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Abstract –We study the effect of extended charge defects in electronic transport properties of
graphene. Extended defects are ubiquitous in chemically and epitaxially grown graphene samples
due to internal strains associated with the lattice mismatch. We show that at low energies these
defects interact quite strongly with the 2D Dirac fermions and have an important effect in the
DC-conductivity of these materials.

Introduction. – Graphene crystals isolated by the
exfoliation method [1] are high quality films, with high mo-
bilities even on a SiO2 substrate. While exfoliation works
well for the study of the fundamental physical properties
of graphene [2] it is not a scalable process useful for tech-
nological applications [3]. At the present time, the most
promising scalable growth methods of graphene films are
either based on epitaxial growth on SiC [4] or on chemical
vapor deposition (CVD) of graphene on metal surfaces [5].

Graphene growth on crystal substrates, independently
of the process, is subject to strain due to lattice mismatch
between graphene and the substrate. The strong sigma
bonding between the carbon atoms makes the graphene
lattice very stiff (the spring constant is of order of 50
eV/Å2) and hence in-plane deformations are energetically
costly. Because graphene is the ultimate example of a 2D
film, the strain can be release by two main mechanisms,
namely, either by going out of the plane or by the recon-
struction of the chemical bonds.

By exploring the third dimension the graphene film pays
the energetic price of bending (the bending rigidity is of
order of 1 eV) and the loss of interaction energy with the
substrate (which is usually a mix of covalent bonding and
van der Waals interaction). In certain cases, the energetic

price of forming wrinkles and blisters in the graphene film
is smaller than the price of creating structural defects such
as pentagons, heptagons, and octagons. STM studies have
shown that epitaxial graphene grown on 6H-SiC actually
bends and buckles as a result of the compressive strain [6].
The same effect is observed in samples grown by CVD on
Cu [7]. In other cases, when the the interaction between
graphene and the substrate is strong, it is energetically
preferable to reconstruct the bonds with the formation
of lines of defects. This is what happens, for instance, in
graphene grown by CVD on a Ni surface [8]. The surface of
the film reveals the presence of extended one-dimensional
defects. These defects are lines of periodic cells made of
two pentagons followed by one octagon.

The general conclusion is that the intrinsic 2D nature
of graphene makes the presence of one-dimensional ex-
tended defects in artificially grown graphene samples a
norm. The formation of extended structural defects in
graphene has strong consequences for the electronic prop-
erties. On the one hand, localized bending and strain
can lead to the appearance of strong “pseudo-magnetic”
fields that create localized Landau levels. This is the main
idea behind the concept of strain engineering [9]. On the
other hand pentagons, heptagons, and octagons, act as
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Fig. 1: Tapping mode atomic force microscope (AFM) image
of a CVD graphene film transferred on SiO2. Different ther-
mal expansion of the Cu foil and the graphene sheet result in
the formation of a few nm high ripples. Locally cracks can
form during the transfer process and occasionally one is left
with PMMA residues. Inset: Hall bar device used to measure
the conductivity of CVD grown graphene (scale bar is 5 µm).
Representative data is given in Figs. 2 and 4.

donors and/or acceptors relative to the normal benzene
ring configuration, and hence also leads to charge local-
ization [10]. All these mechanisms are examples of the
more general concept of self-doping in sp2 bonded carbon
[11]. The existence of the localized states at the defect
line lead to transfer of charge from the bulk of graphene
to the defect — charge accumulates at the extended de-
fect, creating charged lines. Such type of scattering lines
can be the limiting scattering mechanism of the electronic
mobility in these graphene films. Furthermore, experimen-
tal studies show that these extended defect lines intercept
each other at random angles, forming irregular polygons
with edges showing stochastic distribution of length. A
study of the electronic scattering in chemically produced
graphene needs to take into account such types of random
distributions in order to correctly describe the effect of the
extended charge defects in DC-transport.

This Letter is organized as follows; we begin by outlin-
ing the experimental procedure used to produce the CVD
graphene samples and briefly characterize the extended
defects seen in the microscopy studies. Then, the main re-
sult is presented and tested against DC-conductivity data
for several CVD graphene samples. In the remainder we
discuss in detail the model of extended charge defects, the
effective scattering potential and its contribution to the
semi-classical conductivity. Last, finer points of our cal-
culation, such as the effect of disorder in the length distri-
bution of the defects, and the electron-hole asymmetry of
electronic cross-sections due these defects are discussed in
separate sections.

Outline. – The theory described below has been used
to interpret the transport data of graphene grown using
the roll-to-roll method [12]. An AFM image of a CVD
graphene film transferred to SiO2 is shown in Fig. 1; ex-

Fig. 2: Conductivity measured in CVD synthesized graphene
at T=3.5K (data points shown in blue) [5] is fitted to Eq. 1 as
function of V = Vg −Vmin (dashed line). The optimal parame-
ters are found to be W ' 14.6nm; γ ' 2.14×1011cm−2(V ≥ 0)
and γ ' 2.28 × 1011cm−2(V < 0). The inclusion of midgap
states (i.e. resonant scatterers) is shown in thick lines [red
(V ≥ 0) and green (V < 0)] and modifies γ to 1.15× 1011m−2

(V ≥ 0) and 1.27× 1011m−2 (V < 0). The midgap parameters
are ns = 1.6× 1011cm−2 and R = 2a0, with a0 = 0.14nm; the
experimental data was shifted as to have a minimum of zero
at the Dirac point (Vmin '5.5V and σmin '0.1e2/h). Fits to
other CVD samples are shown in Fig. 4.

tended line defects, few nanometers long, can be seen.
Sample preparation and measurement were performed us-
ing standard methods: graphene samples are grown on Cu
substrates by chemical vapor deposition (CVD) [12]. To
characterize CVD graphene samples, standard Hall bars
are patterned by e-beam lithography, followed by thermal
evaporation of Cr/Au (5/25 nm). An additional e-beam
lithography step followed by O2 plasma etching is per-
formed to define Hall bar device as shown in the inset of
Fig. 1. Measurements are performed as a function of tem-
perature down to 3.5 K using standard lock-in amplifier
techniques.

The central result of this work is an expression for
the semi-classical DC-conductivity of graphene due to ex-
tended charge defects,

σl =
16e2

h

πk2
F

nl

(
e

ql

)2

G(kFW ) , (1)

where nl is a finite density of effective extended de-
fects (see next section), made of lines with charge ql and

G−1(x) =
∫
dθ(1− cos θ) (π − θ)2

[5 + 4 cos (x− x cos θ)].
For sake of simplicity, in deriving the latter equation, we
have considered a graphene structure constant α = 1/2.
The Fermi momentum kF relates to the electronic carrier
density nc according to kF =

√
πnc, which can be con-

trolled by the application of a back-gate voltage, Vg, after
transferring the graphene sheet to a dielectric substrate,
typically silicon oxide, 300nm thickness, for which one has
nc = 7.2× 1014Vg (SI units). To test our results, we used
experimental data of conductivity measurements in several
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Fig. 3: Left — Schematic of a small area of CVD graphene with
charged lines with several length; the area (in yellow) encom-
passed by 3 lines defines the intersection zone of the effective
extended charged defect. Right — The effective extended de-
fect is built, from three lines initially at x = 0, translating one
line (e.g. l3) along the x-axis by W and rotating the lines by
ϕi about the z-axis. In the picture ϕ1 = 0 to make it easy to
visualize; the origin of the coordinate system is represented as
a black dot.

graphene samples grown by CVD on Cu, using the roll-
to-roll method [12]. The fitting parameters in our theory
are W and γ ≡ nlq

2
l /e

2. The former has units of length
and is roughly the mesh size originated by the intersection
of defect lines, whereas the latter measures the scattering
strength of the extended defects. Figures 2 and 4 show
high-quality fits to the CVD data. For moderate to high
carrier density regime, we find that Eq. 1 fits perfectly
well the data, indicating that linear charged lines formed
during the CVD growth process can play a key role in
DC-transport at finite electronic densities. The line sep-
aration was found to lie within the range 10-15 nm in all
samples. We also found that the inclusion of strong (res-
onant) short-range disorder improves the agreement with
the experimental data for lower carrier densities, more pre-
cisely, |Vg − Vmin| . 10V. (Recall that resonant scattering
has recently emerged as one of the main mechanisms lim-
iting DC-transport of non-suspended graphene [13].) In
what follows, we give a detailed description of our model
of extended charge defects in graphene.

Theory. – We start by characterizing the scattering
potential created by a single extended charge defect. We
take the charged defect to be an infinite line along the y
axis, with linear charge density λl, embedded in graphene,
which is lying in the xy−plane. Its 3D charge density
has the form ρline(r) = λlδ(x)δ(z). Basic electrostatics
predicts that single line of charge in vacuum produces a
logarithmic potential in space. Clearly, embedded in a
metal, the potential is modified by screening effects. The
screening can be taken into account within the Thomas-
Fermi (TF) approximation [14]. The TF assumes that the
local electronic charge density, ρ(r), changes due to the
effective potential, φeff(r), created by the extended defect

according to:

δρ(r) ' −eρ(EF )eφeff(r), (2)

where ρ(EF ) = 2kF /(π~vF ) is the bare density of states
per unit of area (spin and valley degeneracies included)
and kF (vF ) is the Fermi momentum (velocity).

The effective potential, φeff, is determined by Poisson’s
equation: ∇2φeff = − (ρline + δρ) /εd, that is,

εd∇2φeff(x, z) =

[
2e2kF
π~vF

φeff(x)− λlδ(x)

]
δ(z), (3)

where εd is the dielectric constant of the medium [notice
that δρ = −e2ρ(EF )φeff(x, z = 0)]. This equation can be
solved by Fourier transform followed by an integration over
the z coordinate. The form of the potential in momentum
space is

φ̃eff(qx) =
λl
2εd

1

|qx|+ qTF
, (4)

where qTF ≡ 4αkF is the TF wave vector, with the
effective graphene’s structure function given by α ≡
e2/(4πεd~vF ). We note that φeff(x) shows a logarith-
mic divergence at the origin and asymptotic behavior
(qTFx� 1) given by

φeff(x)→ λl/
[
2εdπ(qTFx)2

]
. (5)

In contrast with the screened Coulomb potential created
by a point charged impurity, the potential of a charged
defect line does not decay exponentially away from the
scattering center, and hence can lead to a strong effect on
electronic transport, as we show below.

Atomic force microscopy of small areas of graphene
(∼0.1µm2) shows extended defects with several lengths
and orientations [5]. We model these extended defects as
straight lines that intersect forming polygons (see Fig. 3).
The electronic scattering is determined by the polygons
formed by the defect lines (see later). The network of
defects is built from a number of base lines (labeled li),
initially lying along the y-axis, in two steps: translating
each line li by a vector Ri = (xi, yi), and finally rotating
them about the z-axis by random angles {ϕi}. Through-
out the paper we assume that the size L of these lines is
much larger than other length scales in the problem. For
N base lines the screened potential reads:

φ̃Neff(q) =

N∑
i=1

qi
2εd

e−iq·Ri

|Q(ϕi)|+ qTF
, (6)

where Q(ϕi) = qx cosϕi − qy sinϕi is the projection of
the wave vector q onto the direction perpendicular to the
line li, defining the direction of momentum transfer in
an electron-defect scattering event, and qi ≡ λlLi is the
charge of line li. [To obtain this result, we approximated
the 2D electrostatic potential of a single line (e.g. oriented
along the y axis) using φ̃eff(q) =

∫
dyφeff(qx)θ(L/2− |y|),

where θ(y) is the Heaviside function and φeff(x) is the
potential of an infinite charged line embedded in graphene
(Eq. 4).]
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Model of the extended defect. Transport through
nano-electronic graphene devices with extended charge de-
fects is tackled here from the point of view of a single
effective defect “cell”, from which a prototype network
of charged lines can be reproduced. The effective ex-
tended defect is made of three lines, with equal lengths,
which intersect forming a triangle (see Fig. 3); choosing
R1(2) = (0, 0) and R3 = (W, 0), introduces a new length
scale, W , the amount of translation of l3, here referred
to as line separation. Its scattering potential (denoted by
φ4,eff) is given by Eq. (6) setting N = 3. Figure 5 shows
how many such defects give rise to all sort of polygons.

The large-distance behavior of the potential due to a
charged line in graphene (see Eq. 4) renders the Born series
particularly suitable to compute scattering amplitudes. In
the first Born approximation (FBA), the elastic scattering
amplitude for massless Dirac fermions in 2D reads [15]

f(θ) =
Ξ(θ)

~vF

√
|p|
8π
e〈φ̃4,eff(q)〉, (7)

where p (|p| = kF ) is the wave vector of the incident
electron (we choose p = |p|ex), q = p′ − p the trans-
ferred wave vector (p′ stands for the “out” wave vector),
θ = ∠(p′,p) is the scattering angle and 〈φ4,eff(q)〉 is the
scattering potential conveniently averaged as to include ro-
tational disorder (disorder in W will also be considered);
the factor Ξ(θ) = 1 + eiθ originates from graphene’s Berry
phase precluding electrons from back-scatter [16]. The
main result (1) is obtained within the Boltzmann approach
using the FBA,

σl = (1/2)e2v2
F ρ(EF )τl, (8)

where the relaxation time is given by 1/τl = nlvF
∫
dθ(1−

cos θ)|f(θ)|2 [14].

Rotational disorder. Within the model depicted in
Fig. 3, rotational disorder can be taken into account by
averaging the scattering potential φ4,eff over the angles
{ϕi}. The scattering potential due to a single 4 extended
charge defect was averaged using a uniform random dis-
tribution of angles:

〈φ̃4,eff(q)〉 ≡ π−3

∫ π

0

3∏
i=1

dϕiφ̃4,eff(q). (9)

The influence of the particular lines orientation on trans-
port depends strongly on the screening length. For
graphene on top of SiO2, the graphene structure constant
α is expected to be around 0.5 and thus qTF ∼ 2kF . In this
case, the variation of the extended charge defect potential
(φ4,eff) with the angles {ϕi} is hindered by a TF wave-
vector qTF with the same order of magnitude than Q(ϕi),
as direct inspection of Eq. (6) shows. As a consequence, σl
becomes little sensitive to the particular random distribu-
tion adopted. At the Fermi level, the averaged scattering
potential reads (see Appendix),

〈φ̃4,eff〉 =
ql

4πkF εd

∣∣∣∣ π − θ
cos (θ/2)

∣∣∣∣ [2 + eikF (cos θ−1)W
]
. (10)

Fig. 4: Conductivity measured in CVD synthesized graphene at
T=3.5K for two samples with different mobilities (blue dots)
and respective fits to the semi-classical calculation with res-
onant scatterers contribution included. Sample with higher
(lower) mobility: W ' 10.0(11.5)nm; γ ' 5.38(4.84) ×
1010cm−2(V ≥ 0) and γ ' 4.63(5.56)×1010cm−2(V < 0). The
midgap parameters are ns = 1.5(3.0)× 1011cm−2 and R = a0,
with a0 = 0.14nm; the experimental data was shifted as to
have a minimum of zero at the Dirac point: Vmin '8.0(5.5)V
and σmin '0.2 (0.1)e2/h.

Interestingly, the line separation W adds an oscillating
factor to the scattering amplitude [last term in (10)], with
the consequence that the familiar V-shape in the conduc-
tivity as function of the gate voltage [13] (which requires
f(θ) ∼ 1/

√
kF ) will not be observed in samples with a high

density of extended charge defects. This manifests into a
change of curvature in a σ vs Vg plot, a bona fide signa-
ture of scattering due to extended charge defects. This
oscillating factor is essential to the high quality fit of the
data, as shown in Figs. 2 and 4.

Disorder in the mesh size. Experimental studies in
CVD graphene show extended defects with many geome-
tries, the fact that the4 extended defect fits well the data
indicates that such defect constitutes the dominant type
of scatterer within our model. As discussed above, albeit
for α ∼ 1/2 the conductivity is barely affected by the spe-
cific orientation of the lines, it is very sensitive to changes
in W , since this parameter measures roughly the defect
mesh size, and hence is directly related to the scattering
strength experienced by the electronic carriers. A care-
ful inspection shows that a change of 5% in W is enough
to deteriorate the fits. This parameter sets the departure
from the σ ∼ nc (or equivalently, σ ∼ V ) behavior, similar
to that originated from charged impurities located in the
substrate, to a more involved carrier-density dependence,
namely that of Eq. (1).

The effect of disorder in W can be estimated by assum-
ing a normal distribution p(W ) with average line separa-
tion W̄ and variance dW 2. The potential accounting this
kind of disorder is obtained by replacing the exponential
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Fig. 5: An effective extended defect with triangular intersection
(three lines in black) is replicated and translated according to
the green arrow, producing a mesh containing several types of
irregular polygons.

factor in Eq. 10 according to,

eiqxW → eiqxW̄ e−(qxdW )2/2, (11)

where qx = kF (cos θ − 1) is the transferred momentum
along the x axis; a finite variance dW 2 changes the
previous results (i.e. without disorder in W ) whenever

(qxdW )
2 & O(1). We find W̄/10 & dW & W̄/100, in

all samples, showing that our model predicts that promi-
nent extended defects form intersection edges with lengths
centered around W ' O(10nm) with small variance.

Other scattering mechanisms. So far we have analyzed
the effect of extended charge defects in DC-transport in
graphene. Notwithstanding, other mechanisms are in play
which can provide important corrections to our model,
especially in the regime of low carrier density, where the
fit to Eq. 1 is less accurate (see dashed line in Fig. 3).

We focus our attention on midgap states, presumably
the most important scattering mechanism in mechanically
cleaved non-suspended graphene samples at finite densities
and not too high temperatures [13, 17], here also playing
an important role as we will briefly see. Midgap states
emerge due to resonant scatterers (RS), whose physical
realization could be vacancies or adsorbed hydrocarbons in
the surface of graphene. Indeed, we assume a typical value
for the density of resonant scatterers, ns ∼ 1011cm−2,
and take the radius of the scattering disk R to be of the
order of carbon-carbon distance. The correction to the
conductivity (Eq. 1) is then calculated using Matthiessen’s
rule,

σ−1 = σ−1
l + σ−1

s , (12)

where,

σs '
2e2

hπ2ns
k2
F ln2 (kFR) , (13)

is the conductivity due to resonant scatterers [13,18]. The
new fits are obtained by keeping W fixed from its pre-
vious value (i.e. with just extended charge defects con-
sidered) and varying γ—Fig. 2 shows that midgap states
yield an important correction in the low to moderate den-
sity regime.

Electron-hole asymmetry. We finally discuss the ori-
gin of the electron-hole asymmetry in DC-transport, high-
lighted in Fig. 2 by using different colors to represent p
and n conductivity. The asymmetry between holes and
electrons mobility

µ = (1/e)dσ/dnc, (14)

is clearly shown in most transport studies in graphene; in
CVD samples |µp − µn|/µn is about a few percent. This
asymmetry may have two distinct physical origins: (1)
a potentially significant charge transfer from the metallic
contacts to graphene [19], and (2) scattering cross-sections
sensible to the carriers polarity.

In order to estimate the contribution of the extended
defects to the conductivity asymmetry, we compute the
next term in the Born series for a single charged line. The
2nd Born correction to the scattering amplitude δf(θ) is,

δf(θ)

f(θ)
= 2p

evF~
φ̃eff(q)

∫
d2k

(2π)
2 φ̃eff(p′ − k)GD(k)φ̃eff(k− p),

where the 2D Dirac propagator reads

GD(k) =
1

v2
F~2 (|p|2 − k2 + i0+)

, (15)

and the screened potential φ̃eff is given by Eq. 4 with
λlL = ql. The differential cross-section |f + δf |2 has now
a term proportional to φ̃3

eff, and thus is no longer invariant
under a change of electrical charge sign e→ −e. For small
density of charge |ql/e| . 0.1, the conductivity in the 2nd

Born approximation, σ(2), relates to the FBA value, σ(1),
according to

σ(2) ' σ(1)
[
1− g(α)

ql
e

]
, (16)

where g(α) reflects the importance of the dielectric
medium. For graphene on top of silicon oxide we obtain
g(1/2) ' 1.2, entailing a negligible difference between the
conductivity for carriers with opposite polarities as long
as ql � e. In general, for extended defects made of a
single line of charge, the 2nd Born approximation yields
a global multiplicative factor in the conductivity; notice
that the term inside brackets in Eq. (16) just depends on
the charge of the defect and on the sign of carriers, ql/e,
and therefore is constant throughout the entire range of
carrier density. Indeed, one can absorb the correction from
the 2nd Born approximation into γ = nlql/e

2 according to
γ → γ/[1− g(α)ql/e].

It would be desirable to perform the same calculation
for 4 defect. Unfortunately, however, in this case, the 2nd

Born correction becomes much involved. Despite that, we
can get some intuition by studying a specific configura-
tion; we have performed a numerical evaluation of g(α) for
a N = 3 extended defect with ϕ1(2)(3) = 0, R1(2) = (0, 0),
R3 = (W, 0) (see Figure 3 for definitions of ϕi and Ri)
and W =10nm; a strong dependence of g(α) with kF was
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observed, more precisely, a variation of ∼30% by increas-
ing the gate voltage from 1V to 50V. We leave as an open
question whether the inclusion of the 2nd Born amplitude
in the calculation of the conductivity leads to a qualita-
tive improvement of the fits of experimental data to our
model — this would elucidate about the precise amount of
electron-asymmetry possibly induced by charged extended
in CVD graphene.

The experimental data shown in Figs. 2 and 4 disclose a
small but perceivable change of mobility from p to n car-
riers. In the light of the latter results, this suggests that
the 2nd Born correction cannot be too large in these sam-
ples (discarding the remote possibility that a large second
order correction is balanced with a charge transfer from
the Hall probes).

Outline. – Extended defects are prevalent in CVD
graphene and arise in SEM studies as cracks with sev-
eral sizes and oriented at random. Due to the self-doping
mechanism [11] such cracks will act as charged scatter-
ing centers. In this Letter, we have studied the impact of
such defects in the DC-transport properties of graphene
films. By constructing a simple model of extended defects,
a semi-classical computation of the DC-conductivity was
carried out taking into account disorder on the extended
defects geometry and the screening by graphene electrons.
We have shown that charged extended defects lead to a
very distinctive dependence of DC-conductivity with car-
rier density compared to previously studied mechanisms
[13]. Our findings show that extended charge defects
can play an important role in DC-transport of chemically
grown graphene samples with a large density of cracks.

Growing graphene via CVD is a very promising route to-
wards scalable fabrication of two-dimensional high-quality
carbon films. The understanding of the scattering mecha-
nisms in chemically grown graphene samples is thus of up-
permost importance to increase electronic mobilities cur-
rently limited to '4000 cm2·V−1·s−1. Given the stringent
constraints on electronic mobilities required for techno-
logical applications of graphene, our results show that the
control of such defects can be of fundamental importance
for further development of a graphene-based electronics.
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Appendix. – The Thomas-Fermi renormalized elec-
trostatic potential for the extended charge defect 4 de-

picted in Fig. 3 reads,

φ̃4,eff(q) =
ql

2εd

[
1

|qx cosϕ1 − qy sinϕ1|+ qTF

+
1

|qx cosϕ2 − qy sinϕ2|+ qTF

+
eiqxW

|qx cosϕ3 − qy sinϕ3|+ qTF

]
. (17)

The potential depends on the relative orientation of the
lines through the angles {ϕi}. To get a meaningful re-
sult we have to consider a statistical distribution of such
angles. For α & 1/2 the denominators in (17) are dom-
inated by qTF and hence we can safely integrate the
{ϕi} dependences using a uniform distribution. Choos-
ing q = kF (cos θ − 1, sin θ), we obtain,

〈φ̃4,eff〉 =
ql

2εdkF

∣∣∣∣∣∣
π + 2

∑1
β=−1 arctan

(
fβα
wα

)
πwα

∣∣∣∣∣∣×
×
(

2 + eikF (cos θ−1)W
)
, (18)

with wα =
√

2 (8α2 + cos θ − 1), f0
α = | sin θ|, f±1

α =
G±α /

(
sin2 θ

2

)
, where

G±α = [cos θ − 1∓ 4α]

∣∣∣∣sin θ2
∣∣∣∣± 2α |sin θ| . (19)

Setting α = 1/2 in (18) one obtains Eq. 10.
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