  matrix containing, in the first and second columns of the i-th row, 3

1
lin
iX  and 3

2
lin
iX , respectively, the 

abscissa values of the left and right intersection points of the relevant semi-ellipse with the straight line 2wY b=  that 

result effective for the integration of the corresponding equation 2wY b= . For the k-th configuration, the first column 

term of the i-th row, 3
1,
lin
i kX , of the 3lin

kX  matrix is set equal to the corresponding term 1,
q
i kX of the auxiliary matrix q

kX , 

i.e.: 

3
1, 1,

qlin
i k i kX X=  (6.85)

if 1,
q
i kX  satisfies the following conditions: 
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( ) ( )
( )
( )
( ) ( )

1,

, , ,1, 1,

1,

, 1,

, , ,1, 1,

1) 0

2)     for   1, ,

0 and

3) and
2

1,.,

q
di k

q q
i k j k f ki k i k

q
di k

q w
i k i k

q q
i k j k f ki k i k

X L

Y X Y X j . N

X X L

b
Y X X

Y X X Y X X j N j i

⎧
⎪

≤ ≤⎪
⎪

≥ =⎪
⎪⎪ ⎧⎨ < + ∆ <

⎪⎪
⎪⎪ ⎪ + ∆ >⎨⎪
⎪⎪
⎪⎪ + ∆ > + ∆ ∀ = ≠
⎪⎪ ⎩⎩

 (6.86)

where the first condition simply defines the range of interest that comprehends the eventuality that the semi-ellipse 

intersects the straight line 2wY b=  in correspondence of the two vertices of the rectangle of interest 0;
2
wb⎛ ⎞

⎜ ⎟
⎝ ⎠

 and 

;
2
w

d
b

L⎛ ⎞
⎜ ⎟
⎝ ⎠

. The equality signs are in that respect, required, even because this possibility is contemplated in none of the 

other matrices of the effective integration points in the Linear Range analysed in the other steps of the present Block 6. 

The second condition checks if the point lies on the upper border line. 

The third condition checks if, on the right side of the abscissa 1,
q
i kX , at an infinitesimal distance X∆  from it, the i-th 

semi-ellipse results to constitute the border. This latter condition is verified if ,i kY  results higher than any other 

semi-ellipse and above 2wY b= . Note that the second inequality of the third condition is necessary because otherwise 

the algorithm would also select points of tangency of the ellipse with the straight line 2wY b=  (see cases 4-5 of 

Appendix E) . The conditions above yield the following analytical expressions: 

( ) ( )
( )
( )

( ) ( )

1,

2
, , , ,1, 1,

1,

, 1,

2
, , , ,1, 1,

0

. . 0       1

0

2

. . 0 1..

q
di k

q q
ij k ij k ij k f ki k i k

q
di k

q w
i k i k

q q
ij k ij k ij k f ki k i k

X L

M X N X Q j ....N

X X L

b
Y X X

M X X N X X Q j N j i

⎧
⎪ ≤ ≤
⎪
⎪ + + ≤ ∀ =⎪
⎪

< + ∆ <⎨
⎪
⎪ + ∆ >⎪
⎪
⎪ + ∆ + + ∆ + < ∀ = ≠
⎩

 (6.87)

Thus, if those conditions are not fulfilled, the cell 3
1,
lin
i kX  has to be filled with a “non-value”. 

Likewise, the second column term of the i-th row 3
2,
lin
i kX  is set equal to the corresponding auxiliary term 2,

q
i kX , i.e.: 

3
2, 2,

qlin
i k i kX X=

 (6.88)

if 2,
q
i kX  meets the following acceptance condition: 
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( ) ( )
( )
( )
( ) ( )

2,

, , ,2, 2,

2,

, 2,

, , ,2, 2,

1) 0

2)     for   1, ,

0 and

3) and
2

1,.,

q
di k

q q
i k j k f ki k i k

q
di k

q w
i k i k

q q
i k j k f ki k i k

X L

Y X Y X j . N

X X L

b
Y X X

Y X X Y X X j N j i

⎧
⎪

≤ ≤⎪
⎪

≥ ∀ =⎪
⎪⎪ ⎧⎨ < − ∆ <

⎪⎪
⎪⎪ ⎪ − ∆ >⎨⎪
⎪⎪
⎪⎪ − ∆ > − ∆ ∀ = ≠
⎪⎪ ⎩⎩

 (6.89)

The conditions above yield the following analytical expressions: 

( ) ( )
( )
( )

( ) ( )

2,

2
, , , ,2, 2,

2,

, 2,

2
, , , ,2, 2,

0

. . 0      1

0

2

. . 0 1..

q
di k

q q
ij k ij k ij k f ki k i k

q
di k

q w
i k i k

q q
ij k ij k ij k f ki k i k

X L

M X N X Q j ....N

X X L

b
Y X X

M X X N X X Q j N j i

⎧
⎪ ≤ ≤
⎪
⎪ + + ≤ ∀ =⎪
⎪

< − ∆ <⎨
⎪
⎪ − ∆ >⎪
⎪
⎪ − ∆ + − ∆ + < ∀ = ≠
⎩

 (6.90)

Thus, if those conditions are not fulfilled, the cell 3
2,
lin
i kX  has to be filled with a “non-value”. 

For the Example of Fig. 6.4, the matrix 3linX  will be as follows, see Fig. 6.20: 

12

3

61

72

*
* *
* *
* *
* *

*

*

q

nlin

q

q

X

X

X

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.91)

 

 
Fig. 6.20 – Intersection points of the semi-ellipses with line 2wY b=  useful for the Non Linear integration, whose 

abscissa is contained in 3nlinX  
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Step 3: Determination of the effective intersection points 4lin
kX  of each ellipse with the boundary lines 0Χ =  and 

dΧ L=  

The horizontal extremities of the crack plane, 0=X  and = dX L  in correspondence of which, according to the above 

Block 4, the ordinates assumed by the i-th semi-ellipse have been calculated and stored in the corresponding i-th row of 

the matrix e
kY , will constitute extremities of the linear integration intervals if the relevant points ( )1,0; e

i kY  and 

( )2,; e
d i kL Y  are such as to satisfy the usual general conditions, repeated hereafter for the sake of clarity: 

1. They have to be placed inside the range of interest for the Linear integration; 

2. They have to lie upon the upper contour line; 

3. They have to constitute effective integration extremities. 
4linX  is a 2fN ×  dimensions matrix containing, in the first cell of the i-th row, the null abscissa value, 4

1 0lin
iX = , and 

the dL  value in the second cell, 4
2
lin
i dX L= , if those values result to be effective integration limits for the linear range 

ascribed to the relevant i-th semi-ellipse. For the generic k-th configuration, the first cell of the i-th row, 4
1,
lin
i kX , of the 

4lin
kX  matrix has to be set equal to zero, i.e.: 

4
1, 0lin
i kX =  (6.92)

if 1,
e

i kY  satisfies the above conditions, that, when re-written in mathematical terms, are like follows: 

( )

( ) ( )

1,

1, 1, ,

,

, , ,

1)
2

2)   for   1

0 and
23)

0 0 1

e w
i k

e e
i k j k f k

w
i k

i k j k f k

b
Y

Y Y j ....N

b
Y X

Y X Y X j ....N j i

⎧
⎪
⎪ >
⎪
⎪⎪ ≥ ∀ =⎨
⎪ ⎧⎪ + ∆ >⎪⎪ ⎨
⎪ ⎪ + ∆ > + ∆ ∀ = ≠⎪ ⎩⎩

 (6.93)

That yield the following analytical expressions: 

( )

( ) ( )

1,

, ,

,

2
, , , ,

2
0      1....

2
. . 0 1

e w
i k

ij k f k

w
i k

ij k ij k ij k f k

b
Y

Q j N

b
Y X

M X N X Q j ....N j i

⎧ >⎪
⎪

≤ ∀ =⎪⎪
⎨
⎪ ∆ >
⎪
⎪

∆ + ∆ + < ∀ = ≠⎪⎩

 (6.94)

otherwise the value 0=X  has not to be taken into consideration for the respective i-th ellipse’s linear range. 

Likewise, the second column term of the i-th row, 4
2,
lin
i kX , of the 4lin

kX  matrix has to be set equal to dL , i.e.: 

4
2,
lin
i k dX L=  (6.95)

if the ordinate value, 2,
e

i kY , contained in the corresponding cell of the matrix e
kY  satisfies the following conditions: 
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( )

( ) ( )

2,

2, 2, ,

,

, , ,

1)
2

2)   for   1

and
23)

1

e w
i k

e e
i k j k f k

w
i k d

i k d j k d f k

b
Y

Y Y j ....N

b
Y L X

Y L X Y L X j ....N j i

⎧
⎪
⎪ >
⎪
⎪⎪ ≥ ∀ =⎨
⎪ ⎧⎪ − ∆ >⎪⎪ ⎨
⎪ ⎪ − ∆ > − ∆ ∀ = ≠⎪ ⎩⎩

 (6.96)

That yield the following analytical expressions: 

( )

( ) ( )

2,

2
, , , ,

,

2
, , , ,

2
. . 0     1,....,

2
. . 0 1, ,

e w
i k

ij k d ij k d ij k f k

w
i k d

ij k d ij k d ij k f k

b
Y

M L N L Q j N

b
Y L X

M L X N L X Q j .... N j i

⎧ >⎪
⎪
⎪ + + ≤ ∀ =⎪
⎨
⎪ − ∆ >
⎪
⎪

− ∆ + − ∆ + < ∀ = ≠⎪⎩

 (6.97)

otherwise the value dX L=  has not to be taken into consideration for the respective i-th ellipse’s linear range. 

The final result of this step is a matrix 4lin
kX , with 1,2,3k = , in which, in general, there will be rows whose first value 

can be zero or “non-value” and whose second term can be dL  or “non-value”. 

For the Example of Fig. 6.4, the matrix 4linX  will be as follows, see Fig. 6.21: 

4

0 *
* *
* *
* *
* *
* *
* *

linX

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6.98)

 

 
Fig. 6.21 – Intersection points of the semi-ellipses with boundary lines 0Χ =  and dLΧ =  useful for the Non Linear 

integration, whose abscissa is contained in 4nlinX  

 

Step 4: Determination of the intervals of integration for the ellipses in the Linear range lin
kX  
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Once all the auxiliary matrices for the integration points in the Linear range, 1lin
kX , 2lin

kX , 3lin
kX , 4lin

kX , are 

determined as above specified, they are ready to be joined in the matrix lin
kX  containing, in each i-th row, the couples 

of abscissa that define the integration intervals of the equation 
2
wb

Y =  for the relevant i-th ellipse. 

linn  is a 1fN ×  vector containing, in the i-th row, the maximum number of real abscissa values constituting effective 

integration limits for the corresponding i-th semi-ellipse in the linear range (the integrand function is independent of the 

X  variable). For the k-th configuration, the general i-th term, ,
lin
i kn , of the lin

kn  vector is equal to the number of real 

values present amongst all the terms stored in the corresponding i-th row of all the auxiliary matrices, i.e.: 

{ }1 2 3 4
, , , , 1,realnumbers ; ; ;lin lin lin lin lin

i k i k i k i k i kn X X X X=  (6.99) 

The number of columns of the lin
kX  matrix, lin

kn , is equal to the maximum number of effective values among all the 

semi-ellipses for the k-th configuration, i.e.: 

{ }, ,max  with  1;...;lin lin
k i k f kn n i N= =  (6.100) 

The lin
kX  matrix  is then built by joining, for each i-th row corresponding to the i-th semi-ellipse, the effective terms, 

discarding the “non-values” present in the corresponding i-th row of the auxiliary matrices 1lin
kX , 2lin

kX , 3lin
kX , 4lin

kX , 

and sorting them in increasing order. For instance, the final matrix linX  for the example of Fig. 6.4 is as follows, see 

Fig. 6.22: 

12

1
61 67

1
76 72

02
* *0
* *0
* *; 2;0
* *0

2
2

q

lin linlin

q p

p q

X

n n X

X X

X X

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (6.101) 

 

 

Fig. 6.22 – Determination of the effective matrix of the integration points in the linear range linX   
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Block 7: Determination of the Areas  

Α  is a 1fN ×  dimension vector containing, in the i-th cell, the area ascribed to the i-th semi-ellipse. For the k-th 

configuration, the term ,i kΑ  of the kΑ matrix is equal to: 

, , ,
nlin lin

i k i k i kΑ = Α + Α  (6.102) 

where ,
nlin
i kΑ  is determined by the following equation: 

( ) ( ) ( )
( )

( ),2, 4,

1, 3, 1 ,

, , , ,. . ..... .

nlin
nlinnlin nlin i n kki k i k

nlin nlin nlin
i k i k nlini n kk

X
X X

nlin
i k i k i k i k

X X X

Y X dX Y X dX Y X dX

⎛ ⎞−⎜ ⎟
⎝ ⎠

Α = + +∫ ∫ ∫  (6.103) 

The term ,
lin
i kΑ  can be obtained from: 

( )

( ),2, 4,

1, 3, 1 ,

, . . ..... .
2 2 2

lin
linlin lin i n kki k i k

lin lin lin
i k i k lini n kk

X
X X

lin w w w
i k

X X X

b b b
dX dX dX

⎛ ⎞−⎜ ⎟
⎝ ⎠

Α = + +∫ ∫ ∫  (6.104) 

Note that in the above Eqs. (6.103) and (6.104) the abscissa values, already stored in the corresponding i-th row of 
nlin
kX  and lin

kX , respectively, have to be considered integration limits by pairs in sequence. 

The equation of the semi-ellipse is like follows: 

( )
2

1, 3, 4,
,

2,

i k i k i k
i k

i k

E X E X E
Y X

E
+ +

= −  (6.105) 

 

The integration of the ellipse equation can be carried out in exact form, in fact Eq. (6.105) can be transformed into: 

( )
2

1, 3, 4,2 2
, , , ,

2, 2, 2,

i k i k i k
i k i k i k i k

i k i k i k

E E E
Y X X X d X e X f

E E E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − ⋅ + − ⋅ + − = ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (6.106) 

and solved: 

( )
( ) ( ) ( ) ( )

2
, , ,

2
, , , , ,2

, , ,
, ,

2 4

4 8

i k i k i k

i k i k i k i k i k
i k i k i k

i k i k

d X e X f dX

d X e d f e
d X e X f f X

d d

⋅ + ⋅ + ⋅ =

⎡ ⎤⋅ ⋅ + ⋅ ⋅ −⎢ ⎥⋅ + ⋅ + + ×⎢ ⎥⋅ ⋅
⎢ ⎥⎣ ⎦

∫
 (6.107) 

with ( )f X : 

( ) ( )2
, , , , , ,

,

,

1 ln 2 2

if  0

i k i k i k i k i k i k
i k

i k

f X d d X e X f d X e
d

d

⎡ ⎤= ⋅ ⋅ ⋅ ⋅ + ⋅ + + ⋅ ⋅ +⎢ ⎥⎣ ⎦

≥

 (6.108) 

or: 
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( ) , ,1
2

, , , ,

2
, , , ,

21 sin  
4

if  0  and  4 0

i k i k

i k i k i k i k

i k i k i k i k

d X e
f X

d e d f

d e d f

−
⎡ ⎤⋅ ⋅ +⎢ ⎥= − ⋅
⎢ ⎥− − ⋅ ⋅⎢ ⎥⎣ ⎦

< − ⋅ ⋅ ≥

 (6.109) 

or: 

( ) , ,1
2

, , , ,

2
, , ,

21 sinh
4

if  4 0

i k i k

i k i k i k i k

i k i k i k

d X e
f X

d d f e

e d f

−
⎡ ⎤⋅ ⋅ +⎢ ⎥= ⋅
⎢ ⎥⋅ ⋅ −⎢ ⎥⎣ ⎦

− ⋅ ⋅ <

 (6.110) 

 

Block 8: Determination of the NSM shear strength contributions p
kV  and V   

pV  is a 1fN ×  dimension vector containing, in the i-th cell, the shear strength contribution ascribed to the i-th laminate 

and parallel to its orientation. For the k-th configuration, the general i-th term, ,
p
fi kV , of the p

kV  vector is calculated by 

the following equation: 

( ) ( ) ( ){ },, min 2 . . . ; . . ; . . sinp
f f fi b fi f f fu i k ctmfi kV a b L L a b f fτ θ β= + Α +  (6.111) 

V  is a 1k ×  dimension vector containing, in the k-th cell, the NSM shear strength contribution ,f kV  corresponding to 

the k-th configuration. The k-th term is equal to: 

,

, ,
1

2 . sin .
f kN

p
f k fi k

i

V Vβ
=

= ∑  (6.112) 
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6.2 Accounting for the interaction with stirrups 
By simply introducing some modifications in the above simpler formulation of the proposed modelling approach, the 

interaction between stirrups and laminates can be, in a simplified way, taken into account. It is sufficient to modify the 

calculations preceding the determination of the angle between axis and generatrices of the semi-conical surface 

associated to each i-th laminate. 

 
The idea is to model the interaction with stirrups by varying the projecting angle ,fi kα  of the i-th semi-conical surface 

with the distance, along the crack development (i.e. along the OX  axis), of the laminate ,fi kX  from the closest stirrup 

( ,min
sf
iX∆ ). For this purpose, it is necessary to introduce other input parameters. 

 
The parameters that need to be added to input parameters list are the following: 

• ss  the spacing of the stirrups measured along the longitudinal axis of the beam; 

• ( ),min
sf

fi iXα ∆  the relation of the variation of the semi-conical surfaces’ projecting angle fiα  with respect to 

the distance of the laminate from the closest stirrup, measured along the OX  axis of the crack plane 

reference system. 

 
The position of each i-th laminate, ,fi kX , along the OX  axis and in correspondence of each k-th geometrical 

configuration can be calculate as shown in Block 2 of the previous Chapter 6.1. 

 
Based on the parameters ss , wh  and θ , the three possible configurations assumed by stirrups with respect to the crack 

are defined so as it was already done for the laminates (see Chapter 4 and Block 1 of Chapter 6.1) with the difference 

that, since the stirrups are orthogonal with respect to the beam axis, Eq. 4.2 modifies like follows: 

,
cotw

s real
s

h
N

s
θ⋅

=  (6.113) 

where ,s realN  is the real number of stirrups that can intersect the crack. 

After that, the integer number of stirrups that can cross the crack will be determined as exposed in Chapter 4 for the 

case of laminates: ,int
l
sN  the lower integer of stirrups, ,int

h
sN  the higher integer number of stirrups that can cross the 

crack, and ,s oddN  and ,s evN  that are, respectively, the odd and even integer number of stirrups that can cross the crack. 

At this point, a matrix sx ,  of dimension 3 2× , can  be built containing, in each row, the position of the first stirrup with 

respect to the crack origin and the corresponding number of stirrups, as given by Eq. 6.114: 

,int

,
1 ,

,
,

;

( 1)sin ( 90)
( ; ) ;

2 sin 2

( 1)
cot ;

2 2

l
s s

s evw
s s s s ev

s oddw
s s odd

s N

Nh
x N s N

Nh
s N

θ
θ

θ

−+
= −

−
−

⎧
⎪⎡ ⎤⎣ ⎦⎪
⎪⎡ ⎤⎪ ⋅ ⋅⎨⎢ ⎥

⎣ ⎦⎪
⎪⎡ ⎤⎪ ⋅ ⋅⎢ ⎥⎪⎣ ⎦⎩

 (6.114) 

in which wh  is the the height of the web. 
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Since the possible geometrical configurations of the stirrups with respect to the crack are three and the ones of the 

laminates are also three, there will be a total number of nine gometrical configurations. In the following, we will 

generically refer to one of those combinations of geometrical configurations. 

 

Once the matrix sx  has been determined, for a generic geometric combination of disposition of stirrups and laminates 

with respect to the assumed crack, i.e. for a generic combination of the pairs ( )1;s sx N  and ( )1;f fx N , the position of 

each stirrup siX  along the OX  axis can be calculated as follows: 

( ) ( )1
1 1

sin 90si s sX x i s
θ

⎡ ⎤= ⋅ + − ⋅⎣ ⎦+
 (6.115) 

and stored in a vector whose dimensions are 1sN × . 

At this point, a matrix sfX∆  of dimensions f sN N×  can be built containing, in each i-th row, referring to the i-th 

laminate, the distance sf
ijX∆ , from the j-th stirrup for 1,..., sj N= , i.e.: 

sf
ij fi sjX X X∆ = −  (6.116) 

After that, for each laminate, the minimum value of sf
ijX∆  should be determined as follows: 

,,min minsf sf
i jiX X∆ = ∆  (6.116) 

and stored in the corresponding i-th row of another vector min
sfX∆ .  

Only at that point, the angle between axis and generatrices of the semi-conical surface associated to the i-th laminate 

can be computed, based on the input relationship ( ),min
sf

fi iXα ∆ . 

These calculations could be easily implemented in the algorithm already developed in Chapter 6.1. 
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7 Performance of the proposed Predictive Model  

 
The Proposed Model (PM), as described in Chapter 6.1, i.e. neglecting the interaction between existing stirrups and 

laminates, was used to predict the NSM contribution for the shear resistance of the beams of the experimental program 

by Dias and Barros (2006). The average tensile strength of the concrete of the tested beams was estimated from the 

concrete average compressive strength at the age of the beam tests, and using the expressions proposed by the CEB-FIP 

model code 90 (1993), resulting ctmf  = 2.45 MPa. The results are listed in Table 7.1 and plotted in Figs. 7.1 to 7.3. For 

each beam of that experimental program, both the DM and the PM were applied to compare the experimentally 

recorded shear strengthening contribution of the distinct laminates’ arrangements, exp
fV , with the corresponding ranges 

of possible analytical values. For the analysis of Table 7.1, the analytical values were obtained assuming for the shear 

crack angle, θ , the values measured in the tested beams, expθ , and listed in Table 7.1. 

The model performance was also assessed by means of the ratios (in the following they are referred to as “assessment 

ratios”): 

• exp
,min

PM
ffV V  of the experimental recording to the minimum value obtained by means of the PM; 

• exp
,max

PM
ffV V b  of the experimental recording to the maximum value obtained by means of the PM; 

• exp
,min

DM
ffV V  of the experimental recording to the minimum value obtained by means of the DM; 

• exp
,max

PM
ffV V  of the experimental recording to the maximum value obtained by means of the DM. 

The performance of the PM is absolutely satisfactory. In fact, for the series of beams with vertical laminates the average 

of the ratios exp
,min

PM
ffV V  and exp

,max
PM
ffV V  are respectively 0.99 and 0.56 meaning that, on average, the recorded 

values fall just on the lower bound of the analytical range ,min ,max;PM PM
f fV V⎡ ⎤

⎣ ⎦ . For the series of beams with laminates at 

60° the average value of the above two ratios are respectively 1.01 and 0.77 meaning that, as can be also gathered from 

Fig. 7.1, on average, the experimental recordings fall in between the lower and upper bound of the analytical values. For 

the series of beams with laminates disposed at 45° the average value of the ratio exp
,min

PM
ffV V  results to be less than 

unity because, the experimental value obtained in 2S_8LI45 beam was probably affected by some disturbance that did 

not allow the shear strengthening contribution of this NSM configuration to be fully mobilized. In fact, provided that, 

due to the interaction between subsequent laminates the rate exp
ffV s∆ ∆  decreases by diminishing fs , it is unrealistic 

that passing from fs  of 220 mm (2S_5LI45 beam) to 138 mm (2S_8LI45 beam) the shear strength contribution 

decreases from 41.40 to 40.20 kN. At most, it should assume the same value of 41.40 kN. 

On the contrary, the analytical range of values ,min ,max;DM DM
f fV V⎡ ⎤

⎣ ⎦  provided by the DM lies above the experimental 

recordings (see Figs. 7.1 to 7.3). This can be also gathered from the average values of the exp
,min

DM
ffV V  and 

exp
,max

PM
ffV V  ratios that are always less than unit (see Table 7.2). 

 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 
 

 
 
122                                         Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

Table 7.1 Values of fV  obtained from PM ( ,
PM
f kV ) and DM ( ,

DM
f kV ), and experimental recordings ( exp

fV ) for the 

experimental program by Dias & Barros 2006. 

Beam label fs  β  expθ  ,1
PM
fV  ,2

PM
fV  ,3

PM
fV  ,min

PM
fV  ,max

PM
fV  ,min

DM
fV  ,max

DM
fV  exp

fV  

 [mm] [°] [°] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 
2S_3LV 267 90 40 20.88 13.61 49.28 13.61 49.28 45.78 66.79 22.20 
2S_5LV 160 90 40 48.80 46.38 51.78 46.38 51.78 85.74 94.93 25.20 
2S_7LV 100 90 36 65.41 61.71 66.76 61.71 66.76 160.49 179.36 48.60 

2S_3LI45 367 45 45 32.62 22.96 49.83 22.96 49.83 44.75 66.96 29.40 
2S_5LI45 220 45 45 47.69 47.11 62.06 47.11 62.06 81.89 107.16 41.40 
2S_8LI45 138 45 36 83.41 83.16 88.63 83.16 88.63 168.48 184.37 40.20 
2S_3LI60 325 60 33 42.16 29.36 44.20 29.36 44.20 55.42 82.91 35.40 
2S_5LI60 195 60 36 47.21 47.20 60.04 47.20 60.04 94.94 126.91 46.20 
2S_7LI60 139 60 37 72.36 65.35 74.18 65.35 74.18 147.04 164.50 54.60 

 

Table 7.2 Appraisal of the PM by comparison with the DM and the experimental recordings for the experimental 

program by Dias & Barros (2006). 

Beam label exp
,min

PM
ffV V exp

,max
PM
ffV V exp

,min
DM
ffV V exp

,max
DM
ffV V  

 [ ] [ ] [ ] [ ] 
2S_3LV 1.63 0.45 0.48 0.33 
2S_5LV 0.54 0.49 0.29 0.27 
2S_7LV 0.79 0.73 0.30 0.27 
average 0.99 0.56 0.36 0.29 

2S_3LI45 1.28 0.59 0.66 0.44 
2S_5LI45 0.88 0.67 0.51 0.39 
2S_8LI45 0.48 0.45 0.24 0.22 
average 0.88 0.57 0.47 0.35 

2S_3LI60 1.21 0.80 0.64 0.43 
2S_5LI60 0.98 0.77 0.49 0.36 
2S_7LI60 0.84 0.74 0.37 0.33 
average 1.01 0.77 0.50 0.37 
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Fig. 7.1 – Experimental/analytical comparison of fV  for the beams with laminates at 60°. 
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Fig. 7.2 – Experimental/analytical comparison of fV  for the beams with laminates at 45°. 
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Fig. 7.3 – Experimental/analytical comparison of fV  for the beams with laminates at 45°. 
 

 
To exclude the possibility of an erroneous experimental measurement of the critical shear crack inclination, expθ , the 

analytical values were also obtained assuming the constant value of θ  = 45°. The resulting analytical values of the 

shear strength contribution fV  and the corresponding performance ratios are listed in Tables 7.3 and 7.4, respectively. 
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Since in some cases the experimentally-observed value of the shear crack angle was lower than 45°, when this latter 

value is assumed, the values of the available bond lengths fiL  and consequently the corresponding terms ,p cf
fiV  slightly 

decrease so as to justify the increment of the ratio exp
,min

PM
ffV V . Nonetheless, as can be gathered from the values listed 

in Table 7.4, the experimental values are located, on average, in between the analytical range provided by the PM i.e. 

,min ,max;PM PM
f fV V⎡ ⎤

⎣ ⎦ . 

 

Table 7.3 Values of fV  obtained from PM ( ,
PM
f kV ) and DM ( ,

DM
f kV ), and experimental recordings ( exp

fV ) for the 

experimental program by Dias and Barros (2006) assuming 45θ = ° . 

Beam label fs  β  ,1
PM
fV  ,2

PM
fV  ,3

PM
fV  ,min

PM
fV  ,max

PM
fV  ,min

DM
fV  ,max

DM
fV  exp

fV  

 [mm] [°] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 
2S_3LV 267 90 7.49 4.36 60.24 4.36 60.24 29.02 60.83 22.20 
2S_5LV 160 90 56.60 45.75 60.24 45.75 60.24 59.09 88.53 25.20 
2S_7LV 100 90 48.69 48.69 74.51 48.69 74.51 102.64 174.97 48.60 

2S_3LI45 367 45 32.62 22.96 49.83 22.96 49.83 44.75 66.96 29.40 
2S_5LI45 220 45 47.69 47.11 62.06 47.11 62.06 81.89 107.16 41.40 
2S_8LI45 138 45 71.00 68.83 73.07 68.83 73.07 145.81 150.18 40.20 
2S_3LI60 325 60 22.85 14.97 46.76 14.97 46.76 45.98 69.02 35.40 
2S_5LI60 195 60 41.99 41.48 51.83 41.48 51.83 87.79 102.36 46.20 
2S_7LI60 139 60 55.95 53.88 68.22 53.88 68.22 127.20 133.30 54.60 

 

Table 7.4 Appraisal of the PM by comparison with the DM and the experimental recordings for the experimental 

program by Dias and Barros (2006) assuming 45θ = ° . 

Beam label exp
,min

PM
ffV V exp

,max
PM
ffV V exp

,min
DM
ffV V exp

,max
DM
ffV V  

 [ ] [ ] [ ] [ ] 
2S_3LV 5.09 0.37 0.76 0.36 
2S_5LV 0.55 0.42 0.43 0.28 
2S_7LV 1.00 0.65 0.47 0.28 
average 2.21 0.48 0.55 0.31 

2S_3LI45 1.28 0.59 0.66 0.44 
2S_5LI45 0.88 0.67 0.51 0.39 
2S_8LI45 0.58 0.55 0.28 0.27 
average 0.91 0.60 0.48 0.36 

2S_3LI60 2.36 0.76 0.77 0.51 
2S_5LI60 1.11 0.89 0.53 0.45 
2S_7LI60 1.01 0.80 0.43 0.41 
average 1.50 0.82 0.58 0.46 

 

The PM was also applied to estimate the experimental recordings regarding the program by De Lorenzis and Rizzo 

(2006). Those authors carried out an experimental program composed of RC beams shear-strengthened by both NSM 

CFRP laminates and rods. In fact, the technique of the structural strengthening by NSM CFRP elements was originally 

conceived contemplating the employment of rods (De Lorenzis and Nanni, 2001). In both cases, the failure mode 

reported by De Lorenzis & Rizzo is exactly the same observed by Dias & Barros i.e. the progressive detachment of the 
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concrete cover containing the glued CFRP elements. The concrete average tensile strength of the tested beams derived, 

according to the CEB-FIP model code 90 (1993), from the average splitting tensile strength, results to be ctmf  = 1.80 

MPa, while the tensile strength of the CFRP elements, fuf , is equal to 2068 MPa and 2214 MPa for the strips and rods, 

respectively. 

The PM was applied faithfully to its original development, as delineated in Chapter 6.1, to the RC beams shear 

strengthened by NSM laminates. For the case of the RC beams strengthened by NSM rods, besides debonding, tensile 

rupture and concrete tensile fracture, the possibility of another failure mode affecting the NSM rods at ultimate, was 

contemplated, i.e. the splitting of the adhesive, whose occurrence was reported by De Lorenzis & Nanni (2002). Thus, 

for those cases, the Eq. 6.2 was modified as follows: 

{ }
( ) ( ) ( ) ( )

, , , ,

2

, ,

min ; ; ;

min . . . ; . . ; . sin . ; . . .
4

p p db p tr p cf p spl
fi fi fi fi fi

nlin linb
b fi b rod fi fu i i ctm b fi spl rod fi

V V V V V

d
d L L f f d L Lπ τ π θ β π τ

= =

⎧ ⎫⎪ ⎪Α + Α +⎨ ⎬
⎪ ⎪⎩ ⎭

 (7.1) 

in which ,p spl
fiV  is the splitting-based contribution ascribed to the i-th rod parallely to its orientation, bd  is the nominal 

diameter of the adopted rod, ( ),b rod fiLτ  is the length-dependent average bond strength for the case of rods and 

( ),spl rod fiLτ  is the length-dependent average bond strength contemplating the possibility for the rods to fail due to the 

adhesive splitting. The above relationships, ( ),b rod fiLτ  and ( ),spl rod fiLτ , calibrated on the basis of the test results 

reported by De Lorenzis & Nanni (2002), are as follows ( ,b rodτ  and ,spl rodτ  in MPa and fL  in mm):  

( ),

4.99                                          0 114

15.10 2.13 . ln                    114 312

2.84                                                312
f

f

b rod f f

f

L

L L L

L

τ

⎧ ≤ <
⎪⎪= − ≤ ≤⎨
⎪ >⎪⎩  

(7.2) 

and: 

( ),

8.73                                          0 57

16.72 1.98 . ln                    57 312

5.36                                               312
f

f

spl rod f f

f

L

L L L

L

τ

⎧ ≤ <
⎪⎪= − ≤ ≤⎨
⎪ >⎪⎩  

(7.3) 

 

Indeed, as outlined by De Lorenzis & Nanni (2002), the phenomenon of the splitting of the adhesive shows a 

dependence on both the groove dimensions and the relative mechanical properties of adhesive and concrete but, since 

the reported failure mode of the beams was concrete tensile fracture, that issue was not further addressed. 

The results, obtained by applying the PM ,min ,max;PM PM
f fV V⎡ ⎤

⎣ ⎦  with a value of 45° for the shear crack angle, are listed, along 

with the experimental values, in Table 7.5. Moreover, the analytical ranges ,min ,max;DM DM
f fV V⎡ ⎤

⎣ ⎦  and ,min ,max;SPL SPL
f fV V⎡ ⎤

⎣ ⎦ , 

obtained by applying the DM, respectively, with the debonding-based ( ),b rod fiLτ  and the splitting-based average bond 

strength ( ),spl rod fiLτ , are also reported. 

The assessment ratios, as defined above, are listed in Table 7.6. It emerges that, on average, the upper bound ,max
PM
fV  

provided by the PM underestimates the experimental recordings and such underestimation ranges between 22 and 45%. 
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The experimental recordings ascribed to the beams labeled NB90_73_a and NS90_73_a seem to be excessively high 

with respect to the others. In fact, for the beam NB90_73_a, the experimental value is almost twice as large as the one 

regarding the NB90_73_b beam that differs from the former only for the quality of the epoxy employed. If those two 

values are discarded, the above underestimation reduces to 6% for the beams shear strengthened by rods and 27% for 

those strengthened by laminates (see values in parentheses in Table 7.6). At the same time, the analytical ranges 

provided by the DM assuming both the debonding-based and splitting-based average bond strength, systematically 

overestimate the experimental recordings since the average values of the assessment ratios are both less than unit. 

 

Table 7.5 Values of fV  obtained from PM and DM (considering both debonding and splitting) and experimental 

recordings ( exp
fV ) for the experimental program by De Lorenzis & Rizzo 2006 assuming 45θ = ° . 

Beam label fs  β  ,min
PM
fV  ,max

PM
fV  ,min

DM
fV  ,max

DM
fV  ,min

SPL
fV  ,max

SPL
fV  exp

fV  

 [mm] [°] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

NB90_73_a 73 90 16.99 28.83 32.33 39.74 53.94 63.51 54.20 
NB90_73_b 73 90 16.99 28.83 32.33 39.74 53.94 63.51 26.40 
NB90_45_b 45 90 26.70 31.94 56.44 59.96 92.93 98.28 28.60 
NB45_146_a 146 45 21.72 25.69 32.22 36.97 49.52 60.12 39.10 
NB45_73_a 73 45 29.93 30.80 68.69 69.65 108.60 109.66 28.00 
NS90_73_a 73 90 16.99 31.18 138.46 171.56 - - 50.50 
NS45_146_a 146 45 21.72 25.69 113.04 150.23 - - 32.70 

 
Table 7.6 Appraisal of the PM by comparison with the DM (considering both debonding and splitting) and the 

experimental recordings for the experimental program by De Lorenzis & Rizzo 2006 assuming 45θ = ° . 

Beam lebel exp
,min

PM
ffV V  exp

,max
PM
ffV V exp

,min
DM
ffV V exp

,max
DM
ffV V exp

,min
SPL
ffV V  exp

,max
SPL
ffV V

 [ ] [ ] [ ] [ ] [ ] [ ] 

NB90_73_a* 3.19 1.88 1.68 1.36 1.00 0.85 
NB90_73_b 1.55 0.92 0.82 0.66 0.49 0.42 
NB90_45_b 1.07 0.90 0.51 0.48 0.31 0.29 
NB45_146_a 1.80 1.52 1.21 1.06 0.79 0.65 
NB45_73_a 0.94 0.91 0.41 0.40 0.26 0.26 

average 1.71 (1.34) 1.22 (1.06) 0.92 (0.74) 0.79 (0.65) 0.57 (0.46) 0.49 (0.40) 
NS90_73_a** 2.97 1.62 0.36 0.29 - - 
NS45_146_a 1.51 1.27 0.29 0.22 - - 

average 2.24 (1.51) 1.45 (1.27) 0.33 (0.29) 0.26 (0.22) - - 
* NB = rods; ** NS = laminates 
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7.1 Conclusions 
A new predictive model, originated from the need for a rational explanation to the features of the observed failure 

mechanisms affecting the behaviour at ultimate of RC beams shear strengthened by NSM CFRP laminates, was 

proposed. This model assumes as possible failure mechanisms debonding, tensile rupture of the laminates and concrete 

tensile fracture and allows the interaction between laminates to be accounted for. The comparisons with the debonding-

based model showed that the proposed model provides a better estimation of the experimentally recorded NSM shear 

strength contribution, not only in the case of employment of laminates but also in the case of rods. 

For the time being, the proposed model was appraised without taking into consideration the interaction between 

laminates and existing stirrups which also has a prominent influence on the failure of NSM shear strengthened RC 

beams. Further developments, in this respect, are desirable. 
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8 Appendices 

8.1 Appendix A 
Calculation of the force provided by one semi-conical surface 

Hereinafter, we want to demonstrate that the operation of spreading the concrete mean tensile strength ctmf
r

 throughout 

the semi-conical surface, integrating and then projecting in the direction of the axis of the semi-cone is equivalent to 

simply multiplying the area of the base of the semi-cone times the modulus of the tensile strength, see Fig. 9.1: 

2

2vertical base ctm ctm
RF A f fπ ⋅

= ⋅ = ⋅  (9.1) 

where R  is the radius of the basis of the semi-cone, and baseA  is the area. 

 
Fig. 9.1 – Force on the radial section of the semi-conical surface 

 

The force parallel to the axis of the semi-cone and contributed by an infinitesimal slice of the semi-conical surface, is 

equal to the area of the slice of surface multiplied by the vertical component of the tensile strength: 

sinvertical slice ctmdF A f α= ⋅ ⋅  (9.2) 

21 1sin tan
cos 2 2 2vertical ctm ctm ctm

L RdF R d f f L R d f dβ α α β β
α

⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅⎜ ⎟
⎝ ⎠

 (9.3) 

that, integrating in β , yields: 

2 2 2

,
0 0

2 2 2vertical total ctm ctm ctm
R R RF f d f d f

π π
πβ β ⋅

= ⋅ ⋅ = ⋅ ⋅ = ⋅∫ ∫  (9.4) 

That is exactly what we wanted to demonstrate. 

Independency of the hypothesized shape of the surface 

The independency of the shape of the surface, envelope of the traction isostatics, that from a pure analytical point of 

view constitutes the strength of the calculation method proposed, can be deduced as follows. 

In the above Eq. 9.3, what happens in the plane π  can be conveniently isolated, i.e.: 
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1 1sin
2 cos 2vertical ctm vertical

LdF R d f R d dFπβ α β
α

⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (9.5) 

And the component provided by the section of the semi-cone contained in π , see Fig. 9.2: 

( )
0

sin
s

vertical ctmdF dl f lπ α= ⋅ ⋅∫  (9.6) 

where l  is a curvilinear one-dimensional reference system established along the generatrix of the semi-conical surface 

contained in the plane π  and s  is the total length of that generatrix. 

 
Fig. 9.2 – Independency of the shape of the surface 

 

The above Eq. 9.6 can be re-written as follows: 

( )
0 0

sin tan
s s

vertical ctm ctm orizz ctmdF f dl l f dl f Lπ α α= ⋅ ⋅ = ⋅ = ⋅ ⋅∫ ∫  (9.7) 

thus, the final expression of the infinitesimal vertical force is: 

1 tan
2vertical ctmdF R d f Lβ α⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
 (9.8) 

Since Eq. 9.8 is exactly equal to Eq. 9.5, it is demonstrated that, even if the actual semi-conical surface is concave or 

convex, its linearization and the assumption of a unique value of the angle α  does not modify the value of the vertical 

force. 

 

Calculation of the length of the i-th Laminate  

The formulae used to calculate the length of the i-th Laminate are derived by applying the Theorem of the Chord. That 

is valid for both the case in which the first laminate is positioned at fs  from the origin of the crack as in order to 

calculate min,totL  (chapter 4) and in the more general case in which the first laminate is positioned at 1fx  (paragraph 

5.2). 
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Fig. 9.3 – Application of the Chord Theorem to triangles 

For a position fix  of the laminate i-th laminate that is:  

(cot cot )
2
w

fi
h

x  θ β< ⋅ +  (9.9) 

It results, by applying the Theorem of the Chord: 

( )
( ) ( ) ( )1

1
1 sin         1

sin sin sin
f f fi

fi f f
x i s L

L x i sθ
θ β θ θ β

+ − ⋅
⎡ ⎤= → = ⋅ + − ⋅⎣ ⎦+ +

 (9.10) 

that yields: 

1
sin

[ ( 1) ]
sin( )

for      (cot cot )
2f f
w

fi fiL x i s
h

xθ
θ β

θ β+ − ⋅ ⋅
+

= < ⋅ +  (9.11) 

While for a position fix  of the laminate i-th laminate that is:  

(cot cot )
2
w

fi
h

x  θ β≥ ⋅ +  (9.12) 

it results: 

( ) ( )1
sin1          

sinfi f f fL L x i s θ
θ β

⎡ ⎤= − + − ⋅ ⋅⎣ ⎦ +
 (9.13) 

that yields: 

1
sin[ ( 1) ]     for      (cot cot )

sin( ) 2
w

fi f f f fi
h

L L x i s xθ θ β
θ β

= − + − ⋅ ⋅ ≥ ⋅ +
+

 (9.14) 

 

Position of the first laminate 1,f kx  

In the first configuration exhamined, the first laminate is positioned at a distance from the crack origin 1fx , equal to the 

spacing between laminates:  

1,f k fx s=  (9.15) 
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The second geometrical configuration contemplates the possibility that the even number of laminates crossing the crack, 

,f evN , be disposed symmetrically with respect to the mean axis of the crack i.e. if the following condition is satisfied, 

see Fig. 9.4: 

,1 f evf fNL L=  (9.16) 

. 

 
Fig. 9.4 – Symmetric disposition of an even number of laminates 

 
From the figure above, the following developments can be deduced: 

The effective length of the first laminate can be deduced as follows: 

( ) ( )
1 1

1 1
sin

sin sin sin
f f

f f
x L

L x θ
β θ θ θ β

= → = ⋅
+ +

 (9.17) 

Moreover, the effective length of the laminate disposed symmetrically with respect to the axis of the crack can be 

obtained as follows: 

,ev f evfN f fNL L L= − ∆  (9.18) 

( )
( ) ( ) ( ),

, ,

1 ,
1 ,

1 sin 1
sin sin sin

f ev

f ev f ev

fN f f ev f
fN fN f f ev f

L x N s
L L x N sθ

θ θ β θ β

∆ + −
⎡ ⎤∆ → = → ∆ = ⋅ + − ⋅⎣ ⎦+ +

 (9.19) 

 

By introducing Eqs. 9.17-19, calculated as above in the governing condition, Eq. 9.16: 

( ) ( ) ( ) fevfffNf sN
sen

senL
sen

senxLL
ev

12 11 −
+

−=
+

→=
βθ

θ
βθ

θ  (9.20) 

Ultimately, the following expression is obtained: 

( ) ( ),
1,2

1sin
2 sin 2

f evf
f f

NL
x s

β θ
θ

−+
= ⋅ − ⋅  (9.21) 
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The third configuration exhamined contemplates the possibility that the odd number of laminates, ,f oddN , be disposed 

in such a way that the middle laminate results of the maximum length possible. It has been deduced imposing that one 

of the laminates intersects the crack in correspondence of its mid point, i.e. according to Fig. 9.5 it is: 

( )
( ),

1

1
cot cot

2 2
f odd w

f f

N h
x s θ β

−
+ ⋅ = ⋅ +  (9.22) 

 

 
Fig. 9.5 – One of the odd number of laminates gets the highest length  

 

From Eq. 9.22, the final formula can be obtained: 

( )
( ),

1,3

1
cot cot

2 2
f oddw

f f

Nh
x sθ β

−
= ⋅ + − ⋅  (9.23) 
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8.2  Appendix B 
Hereafter the test specimen geometry and the details of the materials employed are reported from the work by 

Teng et al. 2006. 

 
Fig. 9.6 – Specimen tested by Teng et al. 2006 

 

The bonding test has been executed for different embedment lengths of the CFRP (lb = 30; 100; 150; 200; 250), and for 

the materials shown in the following. 

The concrete average cubic compressive strength ranged between 42 and 46 MPa, with an overall average of 44 MPa, 

and the average splitting tensile strength ranged between 3.1 and 3.7 MPa, with an overall average of 3.3 MPa.  

The yield and ultimate strengths of the 8-mm steel bars, used as both compression and shear reinforcement, were 375 

and 503 MPa, respectively, whereas the yield and ultimate strengths of the 12-mm steel bars used as tension 

reinforcement were 532 and 623 MPa, respectively. The corresponding yield strain of the tension reinforcement, 

computed with an assumed elastic modulus of 210 GPa, as strains were not measured in the tests, is equal to 2530. 

The CFRP strips had a thickness, tf , of 2 mm and a width, hf, of 16 mm. Their ultimate tensile strength, fu, and modulus 

of elasticity, Ef, as reported by the manufacturer, were equal, to 2068 MPa and 131 GPa, respectively. However, the 

value of Ef deduced from strain readings in the bond tests is 151 GPa. From the latter value of elastic modulus, the 

ultimate tensile strain of the CFRP strip can be computed as 1.37%. The strips had a surface texture obtained by peel-

ply treatment. 

The groove-filling material was a two-component epoxy adhesive with a mixing ratio of 2 resin: 1 hardener by weight. 

The elastic modulus and tensile strength averaged from five tensile tests conducted according to ASTM D638M-93 

1993 are 2.62 GPa and 42.6 MPa, respectively. 

Two CFRP strips were bonded together with the same adhesive used for groove filling, thus forming a double-strip bar 

whose total thickness was approximately equal to 5 mm i.e., 4 mm of CFRP plus about 1 mm of adhesive, whereas the 

width was still 16 mm. The use of such two-strip CFRP bars allowed strain gauges to be sandwiched between the two 

CFRP strips so that the strain gauges did not interfere with the interfacial behaviour of the NSM reinforcement and, in 

the meantime, were protected against mechanical damage due to interfacial movement. 

Since the width-to-thickness ratio of the double-strip bar is more than 3 (4 considering only the CFRP), these double-

strip bars may be considered as strips themselves. 
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8.3  Appendix C 
Hereafter the details of the data concerning the beams’ results used in chapter 5.4  are listed. 

 
s e rie s be a m t f w f E f ß s f h w V f f c t m

[m m ] [m m ] [G P a ] [ °] [ m m ] [m m ] [k N ] [M pa]

1st  Dias/B arro s A 10_VL 1,4 10 166,6 90 200 300 29,10 3,60

" A 10_IL 1,4 10 166,6 45 300 300 28,80 3,60

" A 12_VL 1,4 10 166,6 90 100 300 59,30 3,60

" A 12_IL 1,4 10 166,6 45 150 300 72,90 3,60

" B 10_VL 1,4 10 166,6 90 100 150 28,60 3,99

" B 10_IL 1,4 10 166,6 45 150 150 23,20 3,99

" B 12_VL 1,4 10 166,6 90 50 150 31,70 3,99

" B 12_IL 1,4 10 166,6 45 75 150 36,40 3,99

3r d Dias/B arro s 2S_3LV 1,4 10 166,6 90 267 300 35,00 2,45

" 2S_5LV 1,4 10 166,6 90 160 300 50,00 2,45

" 2S_7LV 1,4 10 166,6 90 100 300 75,00 2,45

" 2S_3LI45 1,4 10 166,6 45 367 300 23,00 2,45

" 2S_5LI45 1,4 10 166,6 45 220 300 70,00 2,45

" 2S_8LI45 1,4 10 166,6 45 138 300 85,00 2,45

" 2S_3LI60 1,4 10 166,6 60 325 300 62,00 2,45

" 2S_5LI60 1,4 10 166,6 60 195 300 75,00 2,45

" 2S_7LI60 1,4 10 166,6 60 139 300 98,00 2,45

2nd B arro s/Dias CRFLV1 1,4 10 166,6 90 50 300 96,4 3,52

" CRFLV2 1,4 10 166,6 90 50 300 100,9 3,52

" CRFLI1 1,4 10 166,6 45 70 300 147,3 3,52

" CFRLI2 1,4 10 166,6 45 70 300 143,2 3,52

" CFRLI3 1,4 10 166,6 45 70 300 155,4 3,52

" 7SRFLV 1,4 10 166,6 90 150 300 66,7 3,52

" 7SRFLI 1,4 10 166,6 45 210 300 49,8 3,52

" 5SRFLV 1,4 10 166,6 90 90 300 20,2 3,52

" 5SRFLI 1,4 10 166,6 45 125 300 60,2 3,52

Fig. 9.7 – General Informations about the beams by Dias and Barros 2006 
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beam Atot,min VCR,vert Vf
exp

DV

[mm2] [kN] [kN] [%]

A10_VL 4933,91 17,76 29,10 -63,83

A10_IL 15370,13 39,13 28,80 26,39

A12_VL 14440,73 51,99 59,30 -14,07

A12_IL 19622,92 49,95 72,90 -45,94

B10_VL 1744,40 6,96 28,60 -310,91

B10_IL 1921,27 5,42 23,20 -328,00

B12_VL 5105,57 20,37 31,70 -55,61

B12_IL 8370,51 23,62 36,40 -54,13

2S_3LV 537,30 1,32 35,00 -2558,78

2S_5LV 9670,46 23,69 50,00 -111,04

2S_7LV 14440,74 35,38 75,00 -111,99

2S_3LI45 9271,43 16,06 23,00 -43,20

2S_5LI45 24660,52 42,72 70,00 -63,85

2S_8LI45 37424,94 64,84 85,00 -31,10

2S_3LI60 4116,47 8,73 62,00 -609,86

2S_5LI60 14505,34 30,78 75,00 -143,69

2S_7LI60 21210,52 45,00 98,00 -117,76

CRFLV1 20817,34 73,32 96,40 -31,48

CRFLV2 20817,34 73,32 100,90 -37,62

CRFLI1 43359,57 107,98 147,30 -36,41

CFRLI2 43359,57 107,98 143,20 -32,62

CFRLI3 43359,57 107,98 155,40 -43,91

7SRFLV 11101,29 39,10 66,70 -70,60

7SRFLI 25975,52 64,69 49,80 23,02

5SRFLV 14789,03 52,09 20,20 61,22

5SRFLI 38489,57 95,85 60,20 37,20

-183,41  

beam Atot,mean VCR,vert Vf
exp

DV

[mm2] [kN] [kN] [%]

A10_VL 13413,88 48,29 29,10 39,74

A10_IL 20942,74 53,31 28,80 45,98

A12_VL 19400,77 69,84 59,30 15,10

A12_IL 27993,17 71,26 72,90 -2,30

B10_VL 2616,60 10,44 28,60 -173,94

B10_IL 4803,17 13,55 23,20 -71,20

B12_VL 6913,78 27,59 31,70 -14,91

B12_IL 9258,80 26,12 36,40 -39,34

2S_3LV 11369,94 27,86 35,00 -25,64

2S_5LV 15936,52 39,04 50,00 -28,06

2S_7LV 19555,13 47,91 75,00 -56,54

2S_3LI45 19513,14 33,80 23,00 31,96

2S_5LI45 29393,65 50,92 70,00 -37,47

2S_8LI45 38647,92 66,95 85,00 -26,95

2S_3LI60 12549,71 26,63 62,00 -132,84

2S_5LI60 18393,11 39,03 75,00 -92,18

2S_7LI60 24526,50 52,04 98,00 -88,32

CRFLV1 23800,77 83,82 96,40 -15,00

CRFLV2 23800,77 83,82 100,90 -20,37

CRFLI1 43475,48 108,27 147,30 -36,05

CFRLI2 43475,48 108,27 143,20 -32,26

CFRLI3 43475,48 108,27 155,40 -43,53

7SRFLV 16651,93 58,65 66,70 -13,73

7SRFLI 30631,80 76,28 49,80 34,72

5SRFLV 20139,46 70,93 20,20 71,52

5SRFLI 39673,45 98,80 60,20 39,07

-25,87  
a) b) 

Fig. 9.8 – a) Minimum Total Area; b) Average Total Area 
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beam Atot,max VCR,vert Vf
exp

DV

[mm2] [kN] [kN] [%]

A10_VL 21893,86 78,82 29,10 63,08

A10_IL 26515,36 67,50 28,80 57,33

A12_VL 24360,81 87,70 59,30 32,38

A12_IL 36363,41 92,57 72,90 21,25

B10_VL 3488,80 13,92 28,60 -105,46

B10_IL 7685,06 21,68 23,20 -7,00

B12_VL 8722,00 34,80 31,70 8,91

B12_IL 10147,08 28,63 36,40 -27,15

2S_3LV 22202,58 54,40 35,00 35,66

2S_5LV 22202,58 54,40 50,00 8,08

2S_7LV 24669,53 60,44 75,00 -24,09

2S_3LI45 29754,84 51,55 23,00 55,38

2S_5LI45 34126,79 59,12 70,00 -18,40

2S_8LI45 39870,91 69,07 85,00 -23,06

2S_3LI60 20982,95 44,52 62,00 -39,26

2S_5LI60 22280,87 47,27 75,00 -58,65

2S_7LI60 27842,48 59,08 98,00 -65,89

CRFLV1 26784,20 94,33 96,40 -2,19

CRFLV2 26784,20 94,33 100,90 -6,96

CRFLI1 43591,39 108,56 147,30 -35,69

CFRLI2 43591,39 108,56 143,20 -31,91

CFRLI3 43591,39 108,56 155,40 -43,15

7SRFLV 22202,58 78,20 66,70 14,70

7SRFLI 35288,09 87,88 49,80 43,33

5SRFLV 25489,89 89,77 20,20 77,50

5SRFLI 40857,33 101,75 60,20 40,83

-1,17  

Nanni et al.

beam Vf R, ver t
ana Vf

exp DV

[kN] [kN] [%]

A10_VL 55,39 29,10 47,46

A10_IL 52,39 28,80 45,03

A12_VL 110,78 59,30 46,47

A12_IL 132,87 72,90 45,13

B10_VL 37,94 28,60 24,61

B10_IL 40,24 23,20 42,34

B12_VL 75,87 31,70 58,22

B12_IL 95,84 36,40 62,02

2S_3LV 27,21 35,00 -28,64

2S_5LV 63,63 50,00 21,42

2S_7LV 110,78 75,00 32,30

2S_3LI45 47,34 23,00 51,42

2S_5LI45 87,96 70,00 20,42

2S_8LI45 151,66 85,00 43,95

2S_3LI60 49,78 62,00 -24,55

2S_5LI60 92,42 75,00 18,85

2S_7LI60 132,94 98,00 26,28

CRFLV1 251,76 96,4 61,71

CRFLV2 251,76 100,9 59,92

CRFLI1 303,49 147,3 51,47

CFRLI2 303,49 143,2 52,82

CFRLI3 303,49 155,4 48,80

7SRFLV 65,11 66,7 -2,44

7SRFLI 89,33 49,8 44,25

5SRFLV 137,39 20,2 85,30

5SRFLI 164,79 60,2 63,47

mean value 38,39  
a) b) 

Fig. 9.9 – a) Maximum Total Area; b) Pure Debonding Model 
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8.4  Appendix D 
Hereafter the details of the origin of some formulae present in the analytical development (see Chapter 6) of the 

proposed model are reported. 

 

Block 2: Definition of the geometrical quantities and the ellipses’ equations in the crack plane reference system 

OXYZ  

 

Step 1: Determination of the position of each laminate and further informations necessary to write the equation of each 

semi-ellipse in its own local reference system 

The position of each laminate, along the OX  axis can be determined by applying the theorem of the Chord as already 

shown in Appendix A, see Fig. 9.10: 

( )
( )

1 1
sin sin

fi f fX x i s
β β θ

+ − ⋅
=

+
 (9.24) 

( ) ( )1
sin 1

sinfi f fX x i sβ
β θ

⎡ ⎤= ⋅ + − ⋅⎣ ⎦+
 (9.25) 

 

 
 

  

Fig. 9.10 – a) Position of each laminate in OXYZ ; b) Determination of the major semi-axis 

 

As regards the determination of the two semi-axes of the semi-ellipse associated with the i-th laminate, from Fig. 9.10, 

it results: 

( )
sin

sin
fi

fi
fi

AF L
α

α β θ
= ⋅

+ +
 (9.26) 

( )
sin

sin
fi

fi
fi

FB L
α

θ β α
= ⋅

+ −
 (9.27) 

Thus the major semi-axis of i-th semi-ellipse is as follows: 
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( ) ( )
1 1sin

2 sin sin
fi

i fi
fi fi

L
a α

α β θ θ β α

⎡ ⎤
⎢ ⎥= ⋅ ⋅ +
⎢ ⎥+ + + −⎣ ⎦

 (9.28) 

The coordinates of another point P  (i.e. the point of intersection with the vertical plane orthogonal to the web and 

having the laminate, as trace, in the plane OXZ ) in the local reference system are as follows, see Fig. 9.11: 

1Pi fi oie X X= −  (9.29) 

2 tanPi fi fie L α= ⋅  (9.30) 

It is necessary to detemine the coordinates of the auxiliary point P  since, to write the equation of an ellipse, i.e. a 

second order curve, in its own local reference system, two conditions are required. In this case, the available 

informations are the coordinates of the auxilary point P  (one condition) plus the length of the major semi-axis ia (one 

condition). 

 
Fig. 9.11 – Local reference system 1 2i i io e e  of the i-th semi-ellipse 

 

At this point the length of the minor semi-axis ib  can be easily determined by writing the equation of the ellipse in its 

local reference system 1 2i i io e e  (see Fig. 9.11), known the two conditions necessary to determine it: 

12

2
2

2

2
1 =+

i

Pi

i

Pi

b
e

a
e

 (9.31) 

( )
2 2

2
2 2

1

i Pi
i

i Pi

a e
b

a e

⋅
=

−
 (9.32) 

 

As regards the determination of the position, oiX , along the OX  axis, of the center of the i-th semi-ellipse, (see 

Fig. 9.12) for: 

( )cot cot
2
w

fi
h

x θ β< ⋅ +  (9.33) 

it is: 
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oi fi iX p a= +  (9.34) 

From the application of the Theorem of the Chord, see Fig. 9.12: 

( )
( )

sin

sin
fi

fi fi
fi

p x
β α

θ β α

−
= ⋅

+ −
 (9.35) 

Introducing Eq. 9.35 into Eq. 9.34, it follows: 

( )
( ) ( )

sin
   for  cot cot

2sin
fi w

oi fi i fi
fi

h
X x a x

β α
θ β

β θ α

− ⎛ ⎞
= ⋅ + < ⋅ +⎜ ⎟

+ − ⎝ ⎠
 (9.36) 

 

 
Fig. 9.12 – Determination of the position of the center of the i-th semi-ellipse along the OX  axis for 

( )cot cot
2
w

fi
h

x θ β< ⋅ +  

 
For laminates whose position in the global reference system is: 

( )cot cot
2
w

fi
h

x θ β≥ ⋅ +  (9.37) 

it is, see Fig. 9.13: 

( )oi d fi iX L p a= − +  (9.38) 

( )
( )

sin

sin
fi

fi o
fi

p p
β α

θ β α

−
= ⋅

+ −
 (9.39) 

( )cot coto w fip h xθ β= ⋅ + −  (9.40) 

Substituting Eqs. 9.39 and 9.40 in Eq. 9.38, it results: 



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 

 
 
145           Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

( )
( ) ( )

( ),

sin
cot cot

sin sin

for  . cot cot
2

fiw
oi w fi i

fi

w
fi k

h
X h x a

h
x

β α
θ β

θ θ β α

θ β

−
⎡ ⎤= − ⋅ ⋅ + − −⎣ ⎦+ −

⎛ ⎞
≥ +⎜ ⎟

⎝ ⎠

 (9.41) 

 

 
Fig. 9.13 – Determination of the position of the center of the i-th semi-ellipse along the OX  axis for 

( )cot cot
2
w

fi
h

x θ β≥ ⋅ +  

 
Step 2: determination of the equations of the ellipses in the global reference system 

Once the equation of each ellipse is known in its own local reference system 1 2i i io e e , in the form: 

12

2
2

2

2
1 =+

i

i

i

i

b
e

a
e

 (9.42) 

changing the reference system, by means of the following equations, the several coefficients of the equation ( )ΥΧ;iE  

can be determined: 

1

2

oi i

i

X X e
Y e

= +⎧
⎨ =⎩

 (9.43) 

From those substitutions it follows: 

( ) ( )2 2 2 2 2 2 2 2 22 0i i oi i i oi i ib X a Y X b X b X a b⋅ + ⋅ + − ⋅ ⋅ ⋅ + ⋅ − ⋅ =  (9.44) 

And the following values of the coefficients: 

2
1i iE b=  (9.45) 

2
2i iE a=  (9.46) 

2
3 02i i iE b X= − ⋅ ⋅  (9.47) 
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2 2 2 2
4 0i i i i iE b X a b= ⋅ − ⋅  (9.48) 

 

Block 5: Determination of the effective integration points 1/ 2nlinX  

The first condition of acceptance for the value 1/ 21/ 2 pp
ijX X∈  of the abscissa of the point of intersection between the 

i-th and j-th ellipses, to be accepted as limit of integration interval for the i-th semi-ellipse is that it belongs to the 

uppermost border line i.e.: 

( ) ( )1/ 2 1/ 2 for 1,...,p p
i ij h ij fY X Y X h N≥ =  (9.49) 

It means that, for the counter h  varying between 1  and fN , the value ( )1/ 2p
h ijY X  has to be minor or equal to the one 

assumed by the i-th ellipse ( )1/ 2p
i ijY X . 

The equation of an ellipse is as follows:  

( ) 2 2
1 2 3 4; 0i i i i iE X Y E E E E= ⋅ Χ + ⋅ Υ + ⋅ Χ + =  (9.50) 

The positive value (the negative is not of interest for our method being the half-crack plane placed in the positive 

quadrant of the reference system OXY ) assumed in correspondence of a general X  value is equal to:  

( ) ( )
2

1 3 4

2

i i i
i i

i

E X E X E
Y X X

E

⎡ ⎤⋅ + ⋅ +⎣ ⎦= − = ∆  (9.51) 

with: 

• If the ellipse actually passes through that point and assumes a value different than zero, it results ( ) 0i X∆ > ; 

• If the ellipse does not pass through it, it results ( ) 0i X∆ < . 

Provided that, the above condition of acceptance of 1/ 21/ 2 pp
ijX X∈  yields: 

( ) ( ) ( ) ( )2 21/ 2 1/ 2 1/ 2 1/ 2
1 3 4 1 3 4

2 2

p p p p
i ij i ij i h ij h ij h

i h

E X E X E E X E X E

E E

⎡ ⎤ ⎡ ⎤⋅ + ⋅ + ⋅ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− ≥ −  (9.52) 

where the first member’s determinant is positive because 1/ 2p
ijX  is the abscissa of a point through which the i-th ellipse 

actually passes, according to the calculation developed in Block 4, while the second can be higher, less than or equal to 

zero for 1 fh ....N=  since, in eneral, the h-th ellipse can pass, can not pass or pass through that pont and assume null 

ordinate. Thus the above condition can be reported to the radicand of the square roots and the sign inverted, yielding: 

( ) ( ) ( ) ( )2 21/ 2 1/ 2 1/ 2 1/ 2
1 3 4 1 3 4

2 2

p p p p
i ij i ij i h ij h ij h

i h

E X E X E E X E X E

E E

⎡ ⎤ ⎡ ⎤⋅ + ⋅ + ⋅ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦≤  (9.52) 

And ultimately it provides: 

( ) ( ) ( ) ( )21/ 2 1/ 2 1/ 2 1/ 21 1 3 3 4 4

2 2 2 2 2 2
               0p p p pi h i h i h

i ij h ij ij ij
i h i h i h

E E E E E E
Y X Y X X X

E E E E E E
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≥ → − ⋅ + − ⋅ + − ≤⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.52) 
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8.5 Appendix E 
It is necessary to check the effective reliability and generality of the algorithm developed (see Chapter 6). In particular 

it is necessary to see if for all the particular cases that can be encountered, the algorithm works without problems 

selecting appropriate couples of numbers defining the integration intervals. Note that, for the sake of rapidity, few 

attention has been paid to the quality of the drawings below, keeping in mind that they have to schematize semi-ellipses 

whose major semi-axis lies on the axis 0Y = . The general sequence of calculations, already explained in Blocks 5 

and 6 of the above Chapter 6.1 follows, for both the Linear and Non Linear integration ranges, the several steps 

schematized by the flow chart of Fig. 6.11: 

1. Do the auxiliary points lie within the area of interest for the relevant integration (i.e. Linear or Non Linear)?; 

2. Do they lie on the upper border line?; 

3. Do they effectively constitute useful extremities for the integration in Linear or Non-Linear range?; 

4. Have the corresponding abscissa value already been stored, in the i-th row and for previous values of the j 

counter?  

The calculations corresponding to each of the questions above, will particularize depending on the integration range i.e.: 

Lin or Non-Lin. 

 

Case 1) two ellipses intersect each other along the line 2wY b=  

 

 
Fig. 9.5.1  –  Case 1 

 

The corresponding auxiliary matrices of the selected points are: 

( ) ( )
( ) ( )

1
1 212 11 12

1
21 21 22

12 21

1 1 1 1

2 2 2 2

11

22

11 22

* * *
; ; ;

* **

with

...;
;

...;

*

*

with 2 and 2

p q q
p p q

p q q

q q

o o

o o

e
e

e

e e
w w

X X X
X X X

X X X

X X

X a X a
G

X a X a

Y
Y

Y

Y b Y b

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

=

⎡ ⎤− +
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

> <

 (9.5.1)
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The matrices built according to the calculations of Block 5:  

1 2 3

22

4 5

22

* ** * * *
; ; ;

* * * * *

* * * * 0
; ; ; 2

* * * 2

* *
and the final matrix is

and the matrix of thefinalareas:
*
0

nlin nlin nlin
q

nlin nlin nlin nlin

d

nlin
q

d

nlin

X X X
X

X X n n
L

X
X L

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
Α = ⎢≠⎣

⎥
⎦

 
(9.5.2)

The auxiliary intersection point 1 1
12 21
p pX X=  is discarded because it is outside of the relevant range of interest, 

1/ 2
,0 p

dij kX L< <  and ( )1/ 2
, ,0

2
p w

i k ij k
b

Y X< < . The point 11
qX  is discarded because it is outside of the relevant range of 

interest while 12
qX  and 21

qX  are both inside the relevant range of interest and on the upper border line of the area to be 

calculated but they are not useful for the integration in the Non-Linear Range because they do not have, on the right and 

on the left side, respectively, a non linear branch that effectively constitutes border line. On the contrary, the abscissa of 

the point 22
qX  results to be useful for the Non-Linear integration range because, on its right side, is followed by a 

non-linear branch enclosing the area to be calculated. As regards the vertices of the ellipses on the major semi-axis, 

( )1 1oX a−  and ( )2 2oX a+  are discarded by the calculations of Block 5 because they are outside the relevant area of 

interest, i.e. ( ), ,0 oi k i k dX a L≤ − ≤  while ( )1 1oX a+  and ( )2 2oX a−  are discarded because the corresponding points do 

not lie on the upper border line of the area to be calculated. As to the points of intersection of the semi-ellipses with the 

lines 0X =  and dX L= , ( )11 1 0eY Y X= =  is discarded because lying outside of the relevant range of interest for the 

Non Linear integration. On the contrary, ( )22 2
e

dY Y X L= =  is accepted and copied in the corresponding cell of the 

matrix 4nlinX  because it meets all of the acceptance conditions resulting an effective extremity of integration.  

As regards the Linear range of integration: 

 

1 2 3 12

21 22

4
12 21

12

21 22

** * * *
; ; ;

* * * *

0 * 2
with ; ; ; 2

* * 2

0
and the final matrix is

and the matrix of thefinalareas:
0
0

q
lin lin lin

q q

lin line e lin

q
lin

q q

lin

X
X X X

X X

X X X n n

X
X

X X

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

≠⎡ ⎤
Α = ⎢≠⎣ ⎦

⎥

 
(9.5.3)
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For the Linear integration, the abscissa value 1 1
12 21
p pX X=  is discarded because, the corresponding point, lies on the line 

2wY b=  and therefore outside the area of interest defined by: 1/ 2
,0 p

dij kX L< <  and ( )1/ 2
, , 2

p w
i k ij k

b
Y X > . 12

eX  and 22
eX  

are useful because they meet all of the conditions of acceptance (see Block 6 of Chapter 6.1) since they are within the 

area of interest, placed on the border line and useful for the Linear range integration. In fact, on their left side, the 

relevant semi-ellipse constitutes border line. 21
eX  also meets all the acceptance conditions. Likewise, the auxiliary point 

( )11 1 0eY Y X= =  is accepted because useful for the Linear integration range and the relevant value of the abscissa is 

copied in the corresponding cell of the matrix 4linX . 

Hence the algorithm works satisfactorily. 

 

Case 2) three (or more) ellipses intersect each other along the line 2wY b=  

 

 

 

The corresponding auxiliary matrices of the selected points are: 

( ) ( )

1 1
12 13 11 12

1 21 1
21 23 21 22

1 1
31 32 31 32

1 1 1 1 1 1
12 13 21 23 31 32 12 21 31

1 1 1 1

* * * *
* ; * * * ; ;

* * **

with and

.......
.......

p p q q

p p qp p q q

p p q q

p p p p p p q q q

o o

o

X X X X

X X X X X X X

X X X X

X X X X X X X X X

X a X a
G X

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ = = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= = = = = = =

− +
= ( ) ( )

( ) ( )
2 2 2 2

3 3 3 3

11

22

32

11 32 22

;
.......

*

*

*

with 2 ; 2 and 2

o

o o

e

e e

e

e e e
w w w

a X a
X a X a

Y

Y Y

Y

Y b Y b Y b

⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥− +⎣ ⎦
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

> > <

 (9.5.4)

 

The matrices built according to the calculations of Block 5:  

 
Fig. 9.5.2 – Case 2 
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1 2 3

4 5

* * * * * * * *
* * * ; * * * ; * * ;
* * * * * * * *

* * * * 0
* * ; * * ; 0 ; 0
* * * * 0

and the final matrix is not built at all
and the matr

nlin nlin nlin

nlin nlin nlin nlin

nlin

X X X

X X n n

X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ix of thefinalareas of the NLin:
*
*
*

nlin
⎡ ⎤
⎢ ⎥Α = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

(9.5.5)

 

As regards the Linear range of integration: 

12
1 2 3

31

4
12 31

12

31

* * * * * * *
* * * ; * * * ; * * ;
* * * * * * *

0 * 2
with ; * * ; ; 20

* 2

0
and the final matrix is * *

and the mat

q

lin lin lin

q

lin line e lin

d

q

lin

q
d

X
X X X

X

X X X n n
L

X
X

X L

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

rix of the finalareas in the Lin range:
0

*
0

lin
≠⎡ ⎤

⎢ ⎥Α = ⎢ ⎥
⎢ ⎥≠⎣ ⎦

 

(9.5.6)

 

Hence the algorithm works satisfactorily. 

 

Case 3) three ellipses (e1;e2;e3) intersect each other along the line 0Y =  and one (e2) results to be completely inside the 

other (e1) 

 
Fig. 9.5.3  –  Case 3 

The corresponding auxiliary matrices of the selected points are: 
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( )

11 12
1 2

1 1

* * * * * *
* * * ; * * * ; * * ;
* * * * * * * *

N.B.: even if they intersect each other along the  axis, the algorithm selects only intersection
points with 0

.....;

q q

p p q

o

X X
X X X

X
Y

X a X
G

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

>

−
=

( )
( ) ( )
( ) ( )

( ) ( ) ( )

1 1 11

2 2 2 2

3 3 3 3 32

1 1 2 2 3 3

11 22

*
.....; ; * *
.....; *

with

and 2 and 2

e
o

e
o o

e
o o

o o o
e e

w w

a Y
X a X a Y
X a X a Y

X a X a X a

Y b Y b

⎡ ⎤⎡ ⎤+
⎢ ⎥⎢ ⎥− + = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− +⎣ ⎦ ⎣ ⎦

+ = + = −

> <

 (9.5.7)

 

The matrices of the effective selected points in the Non-Linear range are: 

( )

( )
( ) ( )

12
1 2 3 4

1 1
5

1 1 3 3

3 3

* * * * * * * * *
* * * ; * * * ; * * ; * *
* * * * * * * * *

* 2
* * ; 0 ; 2 with

* 2

and the final matrix

q

nlin nlin nlin nlin

d

o
nlin nlin nlin

o o

o

X
X X X X

L

X a
X n n X a X a

X a

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤+ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = + = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

( )

( )

1 112

3 3

0
is: * * and thefinalareas: *

0

q
o

nlin nlin

o d

X X a
X

X a L

⎡ ⎤+ ≠⎡ ⎤
⎢ ⎥ ⎢ ⎥= Α =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ≠⎣ ⎦⎣ ⎦

 (9.5.8)

 

The matrices of the effective selected points in the Linear range are: 

12
1 2 3 4

12

* * * * * * * 0 *
* * * ; * * * ; * * ; * *
* * * * * * * * * *

0 02
; 2 and the final matrices: * * ; *0

* * *0

q

lin lin lin lin

q

lin lin linlin

X
X X X X

X
n n X

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ≠⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = = Α =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (9.5.9)

Hence the algorithm works satisfactorily. 

 

Case 4) one ellipse (e1) is tangent to the straight line 2wY b=  and the other (e2) intersects it in correspondence of the 

tangent point 
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Fig. 9.5.4  –  Case 4 

The auxiliary matrices are: 

( ) ( )
( ) ( )

1
1 212 11 12

1
21 21 22

11 12 21
* *

1 1 1 111 12
* *

22 2 2 2 2

11 12 22

* * *
; ; ;

* **

with

...;
;

* ...;

with 2 and ; 2

p q q
p p q

p q q

q q q

e e
o oe

e
o o

e e e
w w

X X X
X X X

X X X

X X X

X a X aY Y
Y G

Y X a X a

Y b Y Y b

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= =

⎡ ⎤⎡ ⎤ − +
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦

< <

 (9.5.10)

 

The Non-Linear range matrices: 

1 2 3 11
11 21

22

4 5

11

22

** * * *
; ;  with

* * * * *

0 * * * 2
; ; ; 2

* * * 2

0 0
and the final matrices: ;

0

q
nlin nlin nlin q q

q

nlin nlin nlin nlin

d

q
nlin nlin

q
d

X
X X X X X

X

X X n n
L

X
X

X L

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ≠⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.11)

 

As regards the Linear range of integration: 

1 2 3 4

21 22

21 22

* ** * * * * *
; ; ;

* * * * * *

0
; 2

2

* * *
and the final matrices ;

0

lin lin lin lin
q q

lin lin

lin lin
q q

X X X X
X X

n n

X
X X

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.12)

Hence the performance is satisfactory. 

 

Case 5) one ellipse (e2) is tangent to the straight line 2wY b=  and the other (e1) intersects it both in correspondence of 

the tangency point and in the right vertex along the X  axis. 
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Fig. 9.5.5  –  Case 5 

 

The auxiliary matrices are: 

( ) ( )
( ) ( ) ( ) ( )

1
1 212 11 12 11

1
21 21 22

1 1
1112 21 21 22 12

1 1 1 1
1 1 2 2

2 2 2 2

* * * *; ; ;
* * * **

with: and with: 2

......
; with

......

p q q e
p p q e

p q q

p p q q q e
w

o o
o o

o o

X X X YX X X Y
X X X

X X X X X Y b

X a X a
G X a X a

X a X a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= = = = >

⎡ ⎤− +
= + = +⎢ ⎥− +⎢ ⎥⎣ ⎦

 (9.5.13)

In that case, even if we have two real distinct roots of the Eq. (6.28) contemplating the possibility of two distinct real 

intersection points because of the intersection between the two ellipses in 1
12
pX  and their tangency in 2 2oX a+  = 

1 1oX a+ , the algorithm behind the determination of the auxiliary matrices 1pX  and 2pX  discards the second solution 

2 2 1 1o oX a X a+ = +  because the corresponding ordinate is equal to zero for both the 1st ( )1 1 1 0oY X a+ =  and 2nd 

( )2 2 2 0oY X a+ =  ellipses. 

The Non-Linear range matrices: 

( )

( )

1 2 3 4

22

5

2 2

2 222

* ** * * * * *
; ; ;

* * * * * **

* * 0
; ; 2

* 2

* * *
and the final matrices: ;

0

nlin nlin nlin nlin
q

nlin nlin nlin

o

nlin nlin
q

o

X X X X
X

X n n
X a

X
X X a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= Α =⎢ ⎥ ⎢ ⎥≠+ ⎣ ⎦⎢ ⎥⎣ ⎦

 (9.5.14)

As regards the Linear range of integration: 

1 2 3 412

12

* * * * 0 * 2*; ; ; ; ; 2
* * * * * * 0* *

00and the final matrix is ;
** *

q
lin lin lin lin lin lin

q
lin lin

XX X X X n n

XX

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ≠⎡ ⎤

= Α =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.15)

Hence the performance is satisfactory. 

 

Case 6) one ellipse (e2) is tangent to the straight line 2wY b=  and the other (e1) intersects it in correspondence of the 

tangency point. 
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Fig. 9.5.6  –  Case 6 

The auxiliary matrices are: 

( ) ( )
( ) ( )

1
1 212 11 12 11

1
21 21 22

1 1
1112 21 21 22

1 1 1 1

2 2 2 2

* * * *; ; ;
* * * **

with and with 2

......
;

......

p q q e
p p q e

p q q

p p q q e
w

o o

o o

X X X YX X X Y
X X X

X X X X Y b

X a X a
G

X a X a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= = = >

⎡ ⎤− +
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

 (9.5.16)

 

The Non Linear range matrices: 

( )

( )

1 2 3 4

22

5

2 2

2 222

* ** * * * * *
; ; ;

* * * * * **

* * 0
; ; 2

* 2

* * *
and the final matrices: ;

0

nlin nlin nlin nlin
q

nlin nlin nlin

o

nlin nlin
q

o

X X X X
X

X n n
X a

X
X X a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= Α =⎢ ⎥ ⎢ ⎥≠+ ⎣ ⎦⎢ ⎥⎣ ⎦

 (9.5.17)

As regards the Linear range of integration: 

1 2 3 412

12

* * * * 0 * 2*; ; ; ; ; 2
* * * * * * 0* *

00and the final matrices: ;
** *

q
lin lin lin lin lin lin

q
lin lin

XX X X X n n

XX

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ≠⎡ ⎤

= Α =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.18)

Hence the performance is satisfactory. 

 

Case 7) one ellipse (e2) is tangent to the straight line 2wY b=  and the other (e1) intersects it both in correspondence of 

the tangency point and in another point. 
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Fig. 9.5.7  –  Case 7 

 

Since the semi-conical surfaces are intersected by the same plane, thus the ratio between the minor and the major 

semi-axis is constant, this situation can occur rarely but it is worth taking that eventuality into consideration in order for 

the algorithm to be as much general as possible. This is also useful in order to face further future developments with 

confidence about the reliability and generality of the model. 

The auxiliary matrices are: 

( ) ( )

1 2
1 212 12 11 12 11

111 2
21 21 21 22

1 1 2 2 1 1
12 21 21 22 12 12 21 12 21 11

1 1 1 1

2

* * *; ; ; with 2
* ** *

with and and 0

...;
...;

p p q q e
p p q e e

wp p q q

p p q q q p p p p q

o o

o

X X X X YX X X Y Y b
X X X X

X X X X X X X X X X

X a X a
G

X a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = >⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = = = = > = <

− +
=

−( ) ( )2 2 2
;

oX a
⎡ ⎤
⎢ ⎥+⎢ ⎥⎣ ⎦

 (9.5.19)

 

The Non-Linear range matrices: 

( )

( )

2
1 2 3 412

2
2221

5 1 1

2
1 112

2
22 21

* *** * * *
; ; ;

* * * ***

2*
; ; 2

2* *

0
and the final matrices: is ;

0

p
nlin nlin nlin nlin

qp

nlin nlin nlino

p
onlin nlin

q p

X
X X X X

XX

X a
X n n

X X a
X

X X

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤+ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦
⎡ ⎤+ ≠⎡

= Α =⎢ ⎥
≠⎢ ⎥ ⎣⎣ ⎦

⎤
⎢ ⎥

⎦

 (9.5.20)

The first intersection point’s abscissa is discarded because outside the range of interest while the second one’s is 

accepted by the algorithm 2 2
12 210 p p

dX X L< = <  and ( )2
120 2p

wY X b< < . 

As regards the Linear range of integration: 

1 2 3 12

4

12

* * * * *; ; ;
* * * * * *

0 * 2
; ; 2

* * 0

00and the final matrices: ;
** *

q
lin lin lin

lin lin lin

q
lin lin

XX X X

X n n

XX

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ≠⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.21)

Hence the performance is satisfactory. 
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Case 8) one ellipse passes through the point of coordinates 0; 2wb⎡ ⎤⎣ ⎦  

 
Fig. 9.5.8  –  Case 8 

The auxiliary matrices are: 

( ) ( )
( ) ( )

1
1 2 1112

1
21 22 2121

1 1
11 2112 21 21

1 1 1 1

2 2 2 2

* ** ** *
; ; ;

* ** *

with 0 and 0; 2 and 2

......
;

......

p e
p p q e

q qp e

p p q e e
w w

o o

o o

X Y
X X X Y

X XX Y

X X X Y b Y b

X a X a
G

X a X a

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

= < = < =

⎡ ⎤− +
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

 (9.5.22)

 

The Non-Linear range matrices: 

( )

( )

1 2 3 4

22

5

2 2

2 222

* ** * * * * *
; ; ;

* * * * * **

* * 0
; ; 2

* 2

* * *
and the final matrices: ;

0

nlin
nlin nlin nlin nlin

q

nlin nlin nlin

o

nlin nlin
q

o

X X X X
X

X n n
X a

X
X X a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= Α =⎢ ⎥ ⎢ ⎥≠+ ⎣ ⎦⎢ ⎥⎣ ⎦

 (9.5.23)

 

As regards the Linear range of integration: 

1 2 3

21 22

4

21 22

* ** * * *
; ; ;

* * * *

* * 0
; ; 2

* * 2

* * *
and the final matrices: ;

0

lin lin lin
q q

lin lin lin

lin lin
q q

X X X
X X

X n n

X
X X

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.24)

Hence the performance is satisfactory. 

 

Case 9) two ellipses intersect each other on the axis 0X =  above the line 2wY b=  
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Fig. 9.5.9  –  Case 9 

 

The auxiliary matrices are: 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1
1 212 11 12

1
21 21 22

1 1
12 21 11 21 12 22

1 1 1 1

2 2 2 2

2 2 1 1 2 2 1 1

* * *
; ; ;

* **

with 0 ; 0; 0 ; 0 ;

......
;

......

with and 0 ;

p q q
p p q

p q q

p p q q q q
d

o o

o o

o o o o d

X X X
X X X

X X X

X X X X X X L

X a X a
G

X a X a

X a X a X a X a L

Y

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= = < < < <

⎡ ⎤− +
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

+ > + < + + <

11
11 21

21

*
with 2 and 2

*

e
e e e

w we

Y
Y b Y b

Y

⎡ ⎤
= > >⎢ ⎥

⎢ ⎥⎣ ⎦

 (9.5.25)

 

The Non Linear range matrices: 

( )

( )

1 2 3 4

22

5

2 2

2 222

* ** * * * * *
; ; ;

* * * * * **

* * 0
; ; 2

* 2

* * *
and the final matrices: ;

0

nlin nlin nlin nlin
q

nlin nlin nlin

o

nlin
nlin nlin

q
o

X X X X
X

X n n
X a

X
X X a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠+ ⎣ ⎦⎢ ⎥⎣ ⎦

 (9.5.26)

 

As regards the Linear range of integration: 

1 2 3

22

4

22

* ** * * *
; ; ;

* * * * *

* * 0
; ; 2

0 * 2

* * *
and the final matrices: ;

00

lin lin lin
q

lin lin lin

lin lin
q

X X X
X

X n n

X
X

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.27)

Hence the performance is satisfactory. 

 

Case 10) two ellipses intersect each other within the range of interest i.e.: 2wY b>  and 0 dX L< <  
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Fig. 9.5.10  –  Case 10 

 

The auxiliary matrices are: 

( )
( ) ( )
( ) ( )

1
1 212 11 12

1
21 21 22

1 1 1
12 21 12

1 1 1 1

2 2 2 2

11
11

* * *
; ; ;

* **

with 0 and 2

......
;

......

* with 2
* *

p q q
p p q

p q q

p p p
d w

o o

o o

e
e e

w

X X X
X X X

X X X

X X L Y X b

X a X a
G

X a X a

YY Y b

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

< = < >

⎡ ⎤− +
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

⎡ ⎤
= >⎢ ⎥

⎢ ⎥⎣ ⎦

 (9.5.28)

 

The Non Linear range matrices: 

( )

( )

1 2 3 4

22

5

2 2

2 222

* ** * * * * *
; ; ;

* * * * * **

* * 0
; ; 2

* 2

* * *
and the final matrices: ;

0

nlin nlin nlin nlin
q

nlin nlin nlin

o

nlin nlin
q

o

X X X X
X

X n n
X a

X
X X a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= Α =⎢ ⎥ ⎢ ⎥≠+ ⎣ ⎦⎢ ⎥⎣ ⎦

 (9.5.29)

 

As regards the Linear range of integration: 

1
1 1 312

1
2221

4

1
12

1
21 22

* ** * *
; ; ;

* * **

0 * 2
; ; 2

* * 2

0 0
and the final matrices: ;

0

p
lin lin lin

qp

lin lin lin

p
lin lin

p q

X
X X X

XX

X n n

X
X

X X

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ≠⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.30)

Hence the performance is satisfactory. 

 

Case 11) one ellipse is tangent to the straight line 2wY b=  in the point 0; 2wb⎡ ⎤⎣ ⎦  : 
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Fig. 9.5.11  –  Case 11 

 

The auxiliary matrices are: 

( ) ( )
( ) ( )

1
1 2 1112 11 12

1
2121 21 22

1 1
11 2111 12 21 12 21

1 1 1 1

2 2 2 2

* ** *
; ; ;

* ** *

with 0 and with 2

......
;

......

p q q e
p p q e

p q q e

q q q p p e e
w

o o

o o

X X X Y
X X X Y

X X X Y

X X X X X Y Y b

X a X a
G

X a X a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= = = = = = =

⎡ ⎤− +
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

 (9.5.31)

 

The Non Linear range matrices: 

( )

( )

1 2 3 4

22

5

2 2

2 222

* ** * * * * *
; ; ;

* * * * * **

* * 0
; ; 2

* 2

* * *
and the final matrices: ;

0

nlin nlin nlin nlin
q

nlin nlin nlin

o

nlin nlin
q

o

X X X X
X

X n n
X a

X
X X a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= Α =⎢ ⎥ ⎢ ⎥≠+ ⎣ ⎦⎢ ⎥⎣ ⎦

 (9.5.32)

 

As regards the Linear range of integration: 

1 2 3

21 22

4

21 22

* ** * * *
; ; ;

* * * *

* * 0
; ; 2

* * 2

* * *
and the final matrices: ;

0

lin lin lin
q q

lin lin lin

lin lin
q q

X X X
X X

X n n

X
X X

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.33)

Hence the performance is satisfactory. 

 

Case 12) one ellipse (e1) passes through the point [ ]0;0 ; another (e4) is tangent to the straight line 2wY b=  in the 

point ; 2d wL b⎡ ⎤⎣ ⎦ ; and two (e2;e3) are completely inside the range of interest 0 dX L< <  and 0 2wY b< <  



Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models 

 
 
161           Vincenzo Bianco, Joaquim Barros and Giorgio Monti 

 
Fig. 9.5.12  –  Case 12 

 

The auxiliary matrices are: 

( ) ( )

1 1
23 241 1

1 1
32 34

1 1
41 4242 43

1 1 1 1 1 1
41 42 23 24 34 32 42 43

1 1 1 1

* * * * * ** * * *
* * * ** * * *

; ; ;* ** * * ** *
* * * ** *

with and

......
..

p p
p p q

p p

q qp p

q q p p p p p p
d

o o

X X
X X X

X X
X XX X

X X L X X X X X X

X a X a

G

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= = = = = = =

− +

=
( ) ( )
( ) ( )
( ) ( )

( ) ( )

2 2 2 2

3 3 3 3

4 4 4 4

1 1 4 4

11

42 11

42

....
;

......

......

with 0 and

*
* *

with 2 and 0
* *

*

o o

o o

o o

o o d

e

e e e
w

e

X a X a
X a X a
X a X a

X a X a L

Y

Y Y b Y

Y

⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥− +
⎢ ⎥

− +⎢ ⎥⎣ ⎦
− = + >

⎡ ⎤
⎢ ⎥
⎢ ⎥= = =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (9.5.34)

 

The Non Linear range matrices: 
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( ) ( )
( )

1
1 223

1
42

3 4

41

1 1 1 1

5 2 2

* * * * * * * *
* * * * * * *

; ;
* * * * * * * *

* * * ** * *

* * * *
* * * *

;* * * *
* **

2
2*

;
0* *
2* *

p
nlin nlin

p

nlin nlin

q

o o

nlin nlino

X
X X

X

X X

X

X a X a
X a

X n

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤− + ⎡
⎢ ⎥ ⎢−⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎣⎣ ⎦

( ) ( )
( )

1 1 1 1
1

2 2 23

1
42 41

; 2

0
0

and the final matrices: ;
** *
0

nlin

o o
p

nlin nlino

p q

n

X a X a

X a X
X

X X

⎤
⎥

⎢ ⎥ =
⎢ ⎥
⎢ ⎥

⎦

⎡ ⎤− + ≠⎡ ⎤
⎢ ⎥ ⎢ ⎥≠−⎢ ⎥ ⎢ ⎥= Α =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ≠⎣ ⎦⎣ ⎦  

(9.5.35)

 

As regards the Linear range of integration: 

1 2 3

4

* * * * * * * * * *
* * * * * * * * * *

; ; ;
* * * * * * * * * *
* * * * * * * * * *

* * 0
* * 0

; ; 0
* * 0
* * 0

* *
*

and the final matrices: ;
*
*

lin lin lin

lin lin lin

lin lin

X X X

X n n

X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥= Α =
⎢ ⎥
⎢ ⎥
⎣ ⎦

*
*
*

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (9.5.36)

Hence the performance is satisfactory. 

 

 

 

Case 13) one ellipse (e1) passes through [ ]0;0 ; another (e3) passes through the points 0;
2
wb⎡ ⎤

⎢ ⎥
⎣ ⎦

 and ;
2
w

d
b

L⎡ ⎤
⎢ ⎥
⎣ ⎦

; another 

(e4) is tangent to the straight line 2wY b=  in the point ; 2d wL b⎡ ⎤⎣ ⎦ ; and one (e2) is completely inside the range of 

interest 0 dX L< <  and 0 2wY b< <  
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Fig. 9.5.13  –  Case 13 

 

The auxiliary matrices are: 

( ) ( )

1
241 2

1
31 3234

1 1
41 4242 43

1 1
43 34 31 41 42 32

1 1 1 1

2

* * * * * ** * * *
* ** * * * * * *

; ; ;
* * * ** * *
* * * ** *

with and 0 and

......
......

p
p p q

q qp

q qp p

p p q q q q
d d

o o

o

X
X X X

X XX
X XX X

X X L X X X X L

X a X a
X a

G

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= = = = = =

− +
−

=
( ) ( )
( ) ( )
( ) ( )

2 2 2

3 3 3 3

4 4 4 4

11

11 31 32 42
31 32

42

;
......
......

*
* *

with 0 and 2

*

o

o o

o o

e

e e e e e
we e

e

X a
X a X a
X a X a

Y

Y Y Y Y Y b
Y Y

Y

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥− +
⎢ ⎥

− +⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥

= = = = =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (9.5.37)

 

The Non Linear range matrices: 

1 2 3 4

5

* * * * * * * * * * * *
* * * * * * * * * * * *

; ; ;
* * * * * * * * * * * *
* * * * * * * * * * * *

* * 0
* * 0

; ; 0
* * 0
* * 0

and the final matr

nlin nlin nlin nlin

nlin nlin nlin

X X X X

X n n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

* *
* *

ices: ;
* *
* *

nlin nlinX

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= Α =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (9.5.38)

As regards the Linear range of integration: 
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1 2 3

31 32

31 32

4

* ** * * * * * * *
* ** * * * * * * *

; ; ;
* * * * * * * *
* * * * * * * * * *

with 0 and

* * 0
* * 0

; ; 2
* * 2
* * 0

and the final matrices:

lin lin lin
q q

q q
d

lin lin lin

X X X
X X

X X L

X n n

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

* * *
* * *

; and
0 0 2 2
* * *

lin lin tot w
d

d

b
X L

L

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ Α⎢ ⎥ ⎢ ⎥= Α = =
⎢ ⎥ ⎢ ⎥≠
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (9.5.39)

Hence the performance is satisfactory. 

 

Case 14) one ellipse (e1) passes through [ ]0;0 ; another (e3) passes through the points 0;
2
wb⎡ ⎤

⎢ ⎥
⎣ ⎦

 and ;
2
w

d
b

L⎡ ⎤
⎢ ⎥
⎣ ⎦

; another 

(e4) is tangent to the straight line 2wY b=  in the point ; 2d wL b⎡ ⎤⎣ ⎦ ; and one (e2) crosses the range of interest 

0 dX L< <  and 0 2wY b< < . 

 
Fig. 9.5.14  –  Case 14 

 

The auxiliary matrices are: 
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1 1 2
23 24 21 221 2 23

1 1 2
32 34 31 3232

1 1
42 43 41 42

1 1
43 34 31 41 42 32

* * * * * ** * * *
* * * * *

; ; ;
* * * * *

* * * ** *

with and 0 and

.....

p p q qp
p p q

p p q qp

p p q q

p p q q q q
d d

X X X XX
X X X

X X X XX
X X X X

X X L X X X X L

G

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= = = = = =

=

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

11

21 22
11 31 32 42

31 32

42

21 22

.
......

;
.......
......

*

with 0 and 2 and

*

0 2 0 2

o o

o o

o o

o o

e

e e
e e e e e

we e

e

e e
w w

X a X a
X a X a
X a X a
X a X a

Y

Y Y
Y Y Y Y Y b

Y Y

Y

Y b Y b

⎡ ⎤− +
⎢ ⎥− +⎢ ⎥
⎢ ⎥− +
⎢ ⎥

− +⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥

= = = = =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

< < < <

 (9.5.40)

 

The Non Linear range matrices: 

1 2 3 4

5

* * * * * * * * * * * *
* * * * * * * * * * * *

; ; ;
* * * * * * * * * * * *
* * * * * * * * * * * *

* * 0
* * 0

; ; 0 and the final matr
* * 0
* * 0

nlin nlin nlin nlin

nlin nlin nlin

X X X X

X n n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

* *
* *

ices: ;
* *
* *

nlin nlinX

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= Α =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (9.5.41)

 

As regards the Linear range of integration: 

1 2
1 2 323 23

1 2
31 3232 32

4
31 32

* * * * * * * * * *
* ** * * * * *

; ; ;
* * * * * *

* ** * * * * * * *

* * 0
* * 2

with 0 and ; ; ;
* * 4
* * 0

p p
lin lin lin

q qp p

lin linq q lin
d

X X
X X X

X XX X

X X L X n n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = = = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 2
23 23

1 2
31 32 32 32

4

* * * * *
* * 0

and the final matrices: ; and
0 2 2

** * * *

p p
lin lin tot w

dq p p q

X X b
X L

X X X X

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≠ Α⎢ ⎥ ⎢ ⎥= Α = =⎢ ⎥ ⎢ ⎥≠
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.42)

 

Hence the performance is satisfactory. 
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Case 15) one ellipse (e1) passes through [ ]0;0  and is completely external to the area of interest 0 dX L< <  and 

0 2wY b< < . 

 
Fig. 9.5.15  –  Case 15 

This case can never happen (it is definitely impossible) but the algorithm is organised in such a way that even in that 

impossible eventuality, it would discard the auxiliary point ( )1 1oX a+  hence providing a satisfactory performance as 

well. 

Case 16) two ellipses are tangent to each other in a point with 0 dX L< <  and 0 2wY b< < : 

 
Fig. 9.5.16  –  Case 16 

 

The auxiliary matrices are: 

( ) ( )
( ) ( )

1 2 1 1 1 1

2 2 2 2

21 22
21 22

......* * * * * *
; ; ; ;

......* * * * * *

* *
with 2; 2

p p q o o

o o

e e e
w we e

X a X a
X X X G

X a X a

Y Y b Y b
Y Y

⎡ ⎤− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ − +⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

= < <⎢ ⎥
⎢ ⎥⎣ ⎦

 (9.5.43)

The algorithm discards the tangency point because is not useful for our purposes. 

The Non Linear range matrices: 
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1 2 3 4

21 22

5
21 22

21 22

* ** * * * * *
; ; ;

* * * * * *

* * 0
; with 0 ; ; ; 2

* * 2

* * *
and the final matrices: ;

0

nlin nlin nlin nlin
e e

nlin nline e nlin
d

nlin nlin
e e

X X X X
X X

X X X L n n

X
X X

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦

 (9.5.44)

 

As regards the Linear range of integration: 

1 2 3

4

* * * * * *
; ; ;

* * * * * *

* * 0
; ; 0

* * 0

* *
and the final matrices: ;

* *

lin lin lin

lin lin lin

lin lin

X X X

X n n

X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
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Hence the performance is satisfactory. 

 

Case 17) two ellipses are tangent to each other in a point with 0 dX L< <  and 2wY b= : 

 
Fig. 9.5.17  –  Case 17 

 

The auxiliary matrices are: 

( ) ( )
( ) ( )

1 2 11 12

21 22

11 12 21 22

1 1 1 1

2 2 2 2

* * * *
; ; ;

* * * *

with

...... * *
;

...... * *

q q
p p q

q q

q q q q

eo o

o o

X X
X X X

X X

X X X X

X a X a
G Y

X a X a

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = =

⎡ ⎤− + ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− +⎢ ⎥ ⎣ ⎦⎣ ⎦
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The Non Linear range matrices: 
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( ) ( )

( ) ( )

1 2 3 4

21 22

5

2 2 2 2

2 2 2 221 22

* ** * * * * *
; ; ;

* * * * * *

* * 0
; ; 4

4

* * * * *
and the final matrices: ;

0

nlin nlin nlin nlin
q q

nlin nlin nlin

o o

nlin nlin
q q

o o

X X X X
X X

X n n
X a X a

X
X a X X X a

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡

= Α =⎢ ⎥ ⎢≠− + ⎣⎢ ⎥⎣ ⎦

⎤
⎥
⎦
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As regards the Linear range of integration: 

1 2 3

4

* * * * * *
; ; ;

* * * * * *

* * 0
; ; 0

* * 0

* *
and the final matrices: ;

* *

lin lin lin

lin lin lin

lin lin

X X X

X n n

X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Α =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
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Hence the performance is satisfactory. 

 

Case 18) one ellipse (e1) is tangent internally to another (e1) and a third one intersects the previous ones in the tangency 

point. 

 
Fig. 9.5.18  –  Case 18 

 

The auxiliary matrices are: 

( ) ( )
( ) ( )
( ) ( )

1
13

1 21
23

1 1
31 32 31 32

1 1 1 1
1 1 1 1

2 2 2 213 23 31 32

3 3 3 3

21 22

* * * * * * *
* * ; * * * ; * * ;

* * **

......
with ; ...... ;

......

* *

p

p p qp

p p q q

o o
p p p p

o o

o o

e e e

X

X X X X

X X X X

X a X a
X X X X G X a X a

X a X a

Y Y Y

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ = = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤− +
⎢ ⎥= = = = − +⎢ ⎥
⎢ ⎥− +⎣ ⎦

= 21 22 32

32

with 2; 2 and 2

*

e e e
w w w

e

Y b Y b Y b

Y

⎡ ⎤
⎢ ⎥

< < >⎢ ⎥
⎢ ⎥
⎣ ⎦
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The Non Linear range matrices: 
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1 2 3 41
2123

1
31 31

5
21 2

* * * * ** * * * *
* * ; * * * ; * * ; *

* * * * ** * *

* ** * 0
* * ; 2 ; 2 and the final matrices:
* * 2

nlin nlin nlin nlinp e

p q

nlin nlin nlinnlin e

X X X X X X

X X

X n n X X X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1
3

1
31 31

*
; 0

0

nlinp

p qX X

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Α = ≠⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥≠⎣ ⎦⎣ ⎦
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As regards the Linear range of integration: 

1 2 3 4
32

3231

3231

* * * * * * * * * *
* * * ; * * * ; * * ; * * ; with
* * * * * * **

* * *0
; 2 and the final matrices: * * ; *0

02

lin lin lin lin e
d

q e

lin lin linlin

q e

X X X X X L

XX

n n X

X X

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥= = = Α =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ≠⎣ ⎦ ⎣⎣ ⎦

⎤
⎥

⎢ ⎥
⎢ ⎥⎦
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Hence the performance is satisfactory. 

 

By analyzing the previous cases 16th and 18th it arises the reason why it is better, in the selection of the auxiliary 

intersection points between ellipses, to discard the abscissa of the tangency points. The reasons are: 

1. They are not useful integration points because the tangency can be or between two ellipses resulting one 

completely inside the other (case 16th) or one completely external to the other and tangent in one of the vertices 

along X (see case 3rd); 

2. If the double point of tangency is included in the auxiliary matrices 1pX  and 2pX , when the algorithm has to 

select the effective intersection points for the Non Linear integration, there might be problems of lack of 

generality. 

The second reason can be easily shown by means of the above cases 16th and 18th. In fact, if the double identical root is 

included in the 1/ 2pX , for the 16th case, the auxiliary matrices would be: 

   

( ) ( )
( ) ( )

1 2
1 212 12

1 2
21 21

1 1 2 2
12 21 12 21

1 1 1 1

2 2 2 2

21 22
21 22

* * * *
; ; ;

* ** *

with

......
;

......

* *
with 2; 2

p p
p p q

p p

p p p p

o o

o o

e e e
w we e

X X
X X X

X X

X X X X

X a X a
G

X a X a

Y Y b Y b
Y Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= = =

⎡ ⎤− +
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

⎡ ⎤
= < <⎢ ⎥

⎢ ⎥⎣ ⎦
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And the matrices for the Non Linear range: 
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1 2 3
1 2

12 12

5 41 2
12 12

21 22

21 22

21

* * * * * *
; ; ;

* ** *

* ** *
with ; ;

* *

0
with 0; ; ; 4

4

* * * *
and the final matrices:

nlin nlin nlin
p p

nlin nlinp p
e e

nline e nlin
d

nlin
e

X X X
X X

X X X X
X X

X X L n n

X
X

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤

= = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦

= 1 2
2212 12

*
;

0
nlin

p p eX X X

⎡ ⎤ ⎡ ⎤
Α =⎢ ⎥ ⎢ ⎥≠⎢ ⎥ ⎣ ⎦⎣ ⎦
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Hence, for the 2nd ellipse, there would be two couples of effective points and the algorithm would be working properly. 

 

For case 18th, it the auxiliary matrices would be: 

( ) ( )
( ) ( )

1 1 2
12 13 12

1 21 1 2
21 23 21

1 1
31 32 31 32

1 1 1 1 1 2 1 2
13 23 31 32 12 12 21 21

1 1 1 1

2 2 2 2

* * * * *
* ; * * ; * * ;

* * **

with

......
......
.

p p p

p p qp p p

p p q q

p p p p p p p p

o o

o o

X X X

X X X X X X

X X X X

X X X X X X X X

X a X a
G X a X a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= ⎢ ⎥ = ⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

= = = = = = =

− +
= − +

( ) ( )3 3 3 3

21 22 21 22 32

32

;
.....

* *

with 2; 2 and 2

*

o o

e e e e e e
w w w

e

X a X a

Y Y Y Y b Y b Y b

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎡ ⎤
⎢ ⎥
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⎢ ⎥
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And the matrices of the effective integration points in the Non Linear case would be: 

1 2 31 2 1 2
21 21 21 21

1
31 31

4 5
21

* * * * * * * *
* * ; * * ; with ; * * ;

* * ** * *

* * * * 0
* ; * * ; 3 ; 3

* * * * 2

and the final ma

nlin nlin nlinp p p p

p q

nlin nlin nline nlin

X X X X X X X

X X

X X X n n

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥

= = = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2
21 21 21

1
31 31

* * *

trix:

*

nlin p pe

p q

X X X X

X X

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦
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But this would create problems because we have to determine couples of effective abscissa values. 

A solution could be to check, while building the matrix 2pX , if in the i-th row, a value that results valid is not equal to 

someone else already existing in the corresponding i-th row of the matrix 1pX  but this would, again, return an odd 

number of effective points for the case 16th thus, since those tangency points are not necessary for the final integration, 

is better to discard them from the beginning. Those considerations are also valid for intersections between ellipses lying 

above the line 2wY b= . 
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