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Resumen: A numerical model for material non-linear analysis of concrete slabs supported on 
soil is described in this work. In this model, the cracked concrete is regarded as cracks with 
concrete between cracks. The behaviour of the concrete between cracks is simulated by the 
conventional theory of plasticity. The behaviour of the cracks is defined by their constitutive 
laws using the concrete fracture properties. Smeared multifixed and rotating crack models 
are available in the model. 
Concrete can be reinforced with sets of smeared bars of different materials and geometric 
properties, as well as with discrete steel fibres. A tension-stiffening model that takes into 
account the concrete fracture properties and the reinforcement characteristics is used for the 
reinforced cracked concrete. 
Main effects of the fibre reinforcement are reproduced in the model, introducing the material 
fracture energy and a convenient softening law in the crack constitutive law, and using a new 
stress-strain relationship for the behaviour in compression. 
Soil supporting the concrete slab is simulated with springs perpendicular to the slab middle 
surface. The soil non-linear behaviour and the loss of contact between slab and soil are 
accounted for. 
Concrete slabs supported on soil are analysed with the model proposed. Safety of wire mesh 
reinforced concrete slabs and steel fibre reinforced concrete slabs is discussed. A comparison 
with conventional design methods is performed. The influences of the soil load bearing 
capacity, as well as the loss contact between soil and slab on the behaviour of slab-soil 
system are analysed. 
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1. INTRODUCTION 

 
In the last two decades the increase on computer power and software facilities, as well as a 

significant effort on the experimental research about material constitutive laws, contributed to 
the development of several computer programs for numerical simulation of concrete 
structures. However, numerical simulation of a slab supported on soil remains a difficult task. 
Accurate simulation of the behaviour of this kind of structures is only feasible if the 
numerical model takes into account the non-linear behaviour of the concrete, soil and 
reinforcement, as well as the soil-slab interaction. 

 
In recent years, steel fibre reinforced concrete (SFRC) has been extensively applied in 

industrial floors with recognised economical and technical benefits1,2,3. Some experimental 
research with concrete slabs on soil (or other similar support like rubber or cork layers4) has 
been performed in order to evaluate the enhance in the load carrying capacity and concrete 
cracking behaviour due to fibre reinforcement5. These tests revealed that steel fibres can 
replace the conventional reinforcement in industrial floors. 

 
The first approach to design slabs on soil was proposed by Westergaard6, using the 

elasticity theory. Since materials are assumed linear elastic and the design condition is based 
on concrete tensile strength, very thick plain concrete slabs are obtained with this approach. 
In the beginning of sixties Losberg7 and Meyerhof8 developed similar theories based on the 
yield line theory for reinforced concrete laminar structures. However, these theories are not 
able to reproduce the deformational behaviour of a slab-soil system until collapse load. 
Nowadays, design of SFRC slabs is usually performed with models devised for structures of 
conventional concrete, wherefore fibre-reinforcing effects are not simulated appropriately. 
Therefore, the numerical simulation of the behaviour of SFRC slabs supported on soil is an 
actual challenge for the computational mechanics community. 

 
The present work aims to contribute to the on going research effort on the numerical 

simulation of concrete slabs supported on soil. Concrete slabs can be reinforced with smeared 
steel roads and/or steel fibres. Main changes on concrete behaviour due to fibre reinforcement 
were evaluated from experimental research and introduced in the material constitutive laws9. 
A design of a concrete slab on soil using a linear elastic finite element computer code is 
compared with an analysis using the numerical model described in this work. The influence of 
simulating the loss of contact between the slab and the soil and the influence of the soil 
constitutive law in a material non-linear analysis of a slab supported on soil are discussed. 
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2. NUMERICAL MODEL 

2.1 Introduction 

 
In the present work concrete cracking is simulated under the framework of smeared crack 

concepts. Smeared crack concepts can be categorised into fixed, multifixed and rotating crack 
models9,10,11. These crack models are available in the computational code developed. 
 
According to the present model the total strain increment of cracked concrete, ∆ε , is due to 
the strain increment in the fracture zone, ∆ε cr  (the width of the finite element over which the 
micro-cracks are smeared out) and to the strain increment in concrete between cracks, ∆ε ep

co , 
 
                                                          ∆ ∆ ∆ε ε ε= ep

co cr+ . (1) 
 
In order to simulate the progressive damage induced by plasticity and cracking, a plane shell 
element is discretized in layers throughout element thickness. Each layer is considered in 
plane stress state. The concrete shell can be reinforced with conventional smeared steel bars 
or/and steel fibres. The plane shell was formulated under the well-known Reissner-Mindlin 
theory12. 
 

2.1 Concrete constitutive laws 

 
For the concrete between cracks, stress and strain increment vectors are related by the 

constitutive law 
 
                                                           cocoD εσ ∆=∆  (2) 
 
where coD  is the concrete tangent constitutive matrix, 
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co
mbD  is the in-plane material stiffness matrix and co

sD  is the out-plane shear stiffness matrix. 
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2.2.1 - Linear elastic uncracked concrete 
 

For homogeneous, isotropic and linear elastic materials, the submatrix co
mbD  in (3) is the 

elastic in-plane material stiffness matrix, co
embD , , 
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where Ec  is the instantaneous modulus of elasticity and cυ  is Poisson’s coefficient. In this 
work, the material behaviour on transverse shear deformation is considered on linear elastic 
state. Therefore, the material stiffness matrix in shear has the form 
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⎦

⎤
⎢
⎣

⎡
==

10
01

, c
co

es
co
s GFDD  (5) 

 
where cG  is the concrete transversal modulus of elasticity and F is a correction shear factor13. 
 
2.2.2 - Linear elastic cracked concrete 
 

For linear elastic cracked concrete (ecr), the submatrix co
mbD  in (3) is designated by co

ecrmbD , , 
defined by the following expression10 
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where $N  is the matrix that defines the direction of the cracks developed in a sampling point 
(see Figure 1), and $Dcr  is the  matrix which accounts for the constitutive law of the cracks. 
Each crack is governed by the following constitutive relationship 
 

                                                                 ∆ ∆s D ecr cr cr=  (7) 
 
where ∆scr  is the crack stress vector (see Figure 1) 
 

                                                           [ ]∆ ∆ ∆s s scr
nn
cr

nt
cr T

=  (8) 
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∆ecr  is the crack strain vector 
 

                                                            [ ]∆ ∆ ∆e ecr
nn
cr

nt
cr T

= γ  (9) 

 
and  
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 (10) 

 
is the crack material stiffness matrix, where DI

cr  and DII
cr  are the mode I and mode II stiffness 

modulus of a smeared single crack, respectively. 
 
DI

cr  is characterised by the fracture parameters, 
namely, the tensile strength, f ct , the fracture 
energy, Gf , the shape of the softening law and 
the crack band width10, bl . Considerable 
experimental and numerical work has been 
done to characterise the fracture parameters of 
plain concrete. However, for SFRC the research 
on its post-cracking behaviour is still scarce. 
Fibre reinforcement mechanisms are reflected, 
mainly, on the fracture energy and on the shape 
of the softening branch. The remainder fracture 
parameters are only marginally affected by 
fibre addition into concrete. 
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Figure 1 : Crack stress and crack strain components. 

 
In order to evaluate the fracture energy and the shape of the softening diagram for SFRC, sets 
of four point bending notched beam tests were carried out under displacement control14. It 
was tested sets of specimens reinforced with 0, 30, 45 and 60 Kg/m3 of hooked ends Dramix 
steel fibres15. Based on the results obtained, the following expressions were proposed 
 

                                                        f
fo

f W
G
G

213.3953.19 +=    with 5.225.1 ≤≤ fW  (11) 

 
for concrete reinforced with ZP30/.50 fibres (30 mm of length and 0.5 mm of diameter) and 
 

                                                        827.1159.130.1 f
fo

f W
G
G

+= , (12) 

 
for concrete reinforced with ZX60/.80 fibres (60 mm of length and 0.8 mm of diameter), 
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where foG  is the fracture energy of the corresponding plain concrete, which can be evaluated 
from RILEM recommendations16 and Wf  is the fibre weight percentage in the mixture. 
 
The shape of the softening diagram of SFRC was adjusted by performing numerical 
simulations of the four point bending notched beam tests. This numerical simulation revealed9 
that a trilinear diagram (see Figure 2a) is appropriate to reproduce the post-peak tensile 
behaviour of SFRC, but the simplified bilinear diagram shown in Figure 2b is also adequate. 
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(a) (b) 

Figure 2 : Trilinear (a) and bilinear (b) softening diagram for hooked-ends steel fibre reinforced concrete. 
 
 
Ranges of values for defining the characteristic points of the trilinear softening diagram are 
included in Table 1. More experimental and numerical work should be done to calibrate these 
ranges of values. 
 
 

 Fibre type 
Parameters ZP30/.50 ZX60/.80 

 Fibre content (Kg/m3) Fibre content (Kg/m3) 
 30 45 60 30 45 60 

1ξ ( )310−×  7 – 9 4 - 6 3 - 5 3 - 5 3 - 5 10 - 100 

1α  0.35 - 0.45 0.55 – 0.65 0.6 – 0.65 0.4 – 0.5 0.6 – 0.7 0.65 – 0.75 

2ξ  0.2 – 0.3 0.25 – 0.35 0.3 – 0.4 0.15 – 0.25 0.15 – 0.25 0.3 – 0.5 

2α  0.1 – 0.2 0.15 – 0.25 0.15 – 0.25 0.2 – 0.3 0.25 – 0.35 0.25 – 0.35 

Table 1: Ranges of values for defining the characteristic points of the trilinear softening law of SFRC. 
Residual strain at crack closing is higher in fibrous concrete than in plain concrete17. To 
model this behaviour it is proposed the law (see Figure 2a) 
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where enn m
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,  is the maximum attained crack strain normal to the crack, and 
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with l f  and d f  being the fibre length and fibre diameter. For C parameter it is advanced a 
value of 165, but more experimental research is needed to calibrate this parameter. 
 
The fracture mode II modulus, DII

cr , is obtained from the expression10 
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cr

c=
−
β
β1

 (15) 

where β  is the shear retention factor determined from 
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for plain concrete, with enn u

cr
,  being the ultimate normal crack strain (see Figure 2), and 

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= cr

unn

cr
nn

f

f

f e
e

l
d

W
M

,

expβ  (17) 

 
for SFRC. M parameter must be evaluated from experimental research. Based on the reduced 
data available, a value of 980 is proposed for M. 
 
The shear retention factor for conventionally reinforced concrete is evaluated from an 
expression proposed by Cervenka18 
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where efeq ,ρ  is the equivalent effective reinforcement9 

 ρ ρ θeq ef i ef i
i

nr

, , cos=
=
∑ 4

1
  (20) 

 
nr is the number of sets of reinforcing layers crossing the crack, ρi ef,  is the effective 
reinforcing ratio19 of layer i and θi  is the angle between the reinforcing layer i and the crack 
direction. 
 
2.2.3 - Elasto-plastic uncracked concrete 
 

For elasto-plastic (ep) uncracked concrete, the in-plane material stiffness matrix co
mbD  in (3) 

is defined by 
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where a is the flow vector and h is the hardening modulus20. The hardening modulus depends 
on the equivalent stress-plastic strain relationship used for concrete in compression. For plain 
concrete this relationship is based on the stress-strain relationship proposed by CEB-FIP 
Model Code 199019. However, the uniaxial compression tests under displacement control 
have shown that this expression is not appropriate to simulate the post-peak behaviour of 
SFRC9. Based on the results obtained with uniaxial compression tests a new expression was 
proposed for SFRC14. In the plasticity approach concrete strain, coε , is decomposed into an 

elastic, co
eε , and a plastic, co

pε , contributions. Inserting this decomposition into the expression 
proposed for SFRC14 holds 
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with 
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for ZP30/.50 fibres and 
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                                             p Wf= − −10 0 722 0144. . exp( . )  (27) 
 
for ZX60/.80 fibres. 1cE  is the secant modulus of elasticity19 and co

oc1ε  and co
c1ε  are the strain at 

peak stress of plain concrete (2.2× 10-3 according to CEB-FIP Model Code 199019) and 
SFRC9. For a given concrete plastic strain, the concrete stress is computed from (22) by using 
the Newton-Raphson method. The concrete hardening modulus is obtained by deriving (22) in 
order to concrete plastic strain, resulting 
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For fibres contents used in industrial floors, experimental research has shown21,22 that the 
shape of the yield surface of SFRC under biaxial stress state is similar to the yield surface of 
the corresponding plain concrete. The yield surface proposed by Owen and Figueiras23 
 
 ( ) ( ) ( ) 0,

21
=−+= ccc

T

ccc
T
cccc kpPkf σσσσσ  (29) 

 
is used in the present work for plain and fibrous concrete. ( )σ c ck  is the equivalent 
compressive stress, with kc  being the hardening parameter, associated to the equivalent 
plastic strain rate or with the plastic work rate, Pc  denoting the projection matrix24 
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and p
c
 being the projection vector, 
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Scalar parameters a, b, c and d are defined as 
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2.2.4 - Elasto-plastic cracked concrete 
 

For elasto-plastic cracked concrete (epcr), the submatrix co
mbD  of (3) is obtained from the 

following expression 
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where co

epmbD ,  was defined in (21). 
 
2.3 - Reinforcement material constitutive laws 
 
 In the present model a plain or fibrous concrete laminate structure can be reinforced with 
sets of smeared steel bars. The stress-strain relationship of a steel bar can be simulated by a 
linear-parabola diagram or by a multilinear diagram9. The material non-linear behaviour of a 
steel bar is reproduced under the elasto-plasticity framework9. 
 
2.4 -Tension stiffening model 
 
A tension-stiffening model was developed for laminar concrete structures that can be 
reinforced with several sets of smeared bars with different orientation and properties. This 
model is based on the principles proposed by Link et al.25 and Massicotte et al.26, and can be 
represented by the post-peak stress-strain trilinear diagram illustrated in Figure 3. The 
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definition of the characteristic points A, B and C of the tension-stiffening diagram is 
discussed on a previous work9. 
 
Tensile behaviour of cracked concrete layer is governed by a stiffening or a softening law, if 
this layer is under the influence of a reinforcement set or it is not under the influence of any 
reinforcement set, respectively. To verify if a cracked concrete layer is in softening or is in a 
stiffening state, a criteria was established. According to this criteria, a cracked concrete layer 
is in stiffening if its middle surface is in the effective thickness, efh  (see Figure 4), evaluated 
from the recommendations of the CEB-FIP Model Code 199019. The cracked concrete layers 
outside the effective thickness are in softening state. 
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Figure 3 : Tension-stiffening diagram9. Figure 4 : Evaluation of the effective thickness 
according to CEB-FIP Model Code 199019. 

 
 
2.5 Soil 
 
 The soil is simulated by springs orthogonal to the laminate structure (see Figure 5). The 
tangent soil reaction modulus is usually evaluated from plate-loading tests27. The results of 
these tests reveal that soil pressure–settlement relationship may be simulated with a 
multilinear or linear-parabola diagram9. The soil contribution to the stiffness of the whole 
structural system is computed adding the soil stiffness matrix, 
 
                                                 ( )

( )∫= eA s
Te

so dARkRK  (34) 

 
to the reinforced concrete stiffness, where ( )eA  is the area of the finite element, R  is a vector 
with a dimension of the element nodes and including the values of the shape functions, and 

sk  is the tangent soil reaction modulus9. If in a given sampling point the concrete slab looses 
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the contact with the soil (see Figure 6), i.e., if the descendent vertical displacement of the slab 
middle surface, 3u , is less than the plastic soil settlement, spa , the part of the soil 
corresponding to this sampling point does not contribute to the stiffness of the slab-soil 
system. 
 

Slab middle surface

(s1,s2)

 j
i

Ksj

Ks

s2

s1

 

 
 

spa
3u

soil

Undeformed slab
Deformed slab

 

Figure 5 : The soil is discretized by spring elements 
orthogonal to the concrete slab middle surface. 

Figure 6 : Loss of contact between the slab and the 
soil is accounted for. 

 

3. APPLICATIONS 

3.1 Introduction 
 

The ability of the present model to simulate the behaviour of concrete slabs supported on 
soil was already demonstrated in other publications5,9,28. The main objective of the present 
section is to confront linear and non-linear approaches to design an industrial floor. In a first 
step, the slab floor will be designed using a linear finite element computational code29. This is 
the common approach used in the practice. In a second step, the load bearing capacity of this 
pavement is evaluated by applying the model described in chapter 2. In a third step it is 
determined the amount of steel fibres that is equivalent to the conventional reinforcement 
obtained. The behaviour of the slab reinforced with steel fibres is compared with the 
behaviour of the slab reinforced with conventional reinforcement. The influence of the soil 
bearing capacity on the slab-soil structural behaviour is analysed for the wire mesh reinforced 
concrete slab and for the SFRC slab. The safety factors are discussed. The last study focuses 
the influence of the loss of contact between the slab and the soil. 

3.2 Designing the reinforcement by a linear elastic finite element code 
 
 To design the slab represented in Figure 7, a quarter of it was discretized by eight-noded 
isoparametric plane shell elements. The mesh is shown in Figure 8. This slab has 120 mm 
thickness and is loaded in four areas of 350x350 mm2, representing the loading of a truck. 
The design load of each wheel of a truck is 57.5 kN, and is distributed on the area of a finite 
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element, as is it schematically represented in Figure 8. The design values of the material 
properties are included in Table 2. Using a model to design smeared reinforcement for shell 
concrete structures29, it was obtained a reinforcement of 142 mm2/m in 1x  and 2x  direction, 
placed at 20 mm from slab bottom surface. 
 

3325

1400
3325

3325

(mm)

1400

350

350

2x

F/4

1x

Truck load
Centre load
Edge load

P

R Q
F F

F/4

F/4F/4

 

P

QR

 

Figure 7 : Slab geometry and loading. Figure 8 : Finite element mesh. 
 
 

Concrete Reinforcement Soil 

cE =26 000 MPa, υ =0.15 

cdf =11.333 MPa 

fG =0.06 N.mm, bl =45 mm 

sydf =435 MPa, sE =200 000 MPa sk =0.06 N/mm3 

Table 2 : Values of the material properties. 
 
 

3.2 Steel fibre content equivalent to a given conventional reinforcement 

 
 A multilayer model was used to evaluate the fibre content equivalent to conventional 
reinforcement obtained in last section (142 mm2/m). The thickness of the cross sectional area 
of a unit length of the slab was subdivided in ten layers. The behaviour of each concrete layer 
and the behaviour of the reinforcement were simulated with the constitutive laws described in 
chapter 2 of the present work. A full description of the cross section multilayer model can be 
found elsewhere14. Using the data included in Table 2 it was verified that 40 Kg/m3 of 
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ZX60/.80 hooked ends steel fibres provides a maximum resisting moment similar to the 
maximum resisting moment registered in the cross section reinforced with the wire mesh. It 
should be pointed that the SFRC slabs have identical resistance under positive and negative 
moments, which is equivalent to slabs conventionally reinforced in both faces (2x142 = 
284mm2/m). 

3.3 Material non-linear analysis 

 
 In this section the slab reinforced with a wire mesh of 142 mm2/m, placed at 20 mm from 
slab bottom surface, is analysed using the model described in chapter 2. In this analysis the 
material properties were defined from their characteristic values, included in Table 3. Two 
soils with different ultimate resisting pressures were used in order to evaluate the influence of 
the soil constitutive law on the slab-soil response. It was admitted that the soil pressure at the 
beginning of soil non-linearity is the maximum soil pressure registered in the linear finite 
element analysis (0.036 MPa). Parameter β  (see Figure in Table 3) defines the beginning of 
the soil non-linearity. 
 
 

Concrete Soil 

cE =30 000 MPa 
υ =0.15 

ckf =20 MPa 

ctkf =1.6 MPa 

bl =square root of the Gauss point area10 
Plain concrete: 

fG =0.06 N.mm 

α =0.3; ξ =0.1 (bilinear softening diagram) 
SFRC: 

fG =2.068 N.mm 

1α =0.55; 1ξ =0.004, 2α =0.25; 2ξ =0.2 
asp asu

psu

β psu

kst
ksl

ksl

as(    )

ps(    )

 

Reinforcement 
sk =0.06 N/mm3, =supβ 0.036 MPa 

sydf =500 MPa 

sE =200 000 MPa 
soil 1: =sup 0.4 MPa, =β 0.09, =sua 13.33 mm 

soil 2: =sup 0.1 MPa, =β 0.36, =sua 3.33 mm 

Table 3 : Characteristic values of the material properties 
 
 
The relationship between the total load and the descending vertical displacement of point P 
(see Figure 7) for slabs reinforced with wire mesh and for SFRC slabs is depicted in Figure 9. 
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It can be verified that SFRC slabs has a load bearing capacity greater than wire mesh 
reinforced concrete slabs, for both soils, in spite of the cross section multilayer model has 
predicted similar flexural strength. 
From Figure 9 it can be observed 
that by enhancing the soil load 
bearing capacity, an increase on the 
failure load of the SFRC slab over 
wire mesh reinforced concrete slab 
is obtained. This tendency should be 
related to the higher energy 
absorption capacity and better stress 
redistribution of SFRC. It should be 
pointed out that the load 
configuration under consideration is 
not the most unfavourable for 
design purposes. 
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SFRC slab on soil 1

SFRC slab on soil 2

Figure 9 : Total force-displacement relationship. 
 
The relationship between the load and the displacement at point Q (see Figure 7) for the load 
placed at the centre of the slab (distributed in a area of 350x350 mm2) and the relationship 
between the load and the displacement at point R (see Figure 9) for the load placed at the 
middle of the slab edge are depicted in Figures 10 and 11, for the slabs reinforced with wire 
mesh. It is shown that the load placed at the middle of the slab edge is the most unfavourable 
load configuration. The load at a slab corner should be also analysed. 
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Figure 10 – Load-displacement at point R (see Figure 

9) for load in the centre of the slab. 
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Figure 11 – Load-displacement at point Q (see Figure 

9) for load in the middle of the slab edge. 
 
 
Figures 12 and 13 depict the crack patterns on top and bottom concrete layers for wire mesh 
reinforced concrete slab supported on soil 1 and soil 2, respectively. The width of the 
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rectangle representing the smeared cracks at a sampling point is proportional to the normal 
crack strain, and consequently, it is proportional to the crack opening. The completely open 
crack is represented by blue colour, while the cracks in the other states (softening, closing, 
reopening and completely closed) are represented by red colour. In these figures it is also 
depicted probable “failure lines” by thick lines. For the slab supported on soil 1, a more 
diffuse cracking pattern is observed leading to the development of several “failure lines”. In 
slab supported on soil 2 the cracking damage is concentrated near the element loaded. Less 
number of “failure lines” arises in this case. 
 
 

  
(a) (b) 

Figure 12 : Crack patterns on bottom (a) and top (b) concrete layer of wire mesh reinforced concrete slab 
supported on soil 1. 

 

  
(a) (b) 
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Figure 13 : Crack patterns on bottom (a) and top (b) concrete layer of wire mesh reinforced concrete slab 
supported on soil 2. 

Figures 14 and 15 represent the crack patterns on top and bottom concrete layers of SFRC 
concrete slab supported on soil 1 and 2, respectively. Due to the higher fracture energy, all the 
cracks are completely opened (the fracture energy is exhausted). This fact is responsible for 
the higher load bearing capacity of SFRC slabs, in comparison to the load bearing capacity of 
the wire mesh reinforced concrete slabs. The configuration of the “fracture lines” on SFRC 
slabs are similar to that represented in the wire mesh reinforced concrete slabs. 
 
 

  
(a) (b) 

Figure 14 – Crack patterns on bottom (a) and top (b) concrete layer of SFRC concrete slab supported on soil 1. 
 
 

  
(a) (b) 
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Figure 15 – Crack patterns on bottom (a) and top (b) concrete layer of SFRC concrete slab supported on soil 2. 
 
 
For truck load configuration, the ultimate load of the slabs analysed is included in Table 4, as 
well as the safety factor (the design load is 4x57.5=230 kN). Safety factors increase 
significantly with the soil load bearing capacity. Designing a slab supported on a soil of usual 
bearing capacity, using a linear elastic finite element computer code leads to very high safety 
factor. 
 
 

Wire mesh reinforced concrete slab SFRC slab 
Soil 1 Soil 2 Soil 1 Soil 2 

Maximum load (kN) 1730 800 1950 850 
Safety factor 7.5 3.5 8.5 3.7 

Table 4 – Ultimate loads and safety factor values. 
 
 
 
 
 
 
 
 
 
 
 

3.4 Influence of the loss of contact between the slab and the soil 
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The slabs were once more analysed 
with the material non-linear finite 
element model, but now without 
simulating the loss of contact between 
the slab and the soil, i.e., it is admitted 
that the soil behaves in tension like in 
compression. The force-displacement 
relationship is depicted in Figure 16. It 
can be concluded that the simulation of 
the loss of contact between the slab and 
the soil must be taken into account, 
otherwise an unsafe failure load will be 
estimated. This effect is increased with 
the soil load bearing capacity. 
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Figure 16 : The influence of the loss of contact between the 

slab and the soil. 

4 CONCLUSIONS 

 
A model was described for material non-linear analysis of concrete slabs supported on soil. 

This model has shown that designing with linear elastic finite element codes leads to very 
high safety factors, even in soils with standard load bearing capacities. The slab-soil system is 
very sensitive to the soil constitutive law. The failure load increases significantly with the soil 
bearing capacity. 
Using a cross sectional multilayer model, a content of fibres was obtained in order to give a 
flexural strength similar to that of a section reinforced with a given conventional 
reinforcement percentage. The high load bearing capacity and the better cracking behaviour 
registered on steel fibre reinforced concrete slabs, when compared to wire mesh reinforced 
concrete slabs, shows that the equivalent fibre content should be obtained in an energetic 
basis, not in a flexural basis. 
 
The results, which were presented, reveal that it is important to simulate the loss of contact 
between the slab and the soil, otherwise failure loads will be artificially increased. 
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