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Different types of biomaterials, processed into different shapes, have been proposed as
temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods
used in the production of particles in drug delivery strategies have been adapted for the de-
velopment of microparticles in the fields of TE and regenerative medicine (RM). Micropar-
ticles have been applied as building blocks and matrices for the delivery of soluble factors,
aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds
or as injectable systems for in situ scaffold formation, avoiding complicated surgery proce-
dures. More recently, organ printing strategies have been developed by the fusion of hydro-
gel particles with encapsulated cells, aiming the production of organs in in vitro conditions.
Mesoscale self-assembly of hydrogel microblocks and the use of leachable particles in three-
dimensional (3D) layer-by-layer (LbL) techniques have been suggested as well in recent
works. Along with innovative applications, new perspectives are open for the use of these
versatile structures, and different directions can still be followed to use all the potential that
such systems can bring. This review focuses on polymeric microparticle processing techni-
ques and overviews several examples and general concepts related to the use of these sys-
tems in TE and RE applications. The use of materials in the development of microparticles
from research to clinical applications is also discussed. VVC 2011 American Institute of
Chemical Engineers Biotechnol. Prog., 000: 000–000, 2011
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Introduction

Tissue engineering (TE) is a field that applies the princi-
ples of biology and engineering to the development of func-
tional substitutes for damaged tissue.1 Many of the currently
proposed TE strategies are based on the use of hydrogels
and porous scaffolds.2 Advances in the field of TE and re-
generative medicine (TE&RM) were possible through the de-
velopment of alternative systems, which can conjugate the
advantages and simultaneously the elimination of drawbacks
of both kinds of systems. In this context, particles have been
suggested as injectable or moldable systems in which cells
can adhere and proliferate in a solid substrate. These systems
offer the possibility of injecting the isolated particles into
the defect. Moreover, besides the polymeric particles alone
as injectable systems, encapsulated bioactive agents or in
vitro preseeded cells can be delivered in the defect using
particles as vehicles.

The use of particles can be discussed in terms of the
dimension of the objects (Figure 1). In a nanoscale perspec-
tive, particles for modeling cell behavior by gene delivery
have been used in cell therapy with special emphasis in the
treatment of cancer and immune system diseases.3–5 In
TE&RM strategies, nanoparticles could be used to deliver

bioactive substances either to the cell surrounding medium
or directly into the interior of the cells by internalization.
The release of proteins [including growth factors (GFs)] or
low molecular weight differentiation agents can target and
control the behavior and the fate of the cells, as schemati-
cally represented in Figure 1A.6–8 Despite the relevance of
nanoparticles in this field, this review will focus mainly on
the use of polymeric microparticles.

The use of microparticles in TE&RM may have different
purposes, which include (i) the incorporation of micropar-
ticles in hydrogels or porous scaffolds (Figure 1B) aiming
for the formation of pores,9 (ii) the achievement of the com-
plex delivery systems for macromolecules (e.g. dual release
profile systems),10 or (iii) the incorporation of osteoconduc-
tive materials in the system.11 The injection of microparticles
loaded with bioactive molecules aiming for controlled deliv-
ery (Figure 1C) has also been performed, relying on diffu-
sion,12 polymer degradation or using responsive polymers
properties to trigger the release of the molecules.13 These
particle diameters usually range from 1 lm to 10 lm.

Regarding particles with sizes varying from 10 lm to
1,000 lm, scaffolds with interconnected porosity have been
obtained by the sintering or chemical agglomeration of
microparticles [Figure 1E(b)].14–16 The use of separate par-
ticles offers high surface area for cell expansion [Figure
1E(c)].17,18 The in situ formation of scaffolds by cell-induced
aggregation of injected microparticles has also been
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suggested [Figure 1E(a)].19,20 Cell encapsulation in hydrogel
particles has led to cell delivery strategies and new scale-up
biofabrication methods, such as organ printing (Figure 1F).21,22

The wide versatility of these systems is associated with
the variables that can be modeled to obtain an optimal sys-
tem for a specific application, such as the particle composi-
tion, size and shape, existence of porosity, cell culture
conditions, or incorporation of bioactive agents. Silva et al.
reviewed concepts for the use of materials in particulate
form for TE as well as the specific requirements for bone tis-
sue regeneration applications.23,24

During the last decades, several techniques have been
used to process microparticles for applications in TE&RM.
A general overview on such processing techniques will be
presented. Several examples and general concepts related to
the use of microparticles in TE&RM applications will also
be reviewed. A discussion on the most commonly used
materials in microparticle TE&RM strategies will be per-
formed, as well as some comments on the bridge between
the more fundamental studies and the systems applied in the
clinical practice.

Methods for the Preparation of Microparticles for
Tissue Engineering

Microparticle manufacturing has been widely developed in
the pharmaceutical industry to obtain effective drug release

systems.25 Parameters have been optimized to obtain con-
trolled release profiles and particle size has been adjusted for
each particular application. Such lessons can be transposed
to the production of microparticles for specific applications
in TE&RM. In this case, different specifications should be
taken into account, so other important aspects could be con-
sidered, such as the control of cell behavior onto the surface
of the particles or the degradation profile. Furthermore, pa-
rameters such as pore interconnectivity,20,26,27 surface topog-
raphy,28 surface chemistry, or particle size must be
considered, which usually have different requirements in
pure drug delivery systems.

The preparation of microparticles requires several consid-
erations about their manufacturing, modification, and manip-
ulation. In most applications, one should have control over
particle size, shape, surface characteristics, and porosity. The
method should also ideally allow the production of large
quantities of particles with a narrow size distribution. The
most important methods for microparticle production will be
reviewed, focusing on methodologies that have been adopted
or have potential for TE&RM applications.

Emulsification

Emulsification is the most commonly used approach for
the fabrication of microparticles. In this technique, the poly-
mer is dissolved in an organic solvent, and this mixture is in

Figure 1. Schematic representation of distinct uses of particles in the TE field according to size.

(A) Nanoparticles can be used for release of bioactive agents to the cell culture medium (dark arrows) or for cell internalization (light arrows). (B)
Incorporation of microparticles in 3D systems for enhancement of the matrix properties. (C) Use of microparticles for the delivery of bioactive
agents to control cell behavior. (D) Hollow capsules obtained by LbL which, after core-leaching, may contain encapsulated bioactive agents for con-
trolled release or liquefied medium with cells. (E) Microparticles in the range of 100–1,000 lm can be used: (a) in combination with cells to obtain
cell-induced aggregation; (b) to allow the formation of scaffolds with interconnected porosity after particle agglomeration by sintering or solubiliza-
tion methods; (c) as cell microcarriers for cell expansion. (F) Use of hydrogel particles with encapsulated cells for organ printing and mesoscale
self-assembly. (G) Fabrication of 3D porous constructs obtained by a LbL strategy.
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a larger volume of another liquid with opposite solubility.
The method relies on the principle that during the evapora-
tion of the organic solvent, polymeric particles are formed.29

The double emulsion technique is a modification of the pre-
viously referred method, in which a compound (e.g. a bioac-
tive agent) is introduced via emulsion or dispersion in the
system, which allows the encapsulation of several agents.30

Pure polymeric microparticles are usually produced by a sin-
gle oil-in-water (o/w) emulsion. One advantage of this tech-
nique is the ease with which it can be used to generate
microgels. Depending on the process conditions, the size dis-
tribution of the gels can be minimized. On the other hand,
the process typically has a larger size distribution than other
synthesis approaches and there is little control of the result-
ing shapes as the emulsification process typically produces
spherical droplets.31

Spray drying

In spray-drying methodology—which is widely used in
pharmaceutical/drug delivery approaches32,33—a polymeric
solution is directly injected through a heated nozzle and
evaporated by a hot stream of flowing gas. The size of the
particles is dependent on several parameters such as poly-
mer/drug solution loading rate, drying temperature, and
spraying rate.34 The main advantage of this technique is its
reproducibility and the dispersion uniformity that can be
obtained. However, the high temperatures reached during the
processing can induce the degradation of encapsulated
agents.29,35

Hot melt

Hot melt encapsulation is used for the encapsulation of
drugs with polymeric coatings. Presieved drug particles are
mixed with melted polymer, followed by its suspension in an
agitated nonmiscible solvent, heated above the melting point
of the polymer. Particles ranging from 1 lm to 1,000 lm
can be easily obtained, in large-scale production, after the
cooling of the polymer. Narrow distribution of the particle
size can be achieved.36 A major drawback of this technique
is the possibility of denaturation or degradation of the mole-
cules due to the high temperature,29 as well as the impossi-
bility of using it for cell encapsulation.

Gelation

The gelation method uses a polymeric solution, which is
extruded and dropped in a hardening bath containing a
slowly stirred solution responsible for the crosslinking of the
polymer. This technique allows the manipulation of the size
of the particles controlling the diameter of the extrusion nee-
dle, polymer flow rate, or the polymer concentration. Differ-
ent combinations of polymers can be presented in the initial
liquid formulation, including stimuli-responsive macromole-
cules.37 Encapsulation of living cells and other living organ-
isms has been performed using gelation method, which
shows its usefulness in biotechnology field.29,38,39 Such par-
ticles can be then surface modified, using for example layer-
by-layer (LbL) methodology, permitting to produce liquid-
core shells for cell encapsulation40,41 (Figure 1D).

Particles obtained by gelation have already been obtained
using microfluidic systems: Capretto et al.42 used a micro-
fluidics chip (‘‘Snake mixer slide,’’ Thinxxs, Germany) to

test different gelation techniques for sodium alginate. Micro-
particles with ideal size for cell encapsulation (300–600
lm), with spherical shape and narrow size distribution were
obtained by a partial gelation approach: a sodium alginate
solution with small amount of BaCl2 (an ionic crosslinker of
alginate) was injected through a tube, followed by the injec-
tion of an oil phase in another tube positioned in the squeez-
ing channel of the Y-shaped conduct. The particles obtained
in the w/o emulsion were then gellified in a BaCl2 solution.

Superhydrophobic surfaces

A new processing method based on the rolling of water
drops over superhydrophobic surfaces proposes the fabrica-
tion of hydrogel and polymeric spheres depositing drops of
liquid precursors containing the polymer and other substan-
ces onto the surface.43 This method presents advantages over
conventional gelation and emulsion techniques as the contact
of the dispensed drops with an outer liquid environment is
avoided. Encapsulation of living cells is also possible
strengthening the potential of this technology into TE appli-
cations.43 Moreover, this methodology permits the encapsu-
lation of therapeutic molecules with high efficiency and
under mild conditions.44 This processing method also avoids
the exposure of the microparticles to stirring forces and
allows to obtain precise shaped and sized structures. In this
method, the collection of the particles is also facilitated as
the drops can be easily removed as the contact area with the
surface is very small.

Coacervation

In coacervation technique, the solubility of the polymeric
solution is decreased by the introduction of a contrasting
component. Two distinct phases are obtained: one containing
the coacervate phase and other containing the supernatant,
allowing the encapsulation of both hydrophilic and hydro-
phobic drugs.

Compared with the emulsion methods, the loss of polymer
and drug is significantly lowered. As disadvantages, particles
tend to agglomerate, batch-to-batch variability is common
and nonapproved solvents are used.29,45 The parameters that
influence the formation of microcapsules by this technique
have already been studied: according to Dong et al., for pep-
permint oil encapsulation in gelatin/gum arabic capsules, the
pH value of the preparation solution and stirring speed
affected the particle size.46 Also, polymer concentration
affected the shape of the particles. Moreover, the use of dif-
ferent crosslinkers influenced the size distribution of the
particles.

Grinding

The grinding method was proposed by Elkharraz et al.47

In this time-saving approach, microparticles were prepared
by the grinding of thin drug-containing ethylcellulose films
in cryogenic conditions. Because of the low temperatures
and mechanical disruption of the films, this technique is not
compatible with cell encapsulation. Particle size and shape
of the microparticles could be controlled by both films’
thickness and milling time. The encapsulation efficiency as
well as the in vitro drug release depended on the physical
state of the drug in the ethylcellulose matrix (dispersed or
dissolved).
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Electrospraying

Electrospraying (ES) is a slightly modified form of the elec-
trospinning process in which an electric field is applied to a
polymeric solution extruded from a syringe. The applied high
voltage potential forces the polymer to form a jet that, using
specific parameters, enables the formation of micro/nanopar-
ticles. The most important variable distinguishing ES and elec-
trospinning is the polymer concentration used in the process;
ES requires relatively smaller concentrations to generate par-
ticles.48 The great advantage of ES over other commonly used
methods is the fact that it is a one-step process that does not
make use of organic solvents or crosslinking agents. The effects
of low atmospheric conditions in the encapsulation efficiency
have been studied: bigger particles were obtained with decreas-
ing pressure. Moreover, with specific controlled temperature
and pressure, uniform and spherical particles were obtained.49

Cell encapsulation was successfully achieved by Xie and
Wang using alginate beads electrosprayed into a gellifying
CaCl2 solution.50 Particles ranging from 200 lm to 2 mm
could be obtained with narrow size distribution operating
under low flow rates with high voltages applied to the nozzle.

Using this method, poly(lactic-co-glycolic acid) (PLGA)
microparticles could be patterned, with or without adhesive
proteins (such as collagen), into substrates through a mask into
a nonadhesive substrate. After cell seeding, cell patterns could
be seen, as cell growth only occurred in the PLGA particles.51

A variation of this method is dual-capillary ES system,
consisting on two separate flow channels formed by two
coaxially aligned capillaries. It allowed a single-step produc-
tion of monodisperse, 100% drug encapsulation of PLGA-
coated drug particles, with diameters ranging from 165 nm
to 1.2 lm.52 Different from a single-capillary ES system, the
dual-capillary ES system can separate the drug and the coat-
ing material in a core (drug)–shell (polymer) structure.

Supercritical fluid mixing

In supercritical fluid mixing, a polymer/bioactive agent so-
lution is sprayed in a supercritical (sc) fluid (usually scCO2),
which results in the dissolution of the solvent in the super-
critical phase and precipitation of the polymer.29 When a
supercritical fluid such as carbon dioxide is used as a nonsol-
vent, the simple tuning of the processing conditions (pressure
and temperature) can tailor the final structure of the micro-
particles. Also, any subsequent drying step is avoided, as the
obtained porous structure is a dry product free of any resid-
ual solvent. The selective solvating power of supercritical
fluids allows the separation of a particular component from
nontoxics and nonflammables. Furthermore, the structure and
functionality of the incorporated molecules are maintained.11

The polymers must be suitable for the precipitation step,
satisfying requirements in molecular weight, crystal struc-
ture, glass transition temperature, and solubility. Several
works allowed the production of particles in the range of
1–2 lm, whereas in others, particles in the range of 30–120
lm were produced,11,53–56 showing the versatility of this
technique regarding particle size.

Microfabrication

Recently, microfabrication methods have been used to
make nano/microparticles with monodisperse size distribu-
tion, in which solid templates are used.

Soft lithography is a group of techniques using an elasto-
meric mold with topological features to generate micro or
even nanostructures. Guan et al. combined two different soft
lithography strategies to develop a simple approach to fabri-
cate highly uniform polymer microparticles with controllable
sizes, platelike structure, and well-defined lateral shapes
using common polymers.57 However, the collection of indi-
vidual particles after preparation by soft lithography has not
been easy because of the insolubility of the most commonly
used elastomers in mild solvents as water, or to their nonbio-
degradability. Hydrogel templates were considered in the
methodology of collecting the formed particles by simply
dissolving the templates in aqueous solutions, or even to
implant the particles in the body inside biodegradable tem-
plates. For example, gelatin was proposed in this context as
it exhibits a sol–gel transition with temperature that permit-
ted to mechanically produce efficient templates.58 Using
such material, the size of the particles could be adjusted
from 200 nm to [50 lm, the drug loading capacity was
50% or higher, and the initial burst release was minimal.58

Considering microfluidic-based processes, stop-flow lithog-
raphy, a continuous microfluidic process, was applied to pro-
duce a large amount of cell-laden hydrogel particles.59 A
prepolymer solution-containing cells was flowed through a
microfluidic device, and arrays of individual particles were
repeatedly defined using pulses of UV light through a trans-
parency mask.

Applications of Microparticles in Tissue Engineering
and Regenerative Medicine

Microcarriers for cell expansion

Cell expansion is an important issue in most of the
TE&RM strategies as the number of cells harvested and iso-
lated from the patient may not be sufficient. The most com-
mon way of expanding cells is to culture them as a
monolayer on the bottom of a culture dish.2 However, these
substrates are not amenable to scale up because of the larger
growth surface areas required. Microcarrier cultures can pro-
vide sufficient cell numbers of the appropriate phenotype to
assist in the repair or regeneration of damaged or degener-
ated tissue and allow the inclusion of specific GFs or extrac-
ellular matrix (ECM) proteins to further aid proliferation and
differentiation, increasing production capacity with improved
control, reducing requirements for culture medium as well as
labor effort, and lowering the risk of contamination.60

Microcarrier culture was introduced by van Wezel in
196718 to mass-produce viral vaccines and biological cell
products using mammalian cells. Since then, a wide range of
commercially available microcarriers have been successfully
used for the production of a variety of biological products at
the analytical and industrial scales.

The number of cells that attach on the surface of micro-
carriers depends on its diameter (usually ranging from 100
lm to 400 lm), on the size distribution—that must be as
narrow as possible—and in the porosity of the carriers. The
specific density of the microcarriers might also be slightly
higher than that of the culture medium to enable suspension
with agitation. The retrieving of the cells is dependent on
the microparticle composition and in the degree of poros-
ity.17 Some drawbacks are associated with the use of micro-
carriers. The generation of shear stress in the surface of the
microcarriers during stirring in the bioreactors may impair
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cell attachment, growth, and differentiation processes. The
risk of collision between the microcarriers can damage cell
integrity.

Microcarriers have been widely used for cell proliferation
of several tissues such as bone,61,62 cartilage,63–65 blood ves-
sels,66 and skin67 as well as in the differentiation studies.68,69

Malda et al. reviewed the application of microcarriers for
bone and cartilage cell growth.17

There are still issues to be optimized related to the detach-
ment and isolation of expanded cells from these particles.
The use of toxic enzymes—usually trypsin—frequently used
for cell retrieval both in monolayer culture and in microcar-
rier culture has been overcome using poly(N-isopropylacryla-
mide) (PNIPAAm)-containing particles.70 The use of this
synthetic temperature-responsive polymer, exhibiting a low
critical solution temperature (LCST) close to the body tem-
perature, allowed cell detachment with the lowering of tem-
perature, in an analog strategy to cell-sheet engineering,71 in
which the structure of the ECM could be maintained.
Another possibility for cell expansion avoiding exposure to
toxic enzymes for cell retrieving is the simultaneous implant
of the cells with their expansion supports, i.e. the microcar-
riers, in the defect. Considering cases of application of this
concept in the field of skin regeneration, this approach also
allowed the circumvention of the use of GFs and layers of
feeder cells—used in traditional two-dimensional (2D) in
vitro techniques of autologous skin expansion—which may
lead to tissue rejection.72,73

Delivery of bioactive agents

Some studies have addressed different strategies that may
enhance tissue regeneration, most of them involving the use
of GFs. Polymeric microparticles may be used to deliver rel-
evant therapeutic and bioactive factors on implantation in
TE applications. The easiest way to add proteins and pep-
tides to polymeric systems is their direct loading into the
polymeric matrix. However, if proteins are incorporated into
hydrogels without any further modification, typical release
profiles show a rapid burst release during the initial swelling
phase. If the retardation of protein release from the presented
approaches is not sufficient to provide enough protein for
long-term applications, carriers may be added to hydrogels
to retain the bioactive factors for an extended time. Such
systems may be made of different biodegradable and nonbio-
degradable materials offering a tunable control over the
release rate. Using nondegradable systems, protein transport
out of the device is driven by diffusion and specific interac-
tions between the protein and the matrix. Mass transport
occurring through polymer chains or pores is the only rate-
limiting step of the process. In degradable systems, the par-
ticles inside the hydrogel degrade and the encapsulated pro-
tein is released.74

Tabata and coworkers proposed the use of polyanhydride
microspheres for controlled release of proteins75,76 for
TE&RM strategies. The same group has developed gelatin
particles for the treatment of arteriosclerosis obliterans by
the release of erythropoietin,12 regeneration of intravertebral
disc by the delivery of platelet-rich plama,77 and osteoarthri-
tis using basic fibroblastic growth factor (bFGF) testing their
effectiveness in animal models.78 More works using micro-
particles in this ambit have been developed by these authors
regarding osteochondral regeneration as well as the induction
of angiogenesis.79–82

Distinct biomaterials have been proposed for the delivery
of bioactive agents from particles. For example, Santo et al.
proposed carrageenan as a material to develop hydrogel
beads with the ability to incorporate GFs, with the purpose
of stimulating angiogenesis, obtaining a controlled release
profile.83 Bessa et al. have used silk fibroin for the loading
of human recombinant bone morphogenic proteins (BMPs),
and tested its release in vitro and in vivo.84

A different approach for the delivery of bioactive agents
relies in the application of external stimuli to trigger the
release, instead of strategies purely relying on the degrada-
tion or diffusion of the drug from the microparticles. Soon-
tornworajit et al. developed a hybrid particle–hydrogel for
oligonucleotide-mediated pulsatile protein release at-will.85

Affinity particles (composed of streptavidin-coated polysty-
rene) were functionalized with aptamers (biotinylated
aptamers) and embedded in agarose hydrogels. Aptamers
bind strongly to proteins, which in this case was platelet-
derived growth factor (PDGF). The release of the GF from
the aptamer was triggered by a CO-mediated aptamer–pro-
tein dissociation. The release experiments showed that the
protein release rate in the aptamer-incorporated hybrid dra-
matically decreased in normal conditions as compared with
the control composite.

Considering specific applications of microparticles in tis-
sue repair, several examples will be explored focusing on
applications for bone, cartilage, and neuronal tissues.

Regarding bone repair, single-GF delivery strategies have
been proposed. For example, Meinel and coworkers sug-
gested a strategy for bone regeneration by releasing insulin-
like factor I loaded in PLGA incorporated in an alginate–
tricalcium phosphate composite particles.86 Also, Ichinohe
et al. developed a system tested in rabbit skull defects using
titanium nonwoven fabrics combined with fibroblast growth
factor-2 (FGF-2) release from gelatin hydrogel micro-
spheres.87 However, and especially in bone TE, the presence
of different bioactive agents may be needed at different
stages of the healing process and tissue regeneration, in
which both the formation of mineralized tissue and the pene-
tration of the structure by a highly vasculatized structure are
important. Therefore, it is reasonable to consider concepts in
which dual or multiple release of different molecules takes
place with different release profiles. Mooney and co-
workers10 developed a platform in which the first approach
involved the mixing of lyophilized vascular endothelial
growth factor (VEGF)—a well-established initiator of angio-
genesis—with PLGA particles before processing the polymer
into a porous scaffold; this resulted in a rapid release profile
of VEGF. The second approach involved pre-encapsulating
some GF (in this case, PDGF) in PLGA microspheres and
then fabricating scaffolds from these particles. The combina-
tion of both approaches was utilized to incorporate VEGF
and PDGF, which promotes the maturation of blood vessels
by the recruitment of smooth muscle cells to the endothelial
lining of nascent vasculature into scaffolds. Also, a sequen-
tial VEGF and BMP-2 delivery, using PLGA microspheres
loaded with BMP-2, embedded in a polypropylene scaffold,
surrounded by a gelatin hydrogel loaded with the endothelial
GF could be obtained. In combination with local sustained
BMP-2 release, VEGF significantly enhanced ectopic bone
formation compared with BMP-2 alone; however, in the
orthotopic defects, no effect of VEGF on vascularization was
found, nor was bone formation higher by the combination of
GFs, compared with BMP-2 alone.88
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Regarding cartilage tissue regeneration, several approaches
have been developed. Considering pure microparticulate sys-
tems, PLGA microspheres were loaded with transforming
growth factor-b3 (TGF-b3), successfully leading to the chon-
drogenic differentiation of mesenchymal stem cells
(MSCs).89 Injectable biodegradable hydrogels (composed of
oligo(poly(ethylene glycol)fumarate) with laden-MSCs, com-
bined with gelatin microspheres loaded with TGF-b1 GF
was also used proposed for cartilage regeneration.90

Aiming neuronal tissue repair, injectable degradable par-
ticles composed of PLGA, poly(L-lactic acid) (PLLA), and
poly(ethylene glycol) (PEG) were proposed for the delivery
of brain-derived neurotrophic factor (BDNF). A prolonged
release was obtained for periods of time greater than 60
days, and the delivered BDNF was bioactive.91 Also, mag-
netic alginate microspheres were used for the positioning
and controlled delivery of nerve growth factor (NGF), allow-
ing the precise control of the delivery place.92 PLGA micro-
sphere composition has also been modulated to control the
burst effect. However, the formulations with more appealing
controlled delivery response showed increased NGF
denaturation.93

Incorporation of microparticles in traditional tissue
engineering matrices

The incorporation of particle systems in conventional
hydrogels or scaffolds might have different objectives in TE
strategies, such as the insertion of GFs and differentiation
agents in the system by encapsulation in microparticles,
which has been discussed in the previous section. This sec-
tion will focus on the effect of introducing microparticles in
matrices for the enhancement of some property of the ma-
trix, such as mechanical properties, degradation, cell migra-
tion, or production of porosity.

The generation of porosity in compact structures has been
used to allow cell penetration and migration in a biomaterial
structure. Pectin degradable polymeric microparticles in cal-
cium phosphate cement were suggested for porosity induc-
tion. This also allowed an adequate drug release profile from
the same structure.94 After 4 months, the cement structures
were macroporous and interconnectivity between pores could
be seen. A similar approach has been developed by Ruhé
et al. suggesting the incorporation of porous PLGA particles
in a cement.9 Relying on the in vivo hydrolysis of the par-
ticles (the tests were performed in rats for 12 weeks), a mac-
roporous structure was obtained. An approach based on the
enzymatic degradation of poly(trimethylene carbonate)—a
material with rubberlike properties—microparticles in a ce-
ramic cement also allowed to obtain macroporosity in the
presence of enzymes; in this case, although the compressive
strength of the composite decreased with the loading of the
particles, the toughness was improved, preventing the frag-
mentation of the cement.95

The incorporation of polymeric particles in hydrogels or
sponges has also been used to improve the mechanical prop-
erties, namely the stiffness of these structures. Different
approaches have been performed, either having the micropar-
ticles of a similar material of the matrix or incorporating
particles of a different material. Injectable scaffolds com-
posed of PLGA microparticles in a chitosan hydrogel have
been prepared.96 The final composite hydrogel showed lower
swelling ratio than the chitosan hydrogel, and higher elastic
stiffness. Also, Kaplan and coworkers have developed a

structure consisting of incorporated silk microparticles in a
silk sponge, to increase the elastic stiffness of the construct.
They observed that having increasing values of elastic mod-
uli with the increasing load of microparticles per sponge,
that also shown to affect the differentiation of MSCs in
osteogenic lineage and calcium desorption in the presence of
BMP-2 and other osteogenic factors.97

Cell encapsulation, organ printing, and mesoscale self-
assembly

Cell encapsulation is a strategy in which a pool of living
cells is entrapped within a semipermeable polymeric matrix,
which can have the form of a microparticle.98–100 Also, it
aims to protect the transplanted cells from attack by the host
immune system without immunosuppressive agents.

Cell encapsulation in biodegradable hydrogels has been
widely studied99 and offers numerous attractive features for
TE, including ease of handling and a highly hydrated tissue-
like environment for cells.101 Cell microencapsulation and
implantation provides a promising platform for cell therapy
to treat a vast array of clinical disorders.102 Immobilized
cells may be used to produce new tissues or bioactive agents
with therapeutic effect. The main advantage of the microen-
capsulated cell-based delivery system is the continuous pro-
duction and secretion of the bioactive agents from the
microencapsulated cells, thereby eliminating the requirement
for purification and encapsulation of unstable therapeutic fac-
tors and the need for multiple dosages.

Alginate is the most commonly used polymer for encapsu-
lating cells as it can be easily gellified in mild conditions, is
noncytotoxic, and its quality can be constantly ensured. The
mechanical strength and elasticity of these encapsulating
structures should be high enough to guarantee consistent
therapy over prolonged periods, and their manufacturing pro-
cess must not only be reproducible but also meet the
demands for medical approval.103 Other polysaccharides
such as carrageenan have been proposed to encapsulate cells
in particles.104

The deep understanding, biomimicking, and using of de-
velopmental mechanisms of embryonic histogenesis and
organogenesis can represent a promising step for developing
new TE solutions.22 Regarding this concept, self-assembled
tissue spheroids—obtained by cell encapsulation techni-
ques—can be used as a possible alternative to classic solid
biodegradable scaffold in a bottom-up LbL approach for the
processing of artificial organs. In this application, micropar-
ticles—composed of a material and encapsulated cells—rep-
resent a ‘‘bioink’’ that takes part in a scale-up technology.
Two approaches can be explored in this concept: the place-
ment of drops that harden in place, which can be considered
analogous to an ‘‘inkjet’’ system, or the assembly of prefabri-
cated ‘‘voxels,’’ i.e., the spheroids is used as building blocks,
as represented in Figure 1F.

These systems represent the arising of new demands in
TE&RM: (i) high cell density for fast tissue assembly and
(ii) the development of tissue maturation methods. Moreover,
new approaches on materials design are required; although
conventional TE&RM systems play a role of cell growth
substrate, they are also expected to serve as mechanical sup-
port to the site of the defect while new tissue in in vivo con-
ditions is formed; however, fast degradation rates are
required in organ printing, so the microspheres can serve just
as a support for cell growth and assembly in in vitro
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conditions, and once mature cells are obtained, the remaining
system is the new tissue. Organ printing advantages rely on
the fact that it is an automated technique that offers a path-
way for scalable, reproducible, mass production of tissue
engineered products. The positioning of different cell types
can be fully controlled in three-dimensional (3D) arrange-
ments; high cell density tissue can be created and the prob-
lem of vascularization in thick tissue constructs can be
solved even in in situ conditions.22

Jakab et al.105 demonstrated that closely placed cell aggre-
gates in 3D gels can self-organize into metastable tissue con-
structs of desired shape. Moon et al.106 developed a
bioprinter that can be used to print 3D patches of smooth
muscle cells encapsulated in collagen enabling multilayered
structures with controlled spatial resolution. In this work, a
gradient of concentration of collagen could be obtained
along the increasing height of the system, which shows the
potential of this technique to create patterned 3D constructs.
Rivron et al.107 reviewed several aspects on tissue assembly
and organization, such as the design of the initial geometry
of the patterns, which showed influence in the arrangement
of the structure, type of produced ECM and in the type of
load mechanical forces, which can influence expression of
genes and proteins, cell proliferation, and migration, among
others. Other analyzed factors were the integration of sig-
nals, the manipulation of cell adhesion and ECM properties
and cell as the integration of native features of the system,
such as vascular or neural networks.

A close attempt to obtain shape-controlled systems is the
application of mesoscale self-assembly, also known as the
micromasonry approach—which relies in the self-regulated
aggregation of smaller units to obtain an object with a
desired shape. This concept can be observed in nature, for
example, in the formation of coral reefs. Self-assembly is a
natural attempt of lowering the energy of the system, and
usually the most common interactions between the units are
of hydrophilic/hydrophobic character.108 Khademhosseini
and co-workers109 demonstrated a method for creating centi-
meter-scale cell-laden hydrogels through the assembly of
shape-controlled PEG microgels randomly placed on the sur-
face of a high density hydrophobic solution. The self-assem-
bly process was guided by the surface-tension forces at the
liquid–air interface. The same group also surveyed the cur-
rent techniques for controlling cell aggregation, proliferation,
and extracellular matrix deposition, as well as approaches to
generating shape-controlled tissue modules.110

Microparticle aggregates

Regarding microparticle aggregation, two distinct
approaches have been proposed, namely the production of
scaffolds by microparticle agglomeration or the formation of
hybrid systems mediated by cell aggregation.

Microparticle Sintering/Agglomeration. The micropar-
ticle sintering/agglomeration approach relies in the random
packing of microspheres with further aggregation by physical
or chemical means to create a 3D porous structure. Several
works have been proposed aiming the production of 3D scaf-
folds, and both natural and synthetic materials have been
used.

Although this approach is interesting because of the con-
trol of pore size of the scaffold by controlling the size of the
particles,111 avoiding typical procedures such as salt leach-
ing112 or gas foaming26 and other porogen use, these struc-

tures lose their injectability potential. The porosity of the
obtained scaffolds is generally low but the interconnectivity
between the pores is kept.

Laurencin and coworkers have applied this technique for
the development of synthetic-PLGA-based microsphere mat-
rices for bone repair. The researchers have tried different
approaches by developing sintered microsphere-based matri-
ces14,15,113 or gel microsphere matrices.113 In sintered micro-
sphere matrices, the microspheres were first obtained by a
solvent evaporation technique. The 3D structures were then
processed by heating the prefabricated PLGA microspheres
above the glass transition temperature. The polymer chains
were fused with neighboring polymer chains and thus form
contacts between neighboring microspheres. In this case, no
hydroxyapatite was incorporated in the particles. In the gel
microsphere matrix methodology, the PLGA gel micro-
spheres are obtained by emulsion with poly(vinyl alcohol)
(PVA), and hydroxyapatite was incorporated. After agglom-
eration more production steps were followed including air
drying, freeze drying, rehydration with salt leaching, and
freeze drying again. Sintered particles showed to be more
versatile than particles obtained by gel microsphere matrices
and to have more adequate pore interconnectivity for bone
TE purposes. Although the gel microsphere matrices showed
higher elastic modulus due the incorporation of hydroxyapa-
tite, the final pore interconnectivity was not appealing for
cell proliferation.113

The in vitro behavior of sintered hybrid chitosan/PLGA
microparticles has also been tested. Pore sizes, pore volume,
and mechanical properties of the scaffolds could be manipu-
lated by controlling fabrication parameters such as sintering
temperature and sintering time. The presence of chitosan on
microsphere surfaces increased the alkaline phosphatase ac-
tivity of the preosteoblastic cells and upregulated gene
expression of osteogenic markers.114 Considering the sinter-
ing technique, a drawback resulting from the use of heat as a
particle binder is the impairment of cell encapsulation in the
particles or the possible denaturation of loaded bioactive
agents.

Singh et al.115 have prepared PLGA particles by precision
particle fabrication (based on a spraying technique) and the
integration between particles was achieved by ethanol soak-
ing. Bilayered, multilayered as well as GF-containing-gradi-
ent-scaffolds were obtained. In a recent work, the same
author has prepared microparticle-based scaffolds without
the use of sintering agents such as heat and solvents, which
are not cytocompatible. The cell viability was maintained
using subcritical CO2 for the sintering of the particles in the
presence of cells at near-ambient temperatures. Moreover,
the foaming properties of CO2 allowed the structure to have
interconnected porosity.116

Regarding the use of natural-origin polymers, Malafaya
et al.16 have developed chitosan scaffolds also prepared by
agglomeration of microparticles. The particles were prefabri-
cated by precipitation and agglomerated in a heat-induced
process. Scaffolds obtained by this technique were proposed
for osteochondral regeneration by the effective differentia-
tion of adipose tissue-derived MSCs in osteogenic and chon-
drogenic media.16 A bilayered scaffold was further produced,
consisting of a composite part (composed of chitosan and
hydroxyapatite composite) and a purely chitosan composed
part, linked by a chemical crosslinking process, responsible
for an integrative bone and cartilage interface. The scaffolds
were cultured in a bioreactor, which allowed the immersion
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of the different parts in different media, in which the bone
part was able to mineralize and mineralization of the carti-
lage part was impaired.117

Chitosan particles were also preloaded with insulin to
assess its effect in chondrogenic differentiation. High encap-
sulation efficiency and adequate release profiles were
obtained, as well as chondrogenic differentiation of a pre-
chondrogenic murine mesenchymal cell line.118 The assess-
ment of the mechanical properties was further performed,
concluding that particle agglomerated structures show high
mechanical properties, as well as the in vivo performance of
the structures in rat muscle-pockets models, which showed
that the in vivo functionalities can be obtained, including
neovascularization of the tissue in early stages of
implantation.119

In a different concept for the use of microparticles, the as-
sembly of paraffin particles was recently proposed so they
are used as sacrificial templates to construct scaffolds for
TE. Free packet paraffin particles were precharged and fur-
ther coated with natural-origin polyelectrolytes of opposite
charges (positively charged chitosan and negatively charged
alginate) using a 3D LbL methodology based on a perfusion
technique; the particles were then leached out to produce
scaffolds with walls just composed of nanostructured multi-
layers (Figure 1G), presenting mechanical integrity and high
in vitro compatibility.120

Cell-Induced Aggregation. Isolated particles and cells
previously incubated on their surface may be used to be
injected to a defect using minimal invasive procedure and
avoid aggressive strategies for cell detachment, such as the
use of enzymes. Particle agglomeration after implantation is
expectable as a consequence of cell proliferation and ECM,
as represented in Figure 1E(a). Playing the role of a 3D scaf-
fold, those systems emerged as an alternative for traditional
TE systems, that is, porous scaffolds and hydrogels.

A traditional porous scaffold is not an injectable system,
thus requiring invasive surgery procedures to place it in the
defect spot. Obtaining a scaffold with the adequate shape of
the defect may be achieved using computer tomography
techniques and relying on the surgeon technique to adapt the
scaffold to an ideal shape during the surgery.

Injectable hydrogels have been considered a convenient

TE strategy121,122 due to the possibility of cell encapsulation

in a highly hydrated ECM-similar viscoelastic milieu where

the cells proliferate,2 allowing cell delivery after degradation

of the hydrogel and avoiding cell seeding posterior to hydro-

gel manufacture. However, some disadvantages have been

pointed to hydrogel systems: the ability to homogeneously

encapsulate cells has been questioned because of the deposi-

tion of the cells on extremes of the hydrogel where the

access to oxygen is easier,21,123 and the cell spreading with a

correct morphology due to the high content of water has not

been observed. Microparticle systems for implantation share

the advantage with traditional scaffolds of allowing cells to

proliferate in a solid substrate, which is essential for the

attachment of adherent cells. Such systems lead usually to

construct with better mechanical properties when compared

with hydrogels, which are not considered appealing for some

tissue regeneration applications such as bone.

Microparticles for cell-induced aggregation have been pro-
duced from both synthetic materials and natural polymers.
The mostly used synthetic material in the processing of
microparticles in the context of cell-induced aggregation has

been PLGA.45,124–126 To obtain cell-induced aggregation of

microparticles, PNIPAAm has been grafted with acrylic acid

to control microparticle syneresis—a time-dependent shrink-

age effect on thermoresponsive polymer hydrogels—which

was proven to affect cell viability and proliferation, compro-

mising the binding of the microparticles by cells.127 Also,

cell-induced aggregates were obtained using particles from a

recombinant elastinlike polymer (ELP) in a study about the

influence of particle crosslinking in the formation of aggre-

gates.128 The studied osteoblastlike cell line was sensitive to

the variation of crosslinking degree of the particles, showing

ability to form aggregates only in the highest crosslinking

condition. Among natural polymers, gelatin microcarriers are

the most commonly used for TE. In the majority of the

cases, commercially available gelatin microbeads are chosen

in this context as their cytotoxicity is already studied, pro-

duction protocols are already optimized, and there is a wide

availability of different sizes and porosities.28,129–131 Chito-

san particles have also been prepared by several processing

techniques such as emulsion, spray drying, and ES.27,132,133

The use of collagen has also been proposed as well as

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).134,135

The production of blended constructs has also been pro-

posed. PLLA microparticles have been grafted with chito-

san-graft-lactose, which is nontoxic to chondrocytes and can

stimulate the biosynthesis of chondro-specific ECM in a 2D

culture.19 The formed hybrid structures of cells/microcarriers

have PLLA bulk properties, which maintain the cell pheno-

type, and are expected to deliver the chondrocytes to the car-

tilage defects in an injectable manner.

To stimulate osteoconductivity, PLGA microspheres have
been immersed in simulated body fluid (SBF) to induce the
production of apatite, obtaining a polymer/ceramic osteo-
conductive composite-coated system adequate for bone
TE.136

The degree of aggregation can be regulated controlling
different culture conditions, including mixing intensity in
dynamic cultures, particle size, particles porosity, surface
morphology and charge, oxygen tension, duration of culture,
initial cell number, and degree of crosslinking, among others.
The following paragraphs will focus on the discussion of the
effect of these parameters in cell-induced aggregation of
microparticle strategies and in supporting examples.

Stirring speed, which leads to shear stresses in the surface
of the microparticles, has been shown to affect the differen-
tiation of human pluripotent stem cells (HES-3), downregu-
lating the expression of pluripotent makers, compared with
the results obtained in static cell culture conditions.137 On
the other hand, the performance of dynamic cell culture in
microcarriers loaded with osteoblastlike cells enhanced the
expression of osteogenic markers and mineralization,138

showing that this parameter requires specific study to differ-
ent cell types. A problem related to the speed of agitation of
the microparticles is the increasing probability of collision
between particles with increasing speed, leading to cell struc-
ture damage, as well as to the decrease of cell/microcarrier
contact time.139

Porosity of the particles is also an issue affecting cell pro-
liferation ability. Macroporous systems allow increased sur-
face area per bead, thus allowing the attachment of a larger
number of cells.139 Moreover, porosity permits an efficient
diffusion of nutrients and oxygen and makes neovasculariza-
tion of new formed tissue easier.9,26,131
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Oxygen tension is an influencing variable in the differen-
tiation of chondrocytes when cultured in microcarriers. Low
oxygen tension did not affect the proliferation of these cells;
however, it allowed for the maintenance of chondrogenic
phenotype, avoiding undifferentiation.140

A high initially seeded cell number in the microparticles
can allow a faster covering of the particles.141 Considering
an example of ceramic particles cultured with osteoblastic
cells, when seeded at high density, the cells adhered well to
the microsphere surface, bridging the surface gaps during the
first 5 days and proliferating actively with prolonged cultur-
ing, covering the surface almost completely after 15 days.
Although cells seeded at low density adhered well and multi-
plied with increasing culturing time, they could not effec-
tively cover the entire surface of the microspheres even after
15 days of cell culture.142

Surface properties of the microparticles also influence cell
behavior. For example, surface roughness and general topog-
raphy influence the ability for cells to attach and prolifer-
ate.28 For example, gelatin particles with diameter ranging
from 280 lm to 350 lm were fabricated by cryogenic freeze
drying and modified by incorporation of bFGF.143 Micropar-
ticles with gyrus-patterned surface demonstrated the highest
cell attachment rate and higher cell growth, in particular on
bFGF combined particles. Also, the charge of the particle
surface can determine the adsorption of proteins, which are
the intermediates for efficient cell adhesion.144

The degree of crosslinking of the particles as well as the
nature of the crosslinker can affect properties of the particles
such as stiffness, which has been proved to affect stem cell
differentiation145 and osteoblastlike cell proliferation and
mineralization ability.146 The crosslinking parameters of
microparticles also affect their degradation rate and the form
of the degradation debris of the particles.133

Considering the time needed for aggregation of particles

by cells, analyzing examples from Table 1, for particles

ranging approximately from 50 lm to 350 lm, and consider-

ing different cell types, after 7 days of cell culture, particle

aggregation has not usually occurred. However, in general,

after 14 days, particle aggregation can be observed.

Although these are the most common results, this does not

mean that some cell types characterized by rapid prolifera-

tion rates cultured in optimal conditions could not induce a

faster particle aggregation. On a bioreactor specially pre-

pared for particle agglomeration, after 10 days of cell culture

in porous particles, a skinlike cell construct was obtained in

vitro, forming agglomerates of apparently 1 mm.130 Consid-

ering in vivo studies, for example in rabbit knees, PLGA

particles were injected in a 6 � 3 mm2 � 2 mm defect, and

after 6 weeks, a tissuelike structure was formed.125 However,

cell aggregation, as the phenomenon studied in in vitro con-

ditions, started much earlier. In conclusion, the time frame

in which cells are able to agglomerate particles may vary

according to the tissue type and several cell culture condi-

tions, which makes this topic a difficult, yet interesting,

discussion.

Microcarriers seeded for short periods of time can provide
constructs suitable for injection, which can be delivered into
defects. However, in large defects, tissuelike materials
obtained from larger cell culture times might be useful.

Several cell culture conditions showed to be effective in
the formation of cell/microparticle aggregates. Static cell cul-
ture in tissue culture plates has been performed by Gan

et al.127 and Cruz et al.132 However, to guarantee an even
adherence of the cells in the particles, agitation of the par-
ticles—manually,19 with an oscillatory stirrer28,124 or using
spinner flasks126—has been performed for a few hours before
the culturing in static conditions. Dynamic cell culture has
been proven to enhance mass transfer, improving the access
of cells to oxygen and nutrients and an effective waste elimi-
nation. For cell expansion purposes, dynamic cell culture
conditions using a spinner-flask bioreactor is the commonly
used strategy, which has already been used for the formation
of aggregates as well.27,147

In Table 1, the state of the art on cell-induced particle
aggregation systems is presented, considering the used mate-
rials, processing methods, studied parameters, cell culture
conditions, and intended tissue application.

An Overview of the Materials Used for Microparticle
Production: From the Lab to the Market

Regarding the particular case of microparticles, one of the
most widely used polymeric materials is PLGA, a slowly
biodegradable, noncytotoxic, and Food and Drug Administra-
tion (FDA)-approved synthetic polymer. The use of synthetic
polymers in TE&RM is known to show some hampers;
although they can be easily modified to change their chemi-
cal composition and molecular weight, polyesters such as
PLGA and PLLA release acidic degradation products, and in
opposition to natural polymers, their chemical structure is
not similar to the natural ECM.149 Although natural-origin
polymers contain domains similar to biological macromole-
cules, which are metabolically recognized, and generally
avoid the stimulation of chronic inflammation and immuno-
logical responses, their mechanical properties are usually
lower than the ones of synthetic polymers. However, an
appropriate mechanical strength of materials is required in
several TE applications, as well as efficient degradation pro-
files. The two opposite properties have been balanced by the
combination of natural and synthetic polymers.150,151

The most commonly used natural polymer in particulate-
shaped systems aiming for the production of scaffolds com-
posed of agglomerates of particles—either by sintering or by
cell-induced aggregation—is chitosan, a marine-derived
polysaccharide. Besides possessing interesting chemical
properties, such as groups that allow chemical crosslinking
for the improvement of mechanical properties, biologically,
it is a polymer with low cytotoxicity and antimicrobial activ-
ity.152 Regarding cell encapsulation, alginates—an algae-
derived class of polymers—are often used for their biocom-
patibility and mild ionic crosslinking conditions.149 Gelatin
has also been widely used to produce particles, either for
cell encapsulation or for cell-induced aggregation. This ani-
mal-origin polymer, despite its considered cytocompatibility,
has led to some problems such as contaminations and aller-
gies, which are frequently seen as a limitation.149 For cell
expansion purposes, commercially available dextran (Cyto-
dex 1 and Cytodex 2), collagen-coated (Cytodex 3), and gel-
atin (CultiSpher) microcarriers are available.17 The most
widely used polymer for this purpose is dextran, a natural
polymer produced by some bacteria,153 which has shown to
facilitate cell attachment and proliferation of a wide range of
cells.17

Stimuli-responsive materials have risen as an interesting
way of controlling the behavior of biomaterials, for example,
for delivery of bioactive agents in a controlled manner (‘‘at-
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will’’) or for cell retrieval from microcarriers.154 The most
common responsive polymer is PNIPAAm, which has a
LCST around 32�C, which allows a change in the polymer
conformation by simply varying the temperature. However,
this polymer shows important drawbacks for TE&RM appli-
cations, as it is nonbiodegradable, limiting its implantation.

The relevance of new advanced polymers has recently
increased in the microparticle processing field. Polymers
such as silk fibroin, which shows enhanced mechanical prop-
erties and biocompatibility, have been used for the delivery
of BMP-2.84 Moreover, tailored polymers obtained by
genetic engineering such as ELPs, which show reversible re-
sponsive behavior to several external stimuli such as temper-
ature and pH, allow the total control of the structure of the
polymer. This control allows the insertion of bioactive
domains in the polypeptidic chain aiming, for example, for
mineralization or improved cell adhesion, as well as for the
control of the degradation of the structure.155 Such polymers
may be also used to produce thin smart coatings.156

Some examples of the use of microparticles in clinical
field and already published clinical trials can be seen in Ta-
ble 2. Despite the broad range of materials that have been
proposed for TE&RM applications, the amount of biomateri-
als used in human clinical practice is very restrict, and still
focusing in synthetic biodegradable polyesters such as
PLLA. The range of applications is still restrained to aes-
thetic subcutaneous filling. Considering the performance of
clinical trials, other materials such as PLGA and hyaluronic
acid have already been authorized for clinical use in applica-
tions such as drug delivery and aesthetic filling, respec-
tively.165,166 However, published clinical trials with
microparticles are still stuck in the use of widely studied and
classical materials, such as alginate and gelatin (see Table
2). The use of advanced materials is still very limited in the
context of microparticles for TE&RM, although promising
data have been reported concerning response to external
stimuli.

Conclusions and Future Perspectives

The use of microparticles in the medical field, which has
started with drug delivery applications, has been adapted to
TE strategies in several approaches. From the first explored
concept of cell expansion, by van Wezel, in 1967, particles
have taken part in complex cell therapy strategies (in nano-
scale conditions)3 as well as in the delivery of specific frag-
ile macromolecules for induction of tissue regeneration.
They have also been applied as tools for innovative TE scaf-
fold construction, by their fusion or even as injectable sys-
tems for in situ scaffold formation, avoiding complicated
surgery procedures.

However, new possibilities are open for the use of these
versatile structures. Polymers that respond to external stimuli
have been proposed for different biomedical applications;154

however, there are not many studies reporting the use of par-
ticles made from such smart biomaterials in TE applications.

Specific applications of such smart particles are in cell
expansion, where cell detachment could be facilitated by the
action of temperature or other variable, and in the controlled
release of therapeutic soluble factors.

Surface micropatterning has shown to influence cell
behavior.167 Different approaches were already developed168

to control the topography of surfaces or cell patterning in 2D
substrates.169 Interesting approaches could be achieved if
one could transpose such surface modifications to 3D par-
ticles, which is a nonstraightforward task. Dipping techni-
ques, such as LbL, are possible methodologies that permit to
modify the surface in nonflat structures up to some extent.

Particles with material gradients along the radius could
also bring new possibilities in tailoring the degradation pro-
file or controlling the release profile of bioactive agents.
Hydrogel particles could also exhibit a controlled spatial dis-
tribution of cells, or combinations of different cells, that
could bring new insights in microparticles for TE&RM.

Hierarchical systems combining particles on other objects
at different length scales could also be envisaged, to develop
more sophisticated multiple release devices and to combine
multifunctional features in microparticulate biomaterials. In
resume, there are still different directions to be followed to
design, produce, and use microparticles specifically in
TE&RM applications. Such developments should be accom-
panied by efforts to translate the resulting knowledge into real
clinical applications, where regulatory issues should be con-
sidered as well as the commercial viability of the products.
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