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ABSTRACT 

 

 

In recent years, the near-surface mounted (NSM) strengthening technique has been used to 

increase the load carrying capacity of concrete structures. This technique consists in the 

insertion of carbon fiber reinforced polymer (CFRP) laminate strips into pre-cut slits 

opened in the concrete cover of the elements to be strengthened. The laminates are fixed to 

concrete with an epoxy adhesive. This technique, in some cases, presents substantial 

advantages with respect to externally bonded laminates. The present work intends to 

contribute to a better knowledge of the behavior of concrete structures strengthened with 

NSM CFRP laminate strips. The study carried out is composed of an experimental, an 

analytical and a numerical part. 

 

The experimental research was developed at the Laboratory of the Structural Division 

of the Civil Engineering Department of the University of Minho, Portugal, and at the 

Structural Technology Laboratory of the Technical University of Catalonia, Spain. The 

main objective of the experimental work was to assess the bond behavior between the 

CFRP and concrete. With this purpose, pullout-bending tests were carried out. The 

influence of bond length, concrete strength and load history on the bond behavior was 

investigated. 

 

Using the results of the pullout-bending tests and a numerical strategy, an analytical 

local bond stress-slip relationship was obtained. The numerical strategy was developed 

with the aim of solving the second-order differential equation that governs the slip 

phenomenon. This numerical strategy was also used to calculate the critical anchorage 

length for this type of reinforcement. 

 

Numerical tools were developed for the simulation of the nonlinear behavior of 

concrete structures strengthened with NSM CFRP laminate strips. These tools were 

implemented in a computer code named FEMIX, which is a general purpose finite element 

software system. In the context of this work, the following capabilities were added: an 

elasto-plastic multi-fixed smeared crack model to simulate concrete, interface elements and 

a constitutive material model for the simulation of the nonlinear behavior of the interface 

between CFRP and concrete. 
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RESUMO 

 

 

Nos últimos anos, a técnica baseada na inserção de laminados no betão de recobrimento 

tem sido utilizada no reforço de estruturas de betão. Esta técnica consiste na introdução de 

laminados de CFRP (compósitos reforçados com fibras de carbono) em ranhuras 

pré-executadas nos elementos a reforçar. Os laminados são fixos ao betão por intermédio 

de um adesivo epoxy. Esta técnica, em alguns casos, apresenta vantagens substanciais 

comparativamente com a técnica que recorre à colagem externa dos laminados de CFRP. O 

presente trabalho pretende dar um contributo para a compressão do comportamento de 

estruturas de betão reforças com laminados de CFRP inseridos no betão de recobrimento. 

O trabalho realizado é composto por uma parte experimental, uma parte analítica e uma 

parte numérica. 

 

O programa experimental foi realizado no Laboratório de Estruturas da Universidade 

do Minho, Portugal, e no Laboratório Estrutural da Universidade Politécnica de Catalunha, 

Espanha. O principal objectivo do trabalho experimental foi procurar compreender o 

comportamento da ligação entre o laminado e o betão. Com este propósito foram 

efectuados ensaios de arrancamento em flexão. Foi investigada a influência do 

comprimento de aderência, da classe de resistência do betão e da historia do carregamento 

no comportamento da ligação. 

 

A partir dos resultados experimentais e da implementação de uma estratégia 

numérica, obteve-se uma lei analítica local tensão de corte versus deslizamento. A 

estratégia numérica foi desenvolvida com o objectivo de resolver a equação diferencial de 

segunda ordem que rege o fenómeno do deslizamento. Esta estratégia numérica foi também 

utilizada na determinação do comprimento de ancoragem crítico associado à técnica de 

reforço em estudo. 

 

Foram desenvolvidas ferramentas numéricas para simular estruturas de betão 

reforçadas com laminados de CFRP inseridos no betão de recobrimento. Estas ferramentas 

foram implementadas no software de elementos finitos designado FEMIX. No contexto do 

presente trabalho, foram acrescentadas ao código computacional as seguintes 

funcionalidades: um modelo elasto-plástico que inclui a possibilidade de ocorrência de 

múltiplas fendas fixas distribuídas, para simular o betão, elementos de interface e uma lei 

material para simular o comportamento não linear da interface entre o CFRP e o betão. 
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GLOSSARY 

 

 

Adhesive – Substance applied to mating surfaces to bond them together by surface 
attachment. An adhesive can be in liquid, film or paste form. 

Carbon fiber – Fiber produced by high temperature treatment of an organic precursor fiber 
based on PAN (polyacrylonitrile) rayon or pitch in an inert atmosphere at 
temperatures about 980 °C. Fibers can be graphitized by removing still more of the 
non-carbon atoms by heat treating above 1650 °C. 

CFRP – Carbon fiber reinforced polymer. 

Composite – A material that combines fiber and a binding matrix to maximize specific 
performance properties. Neither element merges completely with the other. 
Advanced polymer composites use only continuous oriented fibers in a polymer 
matrix. 

Cure – To change the molecular structure and physical properties of a thermosetting resin 
by chemical reaction via heat and catalyst in combination with or without pressure. 

Debonding – Local failure in the bond zone between concrete and the externally bonded 
reinforcement. 

EBR – Externally bonded FRP reinforcement. 

Epoxy adhesive – A polymer resin characterized by epoxy molecule groups. 

Fabric – A material formed from fibers or yarns without interlacing. 

Fiber – A general term used to refer to filamentary materials. Fiber is often used 
synonymously with filament. 

FRP – Fiber reinforced polymer. 

GFRP – Glass fiber reinforced polymer. 

Glass fiber – Reinforcing fiber made by drawing molten glass through brushings. The 
predominant reinforcement for polymer matrix composites. Known for its good 
strength, processability and low cost. 

Groove – Long narrow channel. 

Laminate – To unite layers of material with an adhesive. Also, a structure resulting from 
bonding multiple plies of reinforcing fiber or fabric. 

Lay-up – Placement of layers of reinforcement in a mould. 

LVDT – Linear voltage differential transducer. 

Matrix – Binder material in which reinforcing fibers are embedded. Usually a polymer but 
may also be metal or ceramic. 

NSM – Near-surface mounted. 

Polymer – Large molecule formed by combining many smaller molecules or monomers in 
a regular pattern. 
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Pot life – Length of time in which a catalyzed thermosetting resin retains sufficiently low 
viscosity for processing. 

RC – Reinforced concrete. 

Rebar – Steel reinforcement bar placed in concrete. 

Reinforced concrete – Concrete strengthened with steel. 

Resin – Polymer with indefinite and often high molecular weight and a softening or 
melting range that exhibits a tendency to flow when subjected to stress. As composite 
matrices, resin binds together reinforcement fibers. 

Sheet – A material formed from fibers or yarns without interlacing. 

Slit – Strait and narrow cut. 

Unidirectional – A strip or fabric with all fibers oriented in the same direction. 

Wet lay-up – Fabrication step involving application of a resin to dry reinforcement. 
 



 

C H A P T E R  1  

I N T R O D U C T I O N  

 

 

In the last decade, fiber reinforced polymer materials (FRP) have progressively replaced 

conventional concrete and steel in the strengthening of concrete structures (FIB 2001, 

ACI 2002). These new materials are available in the form of unidirectional strips made by 

pultrusion, or in the form of sheets or fabrics consisting of fibers in one or more directions. 

Carbon (C) and glass (G) are the main types of fibers composing the fibrous phase of these 

materials (CFRP and GFRP), whereas epoxy adhesive is generally used in the matrix 

phase. Wet lay-up (sheets and fabrics) and prefabricated strips (designated by laminates) 

are the main types of FRP strengthening systems available in the market. In the last years 

the significant and increasing demand of FRP to be used in structural repair and/or 

strengthening is due to the following main advantages of these composites: low weight, 

easy installation procedures, high durability and tensile strength, electromagnetic 

permeability and practically unlimited availability in terms of geometry and size 

(FIP 2001). 

 

The most common strengthening technique is based on the application of the FRP on 

the surface of the elements to be strengthened and is designated as externally bonded 

reinforcement (EBR) technique. Recent research has revealed that this technique cannot 

mobilize the full tensile strength of FRP materials due to premature debonding 

(Mukhopadhyaya and Swamy 2001, Nguyen et al. 2001). The reinforcing performance of 

FRP materials can be diminished by the effect of freeze/thaw cycles (Toutanji and 

Balaguru 1998) and decreases significantly when submitted to high or low temperatures 

(Pantuso et al. 2000). Furthermore, EBR systems are susceptible to damage caused by 

vandalism and mechanical malfunctions. 

 

Several attempts have been made to overcome the aforementioned drawbacks. 

Strengthening with near-surface mounted (NSM) FRP rods is one of the most promising 

techniques. This approach is based on the concept of bonding glass or carbon FRP rods 

into pre-cut grooves opened in the concrete cover of the elements to be strengthened 
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(De Lorenzis et al. 2000). However, the NSM concept is not new, since it started to be used 

in Europe, for the strengthening of reinforced concrete structures, in the 1940s. This 

pioneering technique consisted on placing rebars in grooves located in the concrete cover. 

These grooves were then filled with cement mortar (Asplund 1949). In the present, FRP 

rods can take the place of rebars and an epoxy adhesive can replace the cement mortar. 

This “reinvented” technique has been used in some applications and several benefits have 

been pointed out, namely, high levels of strengthening efficacy and, when compared with 

EBR, a significant decrease of the probability of harm resulting from fire, acts of 

vandalism, mechanical damages and aging effects (Warren 1998, Alkhrdaji et al. 1999, 

Hogue et al. 1999, Tumialan et al. 1999, Warren 2000, Emmons et al. 2001, Täljsten and 

Carolin 2001, De Lorenzis 2002, Täljsten et al. 2003). 

 

Also recently, another similar strengthening technique was proposed, consisting in 

the utilization of laminate strips of CFRP instead of rods. Since this technique is the main 

subject of the present work, the following sections are dedicated to a more detailed 

description of its characteristics, and to refer the most relevant research available in the 

literature. 

 

 

1.1 NEAR-SURFACE MOUNTED CFRP LAMINATE STRIPS TECHNIQUE 

The near-surface mounted (NSM) technique using laminate strips of carbon fiber 

reinforced polymer (CFRP) as a strengthening system is proposed as means to increase the 

load carrying capacity of concrete members. The term ‘near-surface’ is used to distinguish 

this technique of structural strengthening from the case where externally bonded FRP 

composites are utilized. With the NSM technique, laminate strips of CFRP are introduced 

into saw-cut slits on the concrete cover of the elements to be strengthened. These slits are 

previously filled with an epoxy adhesive (see Figure 1.1). Typically, the CFRP laminate 

strip has a cross section of about 1.4 mm thick and 10 mm width, while the width and 

depth of the slit vary between 3 and 5 mm, and 12 and 15 mm, respectively. 

 

This practice requires no surface preparation work and, after cutting the slit, requires 

a minimal installation time, when compared with the externally bonded reinforcement 
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technique. The following steps are usually adopted in the application of the NSM 

technique: 

• open slits in the concrete cover using a saw-cut machine; 

• clean the slits with compressed air; 

• clean the CFRP laminate with an appropriate cleaner (e.g., acetone); 

• prepare the epoxy adhesive according to the supplier recommendations; 

• fill the slits and cover the lateral faces of the CFRP with the epoxy adhesive; 

• insert the CFRP laminate into the slit, and slightly press it to force the epoxy 

adhesive to flow between the CFRP and the slit borders. This phase requires a special 

care in order to assure that the slits are completely filled with epoxy adhesive. When 

this is not the case the formation of voids might occur. 

The time of cure of the epoxy adhesive, indicated by the supplier, must be respected before 

its expected performance becomes fully available. 
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 to
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5 
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Figure 1.1 – Near-surface mounted CFRP reinforcement technique used to increase the beam bending capacity. 
 

 

1.2 PREVIOUS RESEARCH 

The first known experiments with near-surface mounted CFRP laminate strips as a 

strengthening technique were published by Baschko and Zilch in 1999. In this work, the 

authors compared externally bonded reinforcement with NSM CFRP laminate strips as 

strengthening techniques. With this purpose, Baschko and Zilch carried out the bond and 
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mechanical tests schematically represented in Figure 1.2. The properties of the utilized 

CFRP laminates and the dimensions of the slits are included in Table 1.1. The three 

different specimen configurations, represented in Figure 1.2(a), were used in the bond tests 

(D1, D2 and D3). A crack was induced in the center of the 200×200×900 mm3 concrete 

block, in order to concentrate all damage in the bonded zones between the CFRP and the 

concrete. Figure 1.2(b) shows the cross sections of the four 3.0 m long beams that were 

also tested. Based on the results obtained in the bond tests, the authors concluded that the 

NSM technique has provided a higher ductility and load carrying capacity than the EBR 

technique. The bending tests performed with the beams shown in Figure 1.2(b) indicated 

that the NSM technique was capable of almost double the load carrying capacity of the 

corresponding beams strengthened with the EBR technique. 
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Figure 1.2 – Experimental program performed by Blaschko and Zilch (1999): (a) bond tests; (b) beam tests. 
Note: all dimensions are in millimeters. 

 

With the purpose of analyzing the performance of the NSM technique in concrete 

columns, Barros et al. (2000) carried out some tests. Figure 1.3 shows the geometry of the 

columns and the reinforcement configurations considered in those tests. Six CFRP 
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laminate strips were used to strengthen each specimen. The laminates were fixed in the 

slits using an epoxy adhesive, whereas epoxy mortar was used to fix the CFRP to the 

foundation. The properties of the CFRP laminate strips and the dimensions of the slits are 

indicated in Table 1.1. With the setup shown in Figure 1.3, eighteen tests were performed 

under quasi-constant axial compression, N , and a lateral cyclic force. The strengthening 

efficiency provided by this technique was high, due to the fact that peeling was prevented 

and the tensile strain on the CFRP laminates has attained values close to its ultimate strain 

(Ferreira 2001). 

 
 

Table 1.1 – Properties of the CFRP laminate strips and dimensions of the slits used in the experimental programs. 

CFRP properties Slit dimensions 

Experimental work Thickness 
[mm] 

Width 
[mm] 

Young's 
modulus 

[GPa] 

Tensile 
strength 
[MPa] 

Width 
[mm] 

Depth 
[mm] 

Blaschko and Zilch (1999) 1.2 25 2600 n.a. 3 26 

Barros et al. (2000) 1.5 10 1573 159 5 15 

Barros and Fortes (2002) 1.45 9.6 2700 158 4 12 

Tan et al. (2002) 1.4 10 2490 173 3 15 

Barros and Dias (2003) 1.45 9.6 2200 150 5 12 
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Figure 1.3 – NSM technique applied to reinforced concrete columns: (a) test specimen; (b) cross section of the 
columns (Ferreira 2001). Note: all dimensions are in millimeters. 



6 Chapter 1 

 

In order to evaluate the efficiency of the NSM CFRP laminate strips technique for 

increasing the flexural capacity of reinforced concrete beams, an experimental program 

was carried out by Barros and Fortes (2002). Figure 1.4 shows the concrete beam, while 

Figure 1.5 depicts the cross section of the beams of the four tested series. Each series had a 

reference beam (V1, V2, V3 and V4) and the corresponding strengthened beam (V1R1, 

V2R2, V3R2 and V4R3). According to the experience of the authors, this technique is 

easier and faster to apply than the EBR technique. The test results have shown that the 

strengthening configurations adopted in the test series were capable of almost double the 

load carrying capacity of the corresponding reference beams. High efficacy was obtained, 

since at the failure of the beams, the stress on the CFRP has reached values ranging 

between 60 % and 90 % of its tensile strength. 
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Figure 1.4 – NSM technique applied to reinforced concrete beams (Barros and Fortes 2002): specimen geometry, 
reinforcement arrangement, supports and loading. Note: all dimensions are in millimeters. 
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Figure 1.5 – Cross section of the tested beams (Barros and Fortes 2002). Note: all dimensions are in millimeters. 
 

 

Tan et al. (2002) carried out an experimental program in order to study and compare 

the efficiency of different CFRP strengthening systems and techniques for the flexural 

strengthening of reinforced concrete slabs. Figure 1.6 shows the details of the slabs 

analyzed in this research. Two laminate strips of CFRP were used to reinforce slabs A 

and B. The strips of the latter were pre-stressed. In slabs C and D the strengthening system 

was composed of a CFRP sheet and several CFRP laminate strips, respectively. The time 

required to apply these distinct strengthening systems was measured. The shortest period of 

time was obtained in slab C. However, the authors recognized not having used appropriate 

tools for sawing the concrete, in order to apply the strengthening system of slab D. The test 

results showed that slab D exhibited the highest load carrying capacity. In this case the 

CFRP laminate strips were fully utilized prior to failure. 
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Figure 1.6 – Geometry and reinforcement details of the tested slabs (Tan et al. 2002). Note: all dimensions are in 
millimeters. 

 

The performance of the NSM technique as a means of increasing the shear strength 

of reinforced concrete beams was also assessed. For this purpose an experimental program 

was carried out by Barros and Dias (2003). Figure 1.7 and Figure 1.8 show the analyzed 

series. Four different strengthening techniques were used: conventional steel stirrups 

(VAE-30 and VBE-15); NSM CFRP laminate vertical strips (VACV-20 and VBCV-10); 

NSM CFRP laminate strips at 45 degrees (VACI-30 and VBCI-15); and strips of CFRP 

sheets (VAM-19 and VBM-8). Two beams without shear reinforcement were also included 

in the experimental program for comparison purposes (VA10 and VB10). In order to assure 

that all beams failed by shear with a similar load carrying capacity, the amount of shear 

reinforcement applied to the beams was conveniently estimated. From the results obtained, 

it can be pointed out that of all CFRP systems, the NSM technique was the most effective, 

not only in terms of load carrying capacity, but also in terms of ductility. More ductile 

failure modes occurred in the beams strengthened with NSM technique. This technique had 

the easiest and fastest application procedure. 
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Figure 1.7 – Beams of series VA (Barros and Dias 2003). Note: all dimensions are in millimeters. 
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Figure 1.8 – Beams of series VB (Barros and Dias 2003). Note: all dimensions are in millimeters. 

 

 

1.3 OBJECTIVES 

Since the NSM CFRP laminate strips strengthening technique is quite recent, there are 

several important aspects deserving deep research in order to provide the necessary 

knowledge for a rational and safe strengthening design. The research carried out on this 

subject has been essentially dedicated to the assessment of the applicability and economical 

advantages of the NSM technique in structural applications where EBR is currently the 

selected strengthening technique. Research is still required in several areas, such as long 

term behavior of structural elements strengthened with NSM technique, effects of 
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temperature, humidity and freeze/thaw cycles, and implications of fatigue and cyclic 

loadings on the strengthening performance, and the concrete-FRP bond behavior. 

 

The experimental research efforts to be undertaken on these subjects should always 

be followed by the development of robust analytical and numerical tools. The results 

obtained from the experimental research can significantly contribute to the quality of the 

analytical/numerical research, and vice-versa. If the suggested approach is followed, the 

knowledge derived from this global research strategy can be used to elaborate design 

guidelines. 

 

In the present work the aforementioned research methodology was followed. In fact, 

the research carried out is composed of an experimental, an analytical and a numerical part. 

Understanding the FRP-concrete bond behavior is very important, not only to justify the 

relative performance of the NSM technique, but also to obtain information required by the 

analytical formulations and numerical models. This experimental program should provide 

enough information in order to define precise bond relationships, based on a strategy that 

will also involve analytical and numerical tools. Finally, the prediction of the load carrying 

capacity, deformability and crack pattern of a strengthened concrete structure can be 

performed with nonlinear material models, integrated in a finite element computer code. 

These models should take into account the information provided by the aforementioned 

experimental program and by the analytical model. Therefore, the main objectives of the 

present study are: 

• the proposal of a test methodology intended to investigate the bond behavior between 

CFRP and concrete and to evaluate the influence of the variables which play a 

significant role in the phenomenon; 

• the development of an analytical formulation for the prediction of the bond behavior, 

thus enabling the design of the critical anchorage length of NSM CFRP laminate 

strips; 

• the development of a numerical model for the simulation, with high accuracy, of the 

nonlinear behavior of concrete structures strengthened with NSM CFRP laminate 

strips. 
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1.4 OUTLINE OF THE THESIS 

In Chapter 2 a test methodology is proposed and applied to the characterization of the bond 

between CFRP and concrete. The specimen configuration and preparation, as well as the 

test setup and program, are described in detail. The characterization of the properties of the 

materials used in the experimental program is presented in this chapter. The test results are 

presented and analyzed, and a physical interpretation of the bond mechanisms is given. 

 

In Chapter 3 a methodology for the prediction of the bond behavior associated with 

the near-surface mounted strengthening technique is presented. The analytical and 

numerical research is described. This methodology uses the results that were obtained in 

the experimental program, which was presented in Chapter 2. The developed tool is used to 

calculate the critical anchorage length of concrete elements strengthened with NSM CFRP 

laminate strips. 

 

In Chapter 4 the developed numerical model, whose objective is to simulate concrete 

structures strengthened with NSM CFRP laminate strips, is presented. Some aspects of the 

developed finite element computer code, and also the solution procedures used in nonlinear 

finite element analysis are briefly described. All relevant aspects of the developed 

elasto-plastic multi-fixed smeared crack material model are described in detail. Another 

developed model, whose purpose is the simulation of the nonlinear behavior of the 

interface between CFRP and concrete, is also presented in this chapter. The performance 

and the accuracy of the developed numerical tools are assessed using results available in 

the literature and from the experimental results obtained in Chapter 2. 

 

In Chapter 5 some applications of the developed numerical tools are presented. The 

numerical simulation of the experimental tests carried out with concrete beams 

strengthened with NSM CFRP laminate strips is described in detail. The most relevant 

results are presented and interpreted, and the main conclusions are pointed out. 

 

Finally, in Chapter 6, an extended summary and the final conclusions of the present 

work are given. Some suggestions for future research are also indicated. 
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C H A P T E R  2  

B O N D  B E T W E E N  N E A R - S U R F A C E  M O U N T E D  C F R P  

LAMINATE STRIPS AND CONCRETE: EXPERIMENTAL TESTS 

 

 

In the current context, the word bond means the transfer of stresses between the concrete 

and the reinforcement in order to develop the composite action of both materials, during 

the loading process of reinforced concrete elements. The bond performance influences the 

ultimate load carrying capacity of a reinforced element, as well as some serviceability 

aspects, such as crack width and crack spacing. Since structural strengthening with NSM 

CFRP laminate strips is an emerging technique, the bond behavior is an important issue 

that needs to be focused. Literature treating the bond between laminate strips and concrete 

is very scarce. Only one experimental work, already summarized in Chapter 1, could be 

found after an extensive bibliographic search. Since bond of NSM CFRP laminate strips to 

concrete has similarities with the bond of rebars or FRP rods to concrete, a brief overview 

of both is presented in the following paragraphs. 

 

Several researchers have studied the bond between rebars and concrete. Useful 

information can be found elsewhere (Tassios 1979, Bartos 1982, CEB 1982, Eligehausen et 

al. 1983, FIB 2000). Typically, bond performance of a smooth rebar embedded in concrete 

is due to the adhesion between concrete and rebar, and a small amount of friction. Both 

mechanisms disappear at higher load levels, due to the decrease of the cross section area of 

the rebar as a consequence of the Poisson's effect. If sufficient embedment length exists, 

the full carrying capacity of the rebar can be attained. Otherwise the pullout of the rebar 

occurs. In deformed rebars the bond transfer mechanisms are more complex and are not 

treated in the present work, since only smooth bars are similar to the laminate strips used in 

the studied technique. Bond behavior depends on a variety of factors and parameters 

related, basically, to the rebar characteristics, to the concrete properties and to the stress 

state in both the rebar and the surrounding concrete. Technological aspects such as concrete 

cover, clear space between rebars, number of rebar layers and bundled rebars, casting 

direction with respect to rebar orientation and rebar position also contribute to the bond 

behavior. Finally, the load history should also be taken into account (FIB 2000). 
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With the advent of the FRP rods several researchers investigated the characteristics 

of the bond of FRP rods to concrete (Al-Zahrani 1995, Cosenza et al. 1997, Bakis et 

al. 1998, Tepfers 1998, Focacci et al. 2000). These researches showed that friction is the 

dominant mechanism for smooth FRP bars. Furthermore, the other main factors that affect 

the bond performance are the longitudinal stiffness, transverse stiffness and, in particular, 

the Poisson's ratio of the bar. 

 

With the emergence of the NSM FRP rod reinforcement technique, its bond behavior 

started to be investigated. The corresponding main references are the works of 

Warren (1998 and 2000), Yan et al. (1999), and, specially, De Lorenzis (2002). The main 

parameters influencing the bond performance are the material type and the surface 

configuration of the rod, the bond length, the size and surface characteristics of the groove, 

and the groove-filling material. 

 

In the last decades several test methods have been proposed and used on the bond 

research. The most common are the direct and the beam pullout tests. The beam pullout 

test is recognized by the research community as the most representative of the behavior of 

flexural members. For each test method, several test setups have been proposed 

(FIB 2000). Figure 2.1 shows two tests setup examples for direct and beam pullout tests. 
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Figure 2.1 – (a) Direct pullout test; (b) pullout-bending test (FIB 2000). 
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De Lorenzis (2002) proposed the pullout tests A and B shown in Figure 2.2 and 

Figure 2.3, respectively, to investigate the bond between the NSM FRP rod and concrete. 

The pullout-bending test A had a hinge at the top and a transverse saw cut at the bottom, 

both located at the mid-span of the specimen. The saw cut had the intention of causing the 

formation of a crack at the center of the beam. The FRP rod was installed in a groove, 

carved at the bottom face, and oriented along the longitudinal axis of the beam. The test 

region was located on the left side of the beam, with a pre-defined bond length (see 

Figure 2.2). An extensive bond length was considered on the right side of the beam, 

guaranteeing the occurrence of bond failure on the other part. The beam was loaded under 

four-point bending with a shear span of 483 mm. Two LVTD's were used, being the first 

located at mid-span, in order to measure the vertical deflection, and the other placed at the 

lateral face of the beam, in order to measure the free end slip♣. A load cell was used to 

measure the applied force. Along the bond length of the test region, gages were applied to 

the rod in order to measure the strains. The test was performed under displacement control, 

using the LVDT located at the specimen mid-span, until failure. The FRP pullout force (at 

the loaded end) was calculated using the force values measured at the load cell and taking 

into account the internal lever arm, i.e., the distance between the longitudinal axis of the 

FRP and the contact point at the hinge. According to De Lorenzis (2000) this test setup has 

the following limitations: 

• the specimen has a considerable mass (about 150 kg) and dimensions, which is a 

disadvantage in extensive experimental programs; 

• the test setup does provide the possibility of measuring the loaded end slip; 

• the test control system was not suitable to capture the softening branch of the 

load-slip behavior; 

• the propagation of the crack located at the specimen mid-span disturbs the 

computation of the rod stress; 

• the presence of gages locally disturbs the bond behavior. 

                                                 

♣ The important relationship between bond stress and slip can be obtained from the information supplied by 

the instrumentation of the specimen. The bond stress is the shear stress developed along the bond length, in 

the contact surface between the rebar and the concrete. The slip is the relative displacement between the rebar 

and the surrounding concrete. Usually, the bond length extremities are designated free and loaded end, being 

the former the extremity where the force at the reinforcement is null. 
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Figure 2.2 – Pullout test A (De Lorenzis 2002). Note: all dimensions are in millimeters. 

 

Due to the aforementioned drawbacks of the pullout test A, De Lorezins (2002) 

proposed an alternative pullout test, which is represented in Figure 2.3. In this test setup, 

the problems associated with the pullout test A are avoided. The free and loaded end slips, 

as well as the pullout force, can be measured directly. Due to space limitations in the 

specimen, the rod is fixed in a preformed square groove, rather than in a groove carved 

after concrete curing. The surface characteristics of the groove walls in both alternatives 

are very different and might significantly influence the bond performance. In addition, 

preformed grooves cannot simulate the bond conditions associated with the practice of 

repairing and/or strengthening real life concrete structures, since in these cases the rods are 

fixed in grooves cut in the concrete. 
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Figure 2.3 – Pullout test B (De Lorenzis 2002). Note: all dimensions are in millimeters. 



 Bond between near-surface mounted CFRP laminate strips and concrete: experimental tests 17 

 

The experimental research dealing with the bond of rebars or FRP rods to concrete, 

which was summarized before, indicated that the slit size, bond length, concrete strength, 

slit-filling material, type of FRP and load history are, probably, the main variables affecting 

the bond performance between laminate strips and concrete in near-surface mounted 

(NSM) strengthening technique. To assess the influence of bond length, concrete strength 

and load history on the bond performance, an experimental program was carried out in the 

context of the present work. 

 

This chapter describes the tests, and also presents and analyzes the obtained results. 

The first part is dedicated to the description of the specimen, test configuration and test 

program. The characterization of the materials used in the experimental program and the 

preparation of the specimens are detailed. Finally, a physical interpretation of the bond 

mechanisms is given, and the results of the tests are presented and analyzed. 

 

 

2.1 EXPERIMENTAL PROGRAM 

The experimental program carried out to assess bond performance between CFRP and 

concrete was composed of two parts: the first one was carried out at the Laboratory of the 

Structural Division of the Civil Engineering Department of the University of Minho 

(LEST), Portugal, whereas the second one was developed at the Structural Technology 

Laboratory of the Technical University of Catalonia (LTE), Spain. In the first part, the 

influence of bond length and concrete strength on the bond behavior was analyzed, whereas 

in the second one the influence of load history and bond length was investigated. S1 and S2 

series are the designations of the experimental works carried out at LEST and LTE, 

respectively. 

 

 

2.1.1 Specimen and test configuration 

As mentioned in the introduction of this chapter, several test configurations were used to 

investigate the bond performance between rebars or FRP rods and concrete. After a 

preliminary evaluation of the advantages and disadvantages of these test configurations, a 

test layout similar to the one proposed by RILEM for assessing the bond characteristics of 

conventional steel rods (RILEM 1982) was adopted in the present work. 
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The specimen dimensions involved in the S1 and S2 series were not identical, since 

equal moulds were not available in both laboratories. Figure 2.4 and Figure 2.5 show the 

pullout-bending test setup adopted for the S1 and S2 series, respectively. Concrete blocks A 

and B are inter-connected by a steel hinge located at mid-span in the top part, and also by 

the CFRP laminate fixed at the bottom. The bond test region was located in block A, and 

several bond lengths, bL , were analyzed. To ensure negligible slip of the laminate fixed to 

block B, an extensive bond length was considered, guaranteeing the occurrence of bond 

failure in block A. In both series, the depth slit for the insertion of the CFRP was 15 mm; 

the slit width was: 3.3 mm for the S1 series and 4.8 mm for the S2 series. The width of the 

slits was not coincident, since table-mounted saws with similar characteristics were not 

available in both laboratories. 
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Figure 2.4 – Specimen geometry and pullout-bending test configuration for the S1 series. Note: all dimensions 
are in millimeters. 

 

The displacement transducer LVDT2 was used to control the test, at 5 µm/s slip rate, 

and to measure the slip at the loaded end, ls , while the LVDT1 was used to measure the 

slip at the free end, fs . The strain gage glued to the CFRP at the mid-span of the specimen 

was used to estimate the pullout force of the CFRP at the loaded end. In the S1 series the 

applied force F  was measured with two load cells (LC1 and LC2) located at the supports 

of the specimen (see Figure 2.4). In the S2 series, F  was registered by a load cell placed 

between the specimen top surface and the actuator (see Figure 2.5). The characteristics of 
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the adopted displacement transducers, strain gages and load cells are described elsewhere 

(Sena-Cruz and Barros 2002, Sena-Cruz et al. 2004). 
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Figure 2.5 – Specimen geometry and pullout-bending test configuration for the S2 series. Note: all dimensions 
are in millimeters. 

 

Figure 2.6 shows the setup of the pullout-bending test. The following 

servo-controlled equipments were used in the experimental program: Sentur (Freitas et 

al. 1998) for the S1 series and Instron (series 8505) for the S2 series. 
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2.1.2 Test program 

Assuming that for concrete structures needing strengthening intervention the concrete 

compressive strength usually ranges between 30 MPa and 50 MPa, concrete mixes were 

designed to have an average compressive strength ( cmf ) within this range. To appraise the 

influence of concrete strength on CFRP bond behavior, a high strength concrete (70 MPa) 

was also designed. 

 

In order to avoid the failure of the CFRP during the pullout-bending test, suitable 

bond lengths were adopted. For this evaluation preliminary tests were carried out. Bond 

lengths ranging between 40 and 120 mm were used in order to assess its influence on the 

bond behavior. The lower value, 40 mm, was considered since the bond length must be 

large enough to be representative of the different CFRP-concrete interface conditions and 

to make negligible the unavoidable end effects. The upper bound, 120 mm, was considered 

due to limitations associated to the specimen geometry. 

 

In the last decades, the influence of the loading history on the bond performance 

between rebars and concrete has been extensively analyzed and, the work of Eligehausen et 

al. (1983) is one of the most extensive researches in this topic. This work supplied 

important recommendations regarding the selection of loading configurations used in the 

present research. According to the author's knowledge, the influence of the loading history 

on the bond performance associated with the NSM strengthening technique has not yet 

been investigated. This subject has been treated in the present study by means of the 

consideration of three types of load configurations: monotonic loading (M), one cycle of 

unloading/reloading at different slip levels (C1) and ten cycles of unloading/reloading for a 

fixed load level (C10). 

 

Table 2.1 indicates the denominations adopted for the sixteen series of the selected 

experimental program, each one consisting of three specimens. The generic denomination 

of a series is fcmXX_LbYY_Z, where XX is the strength class of compressed concrete, in 

megapascal, YY is the CFRP bond length, in millimeters, and Z is the type of load 

configuration (M, C1 or C10). In S1 series the influence of the bond length (40, 60 or 

80 mm) and of the concrete strength (35, 45 or 70 MPa) were investigated. In the S2 series 
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the concrete compressive strength was always 40 MPa, and the main investigated 

parameters were the bond length and the load configuration. 

 

Preliminary tests performed in the S2 series have shown that, using the bond lengths 

of the S1 series, lower bond strength and higher slip at peak pullout force values were 

obtained. In an attempt to define an experimental program with similar values of the bond 

strength and slip at peak pullout force, the bond lengths of the S2 series were increased to 

60, 90 and 120 mm. 

 

Three distinct C10 load configurations were adopted (see Figure 2.7): in the 

fcm40_Lb60_C10 series, ten unloading/reloading cycles at 90 % of the peak pullout force 

( 0 max 0.90l lF F = ); in the fcm40_Lb90_C10 series, ten unloading/reloading cycles at 60 % 

of the peak pullout force ( 0 max 0.60l lF F = ); in the fcm40_Lb120_C10 series, ten 

unloading/reloading cycles at 75 % of the peak pullout force ( 0 max 0.75l lF F = ). The 

unloading/reloading cycles performed before the peak pullout force were applied with the 

purpose of assessing the influence of the cyclic loading in the degradation of the bond 

stress. Carrying out cycles at different bond stress levels (60 %, 75 % or 90 %), before the 

occurrence of the peak pullout force, had the intention of evaluating the influence of this 

parameter on the bond stress degradation and on the variation of the bond strength. 

 

In the C1 load configuration (see Figure 2.8) one unloading/reloading cycle was 

performed at a slip of 250 µm, 500 µm, 750 µm, 1000 µm, 1500 µm, 2000 µm, 3000 µm 

and 4000 µm. This load configuration was selected in order to investigate the influence of 

the cyclic loading on the stiffness variation. Due to some limitations in the software of the 

servo-controlled equipment, all unloading phases were performed under load control, with 

an average slip rate of 5 µm/s. 
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Table 2.1 – Denominations of the studied test series. 

Series 
Concrete strength 

[MPa] 
Bond length 

[mm] 
Load 

configuration Denomination 

35 fcm35_Lb40_M 

45 fcm45_Lb40_M 

70 

40 

fcm70_Lb40_M 

35 fcm35_Lb60_M 

45 fcm45_Lb60_M 

70 

60 

fcm70_Lb60_M 

35 fcm35_Lb80_M 

45 fcm45_Lb80_M 

S1 

70 

80 

Monotonic (M) 

fcm70_Lb80_M 

Monotonic (M) fcm40_Lb60_M 
60 

Cyclic (C10) fcm40_Lb60_C10 

Monotonic (M) fcm40_Lb90_M 
90 

Cyclic (C10) fcm40_Lb90_C10 

Monotonic (M) fcm40_Lb120_M 

Cyclic (C10) fcm40_Lb120_C10 

S2 40 

120 

Cyclic (C1) fcm40_Lb120_C1 

 

 

 

P
ul

lo
ut

 fo
rc

e

Unloading 
phase

Unloading 
phase

Reloading 
phase

Reloading 
phase

Loading 
phase

Loading phase
in softening

Loading 
phase

Fl max

Fl 0

minlF

Bond stress 
degradation

8 109

8 9 10

(Bond strength)

0 1 2 3

B
on

d 
st

re
ss

Lo
ad

ed
 e

nd
 s

lip

Time

Time
 

Figure 2.7 – Configuration of the C10 cyclic tests. 
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Figure 2.8 – Configuration of the C1 cyclic tests. 

 

 

2.2 MATERIAL CHARACTERIZATION 

In the following sections the characterization of concrete, CFRP laminate and epoxy 

adhesive used in the experimental research is described. 

 

 

2.2.1 Concrete 

The granulometric analyses of sand and gravel used in the concrete aggregate skeleton are 

included in Figure 2.9 and Figure 2.10. These analyses were carried out according to the 

NP 1379 (1976) and UNE-EN 933-1 (1998) recommendations for the S1 and S2 series, 

respectively. 

 

Concrete compositions are included in Table 2.2. In preliminary tests, shear failure 

occurred due to the lack of shear reinforcement in the specimen (Sena-Cruz et al. 2001). To 

avoid shear failure of the specimen, 60 kg/m3 of hooked end steel fibers were added to the 

concrete composition. For this content of fibers, only the concrete post-cracking tensile 

residual strength is significantly affected by fiber reinforcement mechanisms (Rossi 1998, 

Barros and Figueiras 1999). Since concrete cracking is not expected to occur in the 
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bonding zone, the influence of adding fibers to concrete is marginal in terms of bond 

behavior (Ezeldin and Balaguru 1989). 
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Figure 2.9 – Granulometric curves of the concrete aggregate components used in the S1 series. 
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In the concrete manufacturing, vertical-axis forced-action mixers were used. The 

mixing procedures were the following: 

• the coarse and fine aggregates, and the cement were mixed during 1 minute; 

• water was added and the mix continued for another minute; 

• superplasticizer was incorporated and the mixing continued for another minute; 

• steel fibers were gradually added and the concrete was mixed for another 2 minutes. 

The mix had satisfactory homogeneity and no balling of fibers was observed. 

 

 

Table 2.2 – Mix compositions and average compressive strength of the concrete used in the test series. 

Composition [kg/m3] 
Series 

FS CS CA C W 

cmf  

[MPa] 

fcm35_Lb40_M 34.5 (6.9 %) 

fcm35_Lb60_M 33.0 (4.2 %) 

fcm35_Lb80_M 

745 943 350 210 

37.2 (1.5 %) 

fcm45_Lb40_M 46.2 (0.5 %) 

fcm45_Lb60_M 41.4 (2.3 %) 

fcm45_Lb80_M 

− 

627 1049 400 200 

47.1 (1.7 %) 

fcm70_Lb40_M 69.9 (0.9 %) 

fcm70_Lb60_M 70.3 (8.2 %) 

fcm70_Lb80_M 

427 419 848 500 150 

69.2 (7.5 %) 

fcm40_Lb60_M 

fcm40_Lb60_C10 

fcm40_Lb90_M 

fcm40_Lb90_C10 

fcm40_Lb120_M 

fcm40_Lb120_C10 

fcm40_Lb120_C1 

− 990 705 350 203 41.0 (2.3 %) 

Notes: FS – Fine Sand (0-3 mm); CS – Coarse Sand (0-5 mm); CA – Coarse Aggregate (5-15 mm); C – Secil Cement 
42.5 type I; W – Water. In series fcm70, 7.8 l/m3 of Rheobuild 1000 superplasticizer were applied; in series fcm40, 
3.4 l/m3 of DARACEM 205 superplasticizer were applied. The values within parentheses are the coefficients of 
variation. 

 

Cylinder specimens with a diameter of 150 mm and a height of 300 mm were used to 

obtain the compressive strength of the concrete. The compression tests were carried out in 

a universal test machine, under load control, at a rate of 0.5 MPa/s. The average 
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compressive strength ( cmf ) was obtained from, at least, three specimens at the age of the 

pullout-bending tests (see Table 2.2). 

 

 

2.2.2 CFRP laminate strip 

The CFRP laminate produced by S&P was provided in rolls, and was composed of 

unidirectional carbon fibers, agglutinated with an epoxy adhesive. The laminate properties 

provided by the supplier are included in Table 2.3. 

 

To verify the CFRP cross section geometry, twenty measurements of the laminates 

were carried out for each series. The average values obtained for the width and thickness 

are included in Table 2.3. 

 

 

Table 2.3 – CFRP laminate properties. 

S1 series S2 series 
Property 

Supplier Laboratory Supplier Laboratory 

Width [mm] 10.0 9.34 (1.0 %) 10.0 10.0 (0.1 %) 

Thickness [mm] 1.4 1.39 (0.2 %) 1.4 1.40 (0.5 %) 

Tensile strength [MPa] > 2200 2740 (3.1 %) 2500 2833 (5.7 %) 

Young's modulus [GPa] 150 159 (1.6 %) 150 171 (0.9 %) 

Ultimate strain [%] 1.4 1.70 (2.4 %) 1.25 1.55 (6.2 %) 

Note: values within parentheses are the coefficients of variation. 

 

Evaluation of the Young's modulus, tensile strength and ultimate strain was carried 

out with tensile tests, following ISO 527-5 (1997) recommendations. The specimen's 

length was 250 mm, and tabs of 50 mm length were glued to the ends to avoid premature 

failure of the specimen due to stress concentrations introduced by the machine fixtures. 

The end-tabs were built with the same material used in the tested specimen. The test was 

controlled with a constant displacement rate of 2 mm/min. To evaluate the strain of the 

laminate, clip and strain gages were used, for the S1 and S2 series, respectively. The 

applied force was measured by a load cell with a static load carrying capacity of ±100 kN. 

Figure 2.11(a) shows the test layout of the S2 series. 
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At about 75 % of the ultimate tensile strength, the rupture of the fibers located at the 

edges of the laminate started to occur. The brittle failure took place, accompanied by a loud 

sound. Figure 2.11(b) depicts the appearance of the specimens of the S2 series after being 

tested. Similar failure was observed in the specimens used in the S1 series. In some 

specimens the failure region was not located in the central part of the specimen; this can be 

justified by the difficulty of ensuring homogeneity in terms of fiber distribution, fiber 

alignment and laminate cross sectional area. 

 

 

  
(a) (b) 

Figure 2.11 – (a) Layout of the CFRP tensile tests of the S2 series. (b) Failure of the S2 series CFRP specimens. 

 

 

Figure 2.12 shows the uniaxial stress-strain relationship obtained in the tests of the 

specimens. A linear stress-strain relation up to the peak load is observed. Table 2.3 

includes the average values obtained for the tensile strength, Young's modulus and ultimate 

strain (at the peak stress). Low coefficient of variation values were obtained. 
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Figure 2.12 – Stress-strain relationship of the CFRP tensile specimens of S1 (a) and S2 (b) series. 

 

 

2.2.3 Epoxy adhesive 

The low viscosity epoxy adhesive used to bond the CFRP laminate to concrete, produced 

by Bettor-MBT, had the trademark Mbrace Epoxikleber and Mbrace Epoxikleber 220, 

respectively, for the S1 and S2 series. This adhesive is composed of two parts (A and B) 

and, according to the supplier, its properties are those indicated in Table 2.4. 

 

 

Table 2.4 – Main properties of the epoxy adhesive. 

Property 
Mbrace Epoxikleber 

(S1 series) 

Mbrace Epoxikleber 220 

(S2 series) 

Compressive strength [MPa] 90 40 

Tensile strength [MPa] n.a. 7 

Flexural tensile strength [MPa] 30 n.a. 

Young's modulus [GPa] 8.15 7 

Bond strength to concrete [MPa] > 3.5 3.0 

Bond strength to laminate [MPa] n.a. 3.0 

Pot life at 20 ºC [min] 80 60 

Time of cure [days] 3 3 

Mixing ratio (Part A to Part B) 2 to 1 by weight 3 to 1 by weight 

 

To characterize the epoxy adhesive, three point-bending tests and compression tests 

were carried out, following NP-EN 196-1 (1987) recommendations. The preparation of the 
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epoxy specimens, with dimensions 160×40×40 mm3, was accomplished in the following 

steps: both components were homogenized individually; component B was added to 

component A and both were mixed for 2 minutes in a mixer machine at 1800 rpm; the 

procedure was then interrupted in order to homogenize the mix, using a spoon; the mixing 

procedure continued for another two minutes. A visual inspection of the result leads to the 

conclusion that this procedure ensured mixtures with the desired quality. The molds were 

cast in two layers each one compacted by 120 jolts. The specimens were removed from the 

moulds 24 hours after casting and were placed in a curing chamber, at 20 ºC and 50 % RH. 

 

The bending tests were undertaken in a universal test machine under load control, at 

a rate of 50 N/s (see Figure 2.13(a)). The appearance of the S2 series specimens after they 

had been tested is shown in Figure 2.14. Several voids were observed in the fracture 

surface of the specimens, which can be responsible for the large coefficients of variation 

obtained (see values within parentheses indicated in Table 2.5). 

 

 

 
(a) 

 
(b) 

Figure 2.13 – Layout of the three point bending (a) and compression (b) tests of the epoxy adhesive. 

 

Compression tests were carried out with the two parts resulting from the prismatic 

specimens after the bending tests. These compression tests were performed in a universal 

testing machine under load control at a rate of 2.4 kN/s (see Figure 2.13(b)). From these 

tests, average compressive strengths of 44.4 MPa and 67.5 MPa, with a low coefficients of 

variation, were obtained for the S1 and S2 series, respectively (see Table 2.5). 

 



30 Chapter 2 

 

 

 

 

(a) (b) 

Figure 2.14 – Specimens of the S2 series after the bending test: (a) lateral view; (b) top view. 

 

 

Table 2.5 – Results from the three point bending and compression tests of epoxy adhesive specimens. 

Series 
Flexural tensile strength 

[MPa] 

Compressive strength 

[MPa] 

S1 25.8 (8.0 %) 44.4 (11.9 %) 

S2 21.8 (25.2 %) 67.5 (5.3 %) 

 

 

2.3 PREPARATION OF SPECIMEN 

Figure 2.15 shows the main steps adopted in the preparation of the pullout-bending 

specimens, which are detailed in the following paragraphs. 

 

 

  Curing Making the
slits

Drying

  CFRP
applicationTest

  CFRP/slit
preparation

 

Figure 2.15 – Main steps used in the preparation of a specimen. 
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At the age of 28 days, blocks A and B of each specimen (see Figure 2.4 and 

Figure 2.5) were removed from the curing room to make the slits using a table-mounted 

saw (Figure 2.16(a)). In order to eliminate the remaining dust induced by the sawing 

process, the slits were cleaned with compressed water (Figure 2.16(b)). To guarantee a dry 

surface before bonding the laminate to the concrete, the specimens were air-dried in the 

laboratory environment during at least one week. 

 

Before bonding the CFRP, the slits were cleaned with compressed air (see 

Figure 2.16(c)). To avoid the presence of epoxy adhesive in undesirable zones, a masking 

procedure was adopted, as shown in Figure 2.16(d). Preparation of the CFRP itself 

involved the following steps: 

• a small tab, built with the same CFRP material, was fixed at the loaded end to 

measure the loaded end slip (see Figure 2.16(e)); 

• small plastic pieces were fixed at the free and loaded ends of the bonded zone in 

order to ensure the desired length of the test region (see Figure 2.16(e)); 

• the CFRP was cleaned with acetone; 

• a strain gage was glued to the CFRP at the mid-span of the specimen (see 

Figure 2.16(f)); 

• finally, in the zones to be bonded, the CFRP was again cleaned with acetone. 

 

The laminate was fixed to the concrete using the epoxy adhesive described in 

Section 2.2.3. In the regions where the laminate was bonded to concrete, the slit was filled 

with the epoxy adhesive (see Figure 2.16(g)). In the corresponding lateral surfaces the 

laminate was covered with a thin layer of the epoxy adhesive (see Figure 2.16(h)). Then, 

the CFRP was inserted into the slit, and slightly pressed to force the epoxy adhesive to flow 

between the CFRP and the slit sides. Finally, the epoxy adhesive in excess was removed 

and the surface was leveled. Figure 2.17 shows the final appearance of the specimen. The 

specimens were kept in the laboratory environment before being tested. 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

Figure 2.16 – Specimen preparation: (a) making the slits; (b) cleaning the slits with compressed water; 
(c) cleaning the slits with compressed air; (d) specimen final state before the CFRP reinforcement; 
(e) final state of the laminate bond zone; (f) final state of the CFRP laminate. 
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(g) (h) 

Figure 2.16 (cont.) – Specimen preparation: (g) slit filled with epoxy adhesive; (h) epoxy adhesive on the CFRP 
surface at the bond zone. 

 

 

 

Figure 2.17 – Final state of the specimen before testing. 

 

 

2.4 RESULTS 

In the following sections the results obtained from the tested specimens are presented. 

These results include evaluation of the failure modes and influences of the bond length, 

concrete strength and load history on the bond performance. 
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2.4.1 Identification of failure modes 

In the tested specimens, a large slip in the laminate-adhesive interface was observed. In 

fact, assuming that the adhesive-concrete and laminate-adhesive bond properties are similar 

(see Section 2.2.3), and considering that the concrete surface is rougher than the laminate 

surface, a larger slip in the laminate-adhesive interface was expected. 

 

Photos of the laminate-adhesive-concrete bonding zone, included in Figure 2.18, 

were obtained with an optical microscope. They put in evidence that failure is caused by 

epoxy adhesive cracking, and debonding and sliding at the adhesive-concrete and 

laminate-adhesive interfaces. A fish spine crack pattern can be observed in the epoxy 

adhesive, which is explainable in terms of the deformations imposed by the CFRP during 

the pullout, as schematically shown in Figure 2.19. This figure depicts the developed 

micro-mechanism consisting on tensile forces, tF , and compressive forces, cF , in the 

epoxy adhesive, due to the shear stresses developed at the adhesive-concrete and 

CFRP-adhesive interfaces as a consequence of the stress transfer between concrete and 

CFRP. 

 

From the information provided by the photos shown in Figure 2.18, an average angle 

between the crack surface and the CFRP direction of 33 degrees was observed. No cracks 

on the concrete surface were formed, justifying the previous hypothesis that concrete 

tensile strength does not influence the results in this specific bond test. 
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Figure 2.18 – Photos of the laminate-adhesive-concrete bonding zone: crack pattern (a) and failure of the epoxy 
adhesive (b). 
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Figure 2.19 – Force distribution corresponding to the crack pattern in the epoxy adhesive. Note: tF  is the 

traction force at the adhesive; cF  is the compression force at the adhesive; cτ  is the shear stress at the interface. 

 

 

2.4.2 Monotonic loading results 

 

2.4.2.1 Pullout force 

Two different approaches were adopted in order to evaluate the pullout force in the CFRP, 

lF , at the loaded end of the bond length. The first one is based on the force values 

measured at the load cells and takes into account the internal lever arm, i.e., the distance 

between the longitudinal axis of the CFRP and the contact point at the steel hinge (see 

Figure 2.4 and Figure 2.5). The second approach is based on the values recorded by the 

strain gage glued to the CFRP and takes into account the CFRP Young's modulus 

( 160 GPafE =  for the S1 series and 171 GPafE =  for the S2 series) and its cross 

sectional area ( 212.98 mmfA =  for the S1 series and 214.04 mmfA =  for the S2 series). 

 

Figure 2.20 shows a typical evolution of the pullout force for the S1 and S2 series 

calculated using the first and second approaches. In general, similar results were obtained 

with both approaches in the S1 series. For the S2 series it can be observed that up to the 

peak load the difference in the forces derived from both approaches increases, and remains 

constant in the softening phase. The differences in the force values obtained by both 

approaches, in the S2 series, are probably justified by the variation of the internal lever arm 

during the test. Friction between the specimen and the load system also contributed to this 

difference, as demonstrated elsewhere (Sena-Cruz et al. 2004). In the following sections 

the pullout force is calculated with the strain gage approach, in order to avoid the cause of 

the aforementioned errors. 
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Figure 2.20 – Evolution of the pullout force in the specimens B3_fcm45_Lb80_M (a) and 
B3_fcm40_Lb120_M (b). Note: B3 means third beam of the series. 

 

 

2.4.2.2 Slip at free and loaded ends 

Figure 2.21 depicts a typical evolution of the slip measured at the free and loaded ends, and 

also the evolution of the pullout force. As expected, the slip at the loaded end, measured by 

the controller LVDT2, has a linear evolution. The slip at the free end, recorded by LVDT1 

exhibits a nonlinear evolution. By analyzing simultaneously the curves corresponding to 

the evolution of both slips and of the pullout force, the following four branches can be 

identified in the pullout force curve: 

• path AB, where slip occurs only at loaded end; 

• path BC, where slip occurs at the loaded and free ends, with a higher slip rate at the 

loaded end; 

• path CD, where the slip rate at the free end is higher than the slip rate at the loaded 

end; 

• path DE, where slip rates are similar at the free and loaded ends. 

 

Point B corresponds to the onset of the free end slip. In the S1 series the free end slip 

slowly increased while in the S2 series it has a negligible value up to the peak pullout force. 

Point C corresponds to the highest difference between the slip at the free and loaded ends. 

During the stage corresponding to the branch BC, both the pullout force and the free end 

slip have a nonlinear evolution. This can be justified by the nonlinear behavior of the epoxy 

adhesive as well as the debonding process at laminate-adhesive and adhesive-concrete 
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interfaces. Point D separates two branches of the pullout force curve, with a distinct slope. 

This transition is more pronounced in the S1 series. Due to the degradation of the bonding 

mechanisms at the laminate-adhesive-concrete interfaces, as well as to the adhesive 

cracking, a significant decay of the pullout force can be observed from point C to point D. 

Due to this load decrease, an elastic strain release on the CFRP occurs, thereby justifying 

the slip rate at the free end being higher than the slip rate at the loaded end. After point D, 

the pullout force is mainly due to friction mechanisms at both the laminate-adhesive and 

the adhesive-concrete interfaces, resulting in a quasi-rigid body movement of the CFRP at 

the bonded zone, with similar slip rates at both free and loaded ends. 
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Figure 2.21 – Evolution of the slip at the free and loaded ends and of the pullout force in the specimens 
B3_fcm45_Lb80_M (a) and B3_fcm40_Lb120_M (b). Note: B3 means third beam of the series. 

 

Ratios maxl lF F  for the points B, C and D are evaluated from the obtained 

experimental results, where lF  is the pullout force at points B, C or D and maxlF  is the 

maximum registered pullout force. These results are included in Table 2.6 and Table 2.7, 

from which it can be remarked that: the force at point C is near the maxlF  value; the forces 

at points B and D are about 70 % of maxlF  for the S1 series and about 20 % and 65 %, 

respectively, for the S2 series, but exhibiting a large scatter for the case of point B; concrete 

strength has a marginal influence on the maxl lF F  values for these points. 
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Table 2.6 – Average values of the maxl lF F  ratio for points B, C and D of the S1 series. 

Ratio maxl lF F  
Series 

B C D 

fcm35_Lb40_M 0.563 (30.0 %) 0.978 (0.7 %) 0.805 (2.9 %) 

fcm35_Lb60_M 0.662 (12.0 %) 0.996 (0.7 %) 0.798 (11.2 %) 

fcm35_Lb80_M 0.677 (9.0 %) 0.971 (0.9 %) 0.730 (7.4 %) 

fcm45_Lb40_M 0.817 (6.0 %) 0.991 (1.0 %) 0.601 (9.3 %) 

fcm45_Lb60_M 0.654 (24.3 %) 0.987 (1.0 %) 0.661 (7.0 %) 

fcm45_Lb80_M 0.705 (18.8 %) 0.981 (2.0 %) 0.759 (2.2 %) 

fcm70_Lb40_M 0.767 (5.3 %) 0.987 (1.4 %) 0.663 (6.4 %) 

fcm70_Lb60_M 0.657 (23.3 %) 0.942 (9.0 %) 0.584 (7.0 %) 

fcm70_Lb80_M 0.669 (31.9 %) 0.990 (0.9 %) 0.708 (5.8 %) 

Note: the values within parentheses are the coefficients of variation. 

 

 

Table 2.7 – Average values of the maxl lF F  ratio for points B, C and D of the S2 series. 

Ratio maxl lF F  
Series 

B C D 

fcm40_Lb60_M 0.180 (43.9 %) 0.996 (0.5 %) 0.598 (3.5 %) 

fcm40_Lb90_M 0.246 (66.1 %) 0.989 (0.5 %) 0.654 (1.4 %) 

fcm40_Lb120_M 0.229 (20.9 %) 0.993 (0.5 %) 0.669 (2.4 %) 

Note: the values within parentheses are the coefficients of variation. 

 

The large scatter obtained for the point B can be justified by the difficulty to assure 

the homogeneity of the epoxy adhesive in terms of thickness and physical properties along 

the bond length. Consequently, nonlinear deformations of the epoxy adhesive may have 

occurred during the stage corresponding to branch AB, especially at the loaded end, thereby 

contributing to the scatter of maxl lF F  obtained at point B. It was observed that the epoxy 

adhesive stiffness and strength depend on the presence of inevitable and unpredictable 

voids, as already reported (Sena-Cruz et al. 2001). Since the uncertainty of these epoxy 

properties influences the stress transfer between the laminate and the concrete, this may 

also have contributed to the scatter of maxl lF F  at point B. 
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2.4.2.3 Pullout force versus slip 

Figure 2.22 and Figure 2.23 show typical relationships between the pullout force and slip at 

the free and loaded ends ( l fF s−  and l lF s− ) of the S1 and S2 series, respectively, for a 

monotonic loading configuration. Curves corresponding to the results of all the tested 

specimens are included in APPENDIX A. 
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Figure 2.22 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm45_Lb80_M series. 
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Figure 2.23 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb120_M series. 
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The analysis of the l lF s−  and l fF s−  curves shows that after a short linear branch 

the response becomes nonlinear. Peak loads occurred for loaded end slips in the range of 

0.27 mm to 1.24 mm. After a sudden decay beyond the peak, the pullout force decreases 

smoothly with the slip increment, describing a nonlinear softening branch. Residual pullout 

forces, which are quite significant, indicate that frictional mechanisms in the 

laminate-adhesive-concrete interfaces are mobilized. The aspect of the curves and the 

registered responses were similar in all the tested specimens (see APPENDIX A). 

 

 

2.4.2.4 Discussion of results 

In order to assess the bond performance of the monotonic tests, the entities included in 

Table 2.8 and Table 2.9 were analyzed. The meaning of each of those entities is the 

following: 

• maxls  is the slip at the loaded end at the peak pullout force ( maxlF ); 

• maxτ  is the average bond strength, which is obtained dividing the peak pullout force 

by the contact area between the CFRP and epoxy adhesive, ( )( )max 2l f f bF w t L+ , 

where fw  and ft  are the width and the thickness of the CFRP and bL  is the bond 

length; 

• the expression maxl fufσ  is the ratio between the CFRP normal stress at peak pullout 

force and the CFRP tensile strength; 

• maxrτ τ  is the residual bond stress ratio, defined as the ratio between the average 

bond stress at the end of the test (loaded end slip with a 5 mm displacement) and 

maxτ . 

 

The influence of the bond length and concrete strength on the loaded end slip at peak 

pullout force, maxls , can be observed in Figure 2.24(a) and (b), respectively. In these graphs 

each dot represents an experimental result, and each curve is the average of three 

specimens. An almost linear relationship between maxls  and the bond length can be 

observed in Figure 2.24(a). The value of maxls  is practically independent of the concrete 

strength, as shown in Figure 2.24(b). 
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Table 2.8 – Average values of the main entities of the S1 series (monotonic loading). 

Series 
maxls  

[mm] 

maxlF  

[kN] 

maxτ  

[MPa] 

maxl fufσ  

[%] 

maxrτ τ  

[−] 

fcm35_Lb40_M 0.29 (21.5 %) 15.0 (5.8 %) 17.5 42.1 0.41 (11.3 %) 

fcm35_Lb60_M 0.49 (5.8 %) 22.8 (8.7 %) 17.7 64.0 0.47 (9.4 %) 

fcm35_Lb80_M 0.65 (16.0 %) 22.4 (5.0 %) 13.0 62.1 0.37 (8.2 %) 

fcm45_Lb40_M 0.27 (26.8 %) 15.5 (2.0 %) 18.1 43.5 0.39 (17.1 %) 

fcm45_Lb60_M 0.46 (8.8 %) 19.9 (3.7 %) 15.5 55.8 0.33 (9.7 %) 

fcm45_Lb80_M 0.84 (30.6 %) 26.4 (4.2 %) 15.4 73.9 0.41 (3.7 %) 

fcm70_Lb40_M 0.32 (10.5 %) 15.7 (8.8 %) 18.3 44.0 0.50 (7.2 %) 

fcm70_Lb60_M 0.40 (10.0 %) 18.9 (5.8 %) 14.7 52.9 0.39 (11.8 %) 

fcm70_Lb80_M 0.74 (3.0 %) 25.6 (6.2 %) 14.9 71.6 0.48 (3.2 %) 

Note: the values within parentheses are the coefficients of variation. 

 

Table 2.9 – Average values of the main entities of the S2 series (monotonic loading). 

Series 
maxls  

[mm] 

maxlF  

[kN] 

maxτ  

[MPa] 

maxl fufσ  

[%] 

maxrτ τ  

[−] 

fcm40_Lb60_M 0.43 (11.3 %) 18.7 (5.1 %) 13.6 47.5 0.45 (4.9 %) 

fcm40_Lb90_M 0.79 (9.0 %) 23.9 (4.1 %) 11.6 60.7 0.52 (2.2 %) 

fcm40_Lb120_M 1.13 (8.1 %) 27.7 (2.8 %) 10.1 70.5 0.54 (0.9 %) 

Note: the values within parentheses are the coefficients of variation. 

 

 

0 30 60 90 120 150
0.00

0.25

0.50

0.75

1.00

1.25

 

 fcm35
 fcm40
 fcm45
 fcm70

Lo
ad

ed
 e

nd
 s

lip
 a

t p
ea

k 
pu

llo
ut

 fo
rc

e
s lm

ax
  [

m
m

]

Bond length L
b
  [mm]  

(a) 

25.0 37.5 50.0 62.5 75.0
0.00

0.25

0.50

0.75

1.00

1.25

 

 Lb40
 Lb60
 Lb80Lo

ad
ed

 e
nd

 s
lip

 a
t p

ea
k 

pu
llo

ut
 fo

rc
e

s lm
ax
  [

m
m

]

Concrete strength f
cm

  [MPa]  
(b) 

Figure 2.24 – Influence of the bond length (a) and concrete strength (b) on the loaded end slip at peak pullout 
force. 

 



42 Chapter 2 

 

Figure 2.25(a) and (b) show the evolution of the peak pullout force, maxlF , with the 

bond length and the concrete strength, respectively. As expected, maxlF  increases with the 

bond length, bL . Since the epoxy adhesive volume increases with bL , the nonlinear branch 

before the peak pullout force also increases with bL . The analysis of Figure 2.25 (b) and 

Table 2.8 leads to the conclusion that the influence of the concrete strength on maxlF  is 

marginal. The increase of the peak pullout force with bL  was higher in series S1 than in 

series S2. Since the width of the slit was 3.3 mm and 4.8 mm for the S1 and S2 series, 

respectively, the larger volume of epoxy adhesive in the S2 series seams to be the main 

reason for the aforementioned more significant increase. 
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Figure 2.25 – Influence of bond length (a) and concrete strength (b) on the pullout force. 

 

Figure 2.26(a) illustrates the relationship between maxτ  and the bond length for the 

series of different concrete strength classes, whereas Figure 2.26(b) depicts the evolution of 

maxτ  with the concrete strength for different bond lengths. The average peak bond stress, 

maxτ , decreases with the bond length, being practically independent of the concrete strength 

(see Table 2.8 and Table 2.9). In the S2 series values of maxτ  were lower than those of the 

S1 series. This was predictable since maxτ  is linearly dependent of the peak pullout force, 

and lower values of maxlF  in the S2 series were obtained. 
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Figure 2.26 – Influence of bond length (a) and concrete strength (b) on the average bond strength. 

 

The influence of the bond length and concrete strength on the CFRP normal stress at 

peak pullout force, maxlσ , are represented in Figure 2.27(a) and (b), respectively, where 

maxlσ  is normalized by the CFRP tensile strength, fuf . These influences can also be 

assessed from the results included in Table 2.8 and Table 2.9. Figure 2.27 reveals that, in 

general, maxl fufσ  increases with the bond length and is independent of the concrete 

strength. For a given maxl fufσ , the S1 series required a lower bond length than in the case 

of the S2 series, which means that the S1 series provides a higher bond efficiency. The 

larger volume of epoxy adhesive applied in the S2 series, already pointed out in the 

justification for the smaller increase of the peak pullout force with bL  in comparison with 

what was observed in the S1 series, is also the reason for the smaller increase of maxl fufσ  

with bL . 

 

Analyzing the influence of the bond length and the concrete strength in Table 2.8 (S1 

series) a clear trend of maxrτ τ  ratio values was not found. The values of maxrτ τ  in the S2 

series (see Table 2.9) seem to be bond length dependent. 
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Figure 2.27 – Influence of bond length (a) and concrete strength (b) on the tensile ratio maxl fufσ . 

 

 

2.4.3 Cyclic loading results 

 

2.4.3.1 Pullout force, free end and loaded end slips 

Figure 2.28(a) presents the typical evolution of the slip at the free and loaded ends of the 

C10 series. As this figure shows, in the unloading/reloading branches, the free end slip 

remains with a negligible value. The loaded end slip has a nonlinear evolution in the 

unloading branches since the tests were performed under load control in the unloading 

phase (see section 2.1.2). In the monotonic phase of the test both slips have similar 

variation. 

 

Figure 2.28(b) shows the typical evolution of the pullout force in the C10 series. 

During the reloading branches the pullout force has a nonlinear evolution since in this 

phase the tests were performed under displacement control. A residual pullout force can be 

observed at the end of the unloading branches. This residual value was imposed in order to 

guarantee the stability of the test. In all the ten unloading/reloading cycles, the pullout force 

at the end of the reloading branches has decreased. 
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Figure 2.28 – Evolution of the slip at the free end ( fs ) and loaded end ( ls ) (a), and evolution of the pullout 

force ( lF ) of the specimen B1_fcm40_Lb120_C10. 

 

Figure 2.29 illustrates the typical evolution of the slip at the free and loaded ends and 

the pullout force in the C1 series. In the unloading branches the free end slip has remained 

practically constant whereas the loaded end slip has decreased. In the reloading branches 

after peak pullout force, the slip at both the free and loaded ends has increased with the 

pullout force. The loaded end slip has a nonlinear evolution in the unloading branches 

since the tests were performed under load control in the unloading phase. 

 

 

0 500 1000 1500 2000
0

1

2

3

4

5

 

 Free end slip
 Loaded end slip

S
lip

 [m
m

]

Time [s]  
(a) 

0 500 1000 1500 2000
0

6

12

18

24

30

 

P
ul

lo
ut

 fo
rc

e 
[k

N
]

Time [s]  
(b) 

Figure 2.29 – Evolution of the slip at the free end ( fs ) and loaded end ( ls ) (a), and evolution of the pullout 

force ( lF ) of the specimen B1_fcm40_Lb120_C1. Note: B1 means first beam of the series. 
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2.4.3.2 Pullout force versus slip 

Figure 2.30 to Figure 2.32 reproduce the relationships between the pullout force and the 

slip at the free and loaded ends ( l fF s−  and l lF s− ) for the C10 series. For the series 

having the same bond length, the monotonic curve was also included. This curve is the 

average response of the monotonic tests composing the homologous series (with the same 

bond length). 

 

For all the C10 series, the envelope of the cyclic tests is similar to the curve of the 

corresponding monotonic test. In the series having 60 mm and 90 mm bond length, the 

monotonic curve corresponds to the upper bound, while in the series having 120 mm bond 

length the monotonic curve is approximately a lower bound. 

 

Figure 2.33 illustrates the typical behavior of the loaded end slip and pullout force 

relationship for the C10 series at the cycle loading phase. In Figure 2.33(a) a single cycle is 

shown, where two distinct behaviors can be identified: in the unloading branch nonlinear 

behavior occurs and the curve presents an upward-concavity; in the initial part of the 

reloading branch the behavior is nonlinear, followed by a linear relationship up to the end 

of this branch. This linear relationship, however, no longer occurs when the number of 

cycles is increased (see Figure 2.33(b)). This tendency has already been observed in 

concrete elements submitted to uniaxial cyclic loadings (Sinha et al. 1964, Karsan and 

Jirsa 1969). 
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Figure 2.30 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb60_C10 series. 
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Figure 2.31 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb90_C10 series. 
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Figure 2.32 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb120_C10 series. 
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Figure 2.33 – Pullout force vs. loaded end slip of B1_fcm40_Lb60_C10 specimen: (a) typical cycle; (b) all 
performed cycles. Note: B1 means first beam of the series. 

 

Figure 2.34 shows the relationships between the pullout force and the slip at the free 

and loaded ends ( l fF s−  and l lF s− ) for the C1 series, where the monotonic curve was 

also included. As expected, the envelopes of the cyclic tests are similar to the monotonic 

ones. Like in Lb120_C10 series, the monotonic curve seems to be the lower bound of the 

corresponding cyclic tests. During the unloading and reloading phase, the free end slip has 

not varied. In this phase, the relationship between the pullout force and the loaded end slip 

is nonlinear. 

 
 

0 1 2 3 4 5
0

6

12

18

24

30

36

 B1_fcm40_Lb120_C1
 B2_fcm40_Lb120_C1
 B3_fcm40_Lb120_C1
 fcm40_Lb120_M

P
ul

lo
ut

 fo
rc

e 
F

l  [
kN

]

Free end slip s
f
  [mm]

 
(a) 

0 1 2 3 4 5
0

6

12

18

24

30

36

 B1_fcm40_Lb120_C1
 B2_fcm40_Lb120_C1
 B3_fcm40_Lb120_C1
 fcm40_Lb120_M

P
ul

lo
ut

 fo
rc

e 
F

l  [
kN

]

Loaded end slip s
l
  [mm]

 
(b) 

Figure 2.34 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb120_C1 series. 
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2.4.3.3 Discussion of results 

Table 2.10 includes the main entities analyzed (the meaning of each entity is indicated in 

Section 2.4.2.4). Comparing these values with those obtained for the monotonic tests of the 

homologous series, it is observed that the former are smaller, in general. Series Lb120 is 

the only exception to this tendency. During the epoxy adhesive application of the series 

Lb120_M a shorter pot life was observed, due probably to the elevated temperature. This 

fact might have adversely affected the bond performance of this series. The entities maxls , 

maxlF , maxl fufσ  and maxrτ τ  revealed a tendency to increase with the bond length, bL , 

whereas maxτ  decreased with bL . 

 

 

Table 2.10 − Average values of the main entities evaluated in the cyclic loading series. 

Series maxls  

[mm] 
maxlF  

[kN] 
maxτ  

[MPa] 
maxl fufσ  

[%] 
maxrτ τ  

[−] 

   fcm40_Lb60_C10 0.35 (13.43 %) 16.6 (5.2 %) 12.1 (5.2 %) 42.22 (5.19 %) 0.43 (3.59 %) 

   fcm40_Lb90_C10 0.69 (11.96 %) 22.2 (4.7 %) 10.8 (4.7 %) 56.35 (4.67 %) 0.49 (3.09 %) 

   fcm40_Lb120_C10 1.20 (8.36 %) 28.8 (4.1 %) 10.5 (4.1 %) 73.15 (4.09 %) 0.56 (2.61 %) 

   fcm40_Lb120_C1 1.18 (2.81 %) 29.6 (6.9 %) 10.8 (6.9 %) 75.53 (6.89 %) 0.54 (1.35 %) 

Note: the values within parentheses are the coefficients of variation. 

 

The influence of the number of cycles in the normalized pullout force is represented 

in Figure 2.35, for the C10 series. For each test, liF  is the pullout force at the end of the i-th 

reloading branch, while 0lF  is the pullout force at the beginning of the first unloading 

branch. Figure 2.35(a) shows that the cycles did not occur at the pre-defined level of ratio 

between 0lF  and maxlF  (60 % for Lb90 series, 75 % for Lb120 series and 90 % for Lb60 

series). Since 0lF  was estimated from the homologous series, these discrepancies were 

expected. The influence of the load cycles on the strength degradation was similar in all 

series. An average value of 17 % for the strength degradation was observed. After the fifth 

cycle, a larger degradation occurred in the specimen B3_Lb60_C10, since these cycles 

were performed in the post-peak regime, while in the remaining specimens all cycles were 

carried out before the peak load. Figure 2.35(b) shows that the variation of the ration 

0li lF F  at the 10th cycle of all specimens is small. 
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Figure 2.35 – Normalized pullout force as a function of the number of cycles. 

 

The influence of the loading cycles on the stiffness degradation of the C1 series is 

represented in Figure 2.36. The stiffness is defined as the slope of the line connecting two 

points corresponding to unloading and reloading initiation. These points are signaled in 

Figure 2.36(a) with circles. Figure 2.36(b) represents, for the C1 series, the stiffness 

evolution with the loaded end slip. This chart shows that up to the peak pullout force the 

stiffness decreases significantly, while in the first phase of the softening branch a slight 

increase was registered, followed by a small decrease. The mechanisms involved at the 

pre-peak and post-peak pullout forces dictate this distinct behavior. Up to the peak pullout 

force, significant CFRP-adhesive and adhesive-concrete debonding occurs, accompanied 

with adhesive cracking, leading to a significant decrease of the bond stiffness. In the 

post-peak regime, the sudden decay of the pullout force induces the typical increase of 

stiffness that occurs when materials are submitted to large instantaneous load or 

displacement variations as reported by Otter and Naaman (1986). When this phase 

stabilizes, the bond stiffness is governed by friction between the failing surfaces 

(adhesive-concrete and laminate-adhesive) along the bond length, decreasing smoothly as 

slip increases. 
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Figure 2.36 – Pullout force vs. loaded end slip relationship of the specimen B1_fcm40_Lb120_C1 (a) and 
stiffness degradation of the fcm40_Lb120_C1 series (b). Note: B1 means first beam of the series. 

 

 

2.5 SUMMARY AND CONCLUSIONS 

To assess the bond performance of laminate strips of CFRP to concrete using the 

near-surface mounted technique, pullout-bending tests under monotonic and cyclic loading 

were carried out. The influence of the bond length, bL , the concrete strength, cmf , and the 

load history was analyzed, by means of a series of tests with bL = 40, 60, 80, 90 or 120 mm, 

cmf = 35, 45 or 70 MPa, under monotonic or cyclic loadings. 

 

A physical interpretation of the evolution of the pullout force and slip at the free and 

loaded ends was given based on the involved micro-mechanisms. 

 

Since the tensile stress of the CFRP laminate is measured with strain devices, the 

bond test setup used in this experimental program seems to be adequate for the evaluation 

of the bond performance. 

 

Based on the results obtained in the monotonic tests, the following remarks can be 

pointed out: the nonlinear branch before the peak pullout force and the peak pullout force 

increased with bL ; the influence of the concrete strength on the pullout behavior was 

marginal; the bond strength ranged from 10 MPa to 18 MPa, having revealed a tendency to 

decrease with the increase of bL  and was practically insensitive to the concrete strength; 
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the ratio between the maximum tensile stress in the CFRP laminate and its tensile strength 

increased with bL  and is practically independent of the concrete strength; the loaded end 

slip at peak pullout force exhibited a linear increasing trend with bL  and was not affected 

by the concrete strength. 

 

The ten cycle unloading/reloading tests with a fixed load level lead to the following 

main conclusions: the envelope of the pullout force versus slip relationships of the cyclic 

tests and the curve obtained in the homologous monotonic tests had a similar shape; a 

continuous decrease of the pullout force at the end of the reloading branches in the 

unloading/reloading cycles, carried out before the peak pullout force, was observed. The 

peak pullout force, however, was not influenced by this effect; in the unloading branches of 

the load cycles, no slip at the free end was observed. 

 

In the single cycle unloading/reloading tests at different slip levels the stiffness, i.e., 

the average inclination of a complete cycle, decreased significantly up to the peak pullout 

force. At the initiation of the softening phase the stiffness increased slightly, followed by a 

smooth decrease. 

 

 

 



 

C H A P T E R  3  

A N A L Y T I C A L  M O D E L I N G  O F  B O N D  B E T W E E N  

NEAR-SURFACE MOUNTED CFRP LAMINATE STRIPS AND 

CONCRETE 

 

 

Bond of reinforcement in concrete is intrinsically a three-dimensional problem. Typically, 

due to its complexity and for the purpose of developing analytical formulations, the 

three-dimensional problem is split up into two unidimensional or bidimensional problems. 

Usually, bond behavior along the reinforcement is analyzed as a uniaxial problem, and can 

be modeled by solving the differential equation that governs the behavior of bond between 

reinforcement and concrete. In order to solve this equation the local bond stress-slip 

relationship must be known. The bond behavior along the reinforcement depends on the 

stress state in the surrounding concrete (lateral stress state) which can be analyzed as a 

plane strain problem. In this analysis, the cover depth and the confining pressure level must 

be taken into account. The simultaneous consideration of both behaviors (longitudinal and 

lateral) can also be performed (FIB 2000). 

 

Several researchers have modeled the longitudinal bond behavior of rebars, assuming 

that the slip and the bond stress are constant along the bond length, which is quite 

acceptable for rebars (FIB 2000). Many researchers have proposed empirical nonlinear 

equations for the local bond stress-slip relationship. The proposal of Eligehausen et 

al. (1983) is the most commonly used. 

 

In early works on the analytical modeling of the bond of FRP bars, the methodology 

already adopted for the rebars was followed. Several researchers have considered a 

constant slip and bond stress throughout the bond length and, with this assumption, have 

proposed different local bond stress-slip relationships in order to model the bond behavior 

(Larralde et al. 1993, Malvar 1995, Cosenza et al. 1997, De Lorenzis et al. 2002). For FRP 

reinforcement, however, this approach should not be considered, since the distribution of 

the slip and bond stress along the bond length is markedly nonlinear (Focacci et al. 2000). 
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In the present chapter, an analytical bond stress-slip relationship was determined for 

the NSM technique. With this purpose, a numerical method was developed, which uses the 

results obtained in the experimental program (see Chapter 2). This method solves the 

differential equation that governs the slip evolution of the near-surface mounted CFRP 

laminate strips technique, and takes into account the distribution of the slip and the bond 

stress along the bond length. In the following sections this differential equation is deduced, 

the corresponding numerical method is detailed and its performance is assessed. Using this 

numerical tool, the parameters that define the local bond stress-slip relationship are 

obtained, as well as the critical anchorage length for this type of reinforcement. 

 
 
3.1 DIFFERENTIAL EQUATION GOVERNING THE SLIP 

The equilibrium of an infinitesimal length dx  of a CFRP laminate bonded to concrete can 

be expressed by (see Figure 3.1) 

 

 ( )2f f f f f f f ft w w dx d t wσ τ σ σ+ = +  (3.1) 

 

where ( )( )xsττ =  is the bond stress on the contact surface between the CFRP and the 

epoxy adhesive, and fσ , ft  and fw  are the normal stress, thickness and width of the 

CFRP, respectively. 
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Concrete
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Adhesive

fσ+dσf

 

σf

fσ+dσfdx

wf
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τ(s(x))
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(a) (b) 

Figure 3.1 – (a) Laminate strip bonded to concrete; (b) Equilibrium of the CFRP laminate strip. 
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Assuming that the CFRP laminate has a linear elastic behavior ( f f fd E dσ ε= ), equation 

(3.1) leads to 

 

 
2
f f fE t d

dx

ε
τ =  (3.2) 

 

where fE  and fε  are the Young's modulus and the normal strain of the CFRP, 

respectively. 

 

In a representative region of the CFRP-adhesive-concrete bonding phenomenon, the 

strain components indicated in Figure 3.2 are present. Neglecting the concrete and the 

adhesive deformability in the slip evaluation, the CFRP strain can be obtained from the slip 

variation, ds , which leads to 

 

 
dx

ds
f =ε  (3.3) 

 

 

σ

dx

f σ + dσf f

σc

ε  dxf

ε  dxc

σ + dσc c

Concrete

Adhesive

CFRP

Adhesive

Concrete

x x+dx

ε  dxa

≅ ds

(Bottom view)

 

Figure 3.2 – Stresses and strains in the materials surrounding the bond region. 

 

Incorporating (3.3) into (3.2), the differential equation that governs the slip of CFRP 

bonded into concrete is derived, and reads 
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 τ
ff Etdx

sd 2
2

2

=  (3.4) 

 

With expressions similar to (3.4), important aspects associated with concrete 

behavior, such as anchorage length of the reinforcement, tension-stiffening, crack spacing 

and crack opening, can be simulated. The accuracy of the local bond stress-slip 

relationship, sτ − , has decisive importance on the quality of the simulation of these 

phenomena. 

 

 

3.2 DETERMINATION OF THE LOCAL BOND STRESS-SLIP RELATIONSHIP 

The method adopted to determine the local bond stress-slip relationship, sτ − , is based on 

the work developed by Focacci et al. (2000). Modifications were implemented in order to 

take into account the specificities of the present strengthening technique and to improve the 

performance of the method. In the following sections, the method developed in the present 

study is described in detail. 

 

 

3.2.1 Analytical expressions for the local bond stress-slip relationship 

In the present work the local bond stress-slip relationship for the S1 series (see Chapter 2), 

is defined by the following function, 

 

 ( )
m m

m

m m
m

s
if s s

s
s

s
if s s

s

α

α

τ
τ

τ
′−

  
 ≤ 
  = 

 
> 

 

 

(3.5a) 

 

(3.5b) 

 

where mτ  and ms  are the bond strength and its corresponding slip, being α  and α′  the 

parameters that define the shape of the curves. Equation (3.5a) was used by Eligehausen et 

al. (1983) and defines the bond behavior up to peak stress (ascending branch). 

Equation (3.5b) was adopted by De Lorenzis et al. (2002) and characterizes the post-peak 
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bond behavior (descending branch). These relationships were selected due to its simplicity 

and ability to simulate the local bond stress-slip behavior. 

 

In the S2 series a higher initial post-peak stress decay was observed, when compared 

with the S1 series (see Chapter 2). For this reason, the proposal of Stang and Aarre (1992) 

was selected for the branch with ms s> . With these assumptions and for the case of the S2 

series, the local bond stress-slip relationship is defined by 

 

 ( )
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1

1

m m
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m m
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(3.6a) 

 

(3.6b) 

 

where α′′  and 1s  are parameters that define the shape of the post-peak branch of the curve. 

 

 

3.2.2 Description of the method 

Figure 3.3 represents a CFRP fixed to concrete with an epoxy adhesive over a bond length 

bL . When the CFRP is slipping due to an applied pullout force, N , the following entities 

can be evaluated along the CFRP bond length: slip, ( )s x ; bond stress between the CFRP 

and the epoxy adhesive, ( )xτ ; strain, ( )f xε ; and the axial force, ( )N x . For the particular 

case of the bond length extremities, designated free and loaded ends, the conditions are 
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where fs  and ls  are the slips at the free and loaded ends, respectively, and fA  is the cross 

section area of the laminate. In the present method, numerical and experimental entities 
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will be involved, being the latter differentiated by a strikeover. For instance, iN  represents 

the pullout force experimentally measured in the i-th scan reading. 

 

 

L 
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s(x) τ(x) N (x) ε (x) 

s 

N  

x 

Free end region

f 

s l 
x x x 

Loaded end region
N  

f 

 

Figure 3.3 – Entities involved in the developed method. 

 

By means of a pullout-bending test, the slip at the free end, fs , the slip at the loaded 

end, ls , and the pullout force, N , were obtained for several scan readings, being i
fs , i

ls  

and iN  the values of reading i . Using these experimental results, the main purpose was to 

obtain the parameters ms , mτ , α  and α′  of equation (3.5) and ms , mτ , α , α′′  and 1s  of 

equation (3.6), that fit the differential equation (3.4) as accurately as possible. With this 

aim, a computational code was developed, based on the algorithm described in Figure 3.4. 

In this algorithm the second order differential equation (3.4) is solved by the Runge-Kutta-

Nyström (RKN) method (Kreyszig 1993), which is detailed in APPENDIX B. The 

following main steps constitute the algorithm: 

1. the sτ −  relationship is defined attributing values to its parameters. For instance, the 

values of ms , mτ , α  and α′  must be imposed to define equation (3.5). The error, e , 

defined as the area between the experimental and analytical curves, is initialized; 

2. the loaded end slip is calculated at the onset of the free end slip, ls , (see Module A in 

Figure 3.5); 

3. for the experimental i-th scan reading, the free end slip, i
fs , the loaded end slip, i

ls , 

and the pullout force, iN  are read; 
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4. taking the free end slip, i
fs , and solving (3.4), the numerical pullout force at the 

loaded end, ( )i i
fN s , is calculated (see Module B in Figure 3.5); 

5. the error associated with ( )i i
fN s  is calculated. This error is the area between the 

experimental ( )exp,
i

fA  and numerical ( ),
i
num fA  curves. The points ( )( )1 1 1,i i i

f fs N s− − −  

and ( )( ),i i i
f fs N s  are used to define the numerical curve, while the experimental 

curve is represented by the points ( )1 1,i i
fs N− −  and ( ),i i

fs N ; 

6. the error is updated; 

7. taking the loaded end slip, i
ls , and using (3.4), the pullout force at the loaded end, 

( )i i
lN s , is evaluated. In this case the following two loaded end slip conditions must 

be considered: i) if i
l ls s< , the determination of ( )i i

lN s  must take into account that 

the effective bond length is smaller than bL  (see Module C in Figure 3.5); ii) if 

i
l ls s≥ , the evaluation of ( )i i

lN s  is based on Module D (see Figure 3.5); 

8. the error associated with ( )i i
lN s  is calculated. This error is the area between the 

experimental ( )exp,
i

fA  and numerical ( ),
i
num fA  curves. The points ( )( )1 1 1,i i i

l ls N s− − −  

and ( )( ),i i i
l ls N s  are used to define the numerical curve, whereas the experimental 

curve is represented by the points ( )1 1,i i
ls N− −  and ( ),i i

ls N ; 

9. the error is updated. 

 

In Modules C and D the Newton-Raphson method is used. When the 

Newton-Raphson method fails, the bisection method is used as an alternative. 
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Figure 3.4 – Implemented algorithm to obtain the local bond-stress slip relationship. 

 

The determination of the parameters defining the s−τ  relationship with a minimum 

error, e , was also conditioned by the restriction of ensuring similar values for the 

numerical and experimental peak pullout force and its corresponding slip (with a tolerance 
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smaller than 1 %). For this purpose, an exhaustive search was performed, based on a 

predefined range and a predefined step for the values of the independent parameters. The 

algorithm described in Figure 3.4 was adopted for each set of parameters. 
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Figure 3.5 – Modules A, B, C and D of the algorithm shown in Figure 3.4. 
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3.2.3 Example 

Of all the pullout-bending tests carried out (see Chapter 2), the beam B2_fcm45_Lb80_M 

was selected to exemplify the application of the method described in the previous section. 

The excellent performance of the developed method is well illustrated in Figure 3.6, where 

the experimental and numerical pullout force versus slip relationships are compared. The 

variation of the slip, bond stress and axial force along the bond length, at the peak pullout 

force, is shown in Figure 3.7. At this loading stage the bond behavior is essentially 

nonlinear, and in one half of the bond length the softening phase of the constitutive relation 

was reached. 
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Figure 3.6 – Specimen B2_fcm45_Lb80_M: experimental and numerical pullout force vs. slip relationships. 
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Figure 3.7 – Variation of the slip (a), bond stress (b) and axial force (c) along the bond length in the specimen 
B2_fcm45_Lb80_M. 
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A sensitivity analysis was performed in order to evaluate the influence of the 

parameters that define the local bond stress-slip relationship on the N s−  response. This 

analysis lead to the following conclusions: 

• the peak pullout force is controlled by mτ ; 

• the slip at the peak pullout force is controlled by ms ; 

• all the other parameters have a negligible influence on the definition of the peak 

values (peak pullout force and its corresponding slip), but strongly affect the shape of 

the pre- and post-peak branches. 

 

 

3.3 LOCAL BOND STRESS-SLIP RELATIONSHIP FOR NEAR-SURFACE 

MOUNTED CFRP LAMINATE STRIPS 

Using the results obtained in the experimental program described in Chapter 2, the values 

of the parameters ms , mτ , α , α′ , α′′  and 1s  of the local bond stress-slip relationships (see 

equations (3.5) and (3.6) of the S1 and S2 series) were determined using the numerical 

strategy described in Section 3.2.2 and applied in Section 3.2.3. For each series (composed 

of three specimens), the average relationship between the loaded end slip and the pullout 

force was used to calibrate the relationship. Table 3.1 includes the CFRP properties used in 

the model. 

 

 

Table 3.1 – Main properties of the CFRP laminate strip used in the model. 

Series ft  [mm] fw  [mm] fE  [MPa] 

S1 1.39 9.34 160000 

S2 1.40 10.03 171000 

 

Figure 3.8 to Figure 3.11 show that the pullout force versus loaded end slip 

relationship obtained numerically (thick line) accurately fits the corresponding 

experimental envelop (shaded area) for both the S1 and S2 series. 
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(a) (b) (c) 

Figure 3.8 – Simulation of the series fcm35_Lb40_M (a), fcm35_Lb60_M (b) and fcm35_Lb80_M (c). 

 

 

   
(a) (b) (c) 

Figure 3.9 – Simulation of the series fcm45_Lb40_M (a), fcm45_Lb60_M (b) and fcm45_Lb80_M (c). 

 

 

   
(a) (b) (c) 

Figure 3.10 – Simulation of the series fcm70_Lb40_M (a), fcm70_Lb60_M (b) and fcm70_Lb80_M (c). 

 

 



 Analytical modeling of bond between near-surface mounted CFRP laminate strips and concrete 65 

 

 

   
(a) (b) (c) 

Figure 3.11 – Simulation of the series fcm40_Lb60_M (a), fcm40_Lb90_M (b) and fcm40_Lb120_M (c). 

 

The values of the parameters defining the sτ −  relationship and the values of the 

normalized errors obtained in each exhaustive search are included in Table 3.2 (S1 series) 

and Table 3.3 (S2 series). The normalized error, e , is the ratio between e and the area 

under the experimental curve, being e the area between the experimental and numerical 

curves. From Table 3.2 and Table 3.3 the following observations can be pointed out: 

• the normalized error in each series is acceptable; 

• a reasonable coefficient of variation was obtained for the average bond strength. No 

correlation between the bond strength and the bond length can be observed in the S1 

series, whereas in the S2 series mτ  decreases when the bond length increases; 

• in the S2 series, mτ  values were smaller than the values obtained in the S1 series. The 

distinct width of the slit used in both series is probably the main justification of this 

behavior; 

• a large scatter in the values of ms , α  (only in the S1 series) and α′  was obtained; 

• as expected, ms  increases with the bond length, since the adhesive deformability was 

neglected in the present approach (see Section 3.1). In order to obtain a local sτ −  

relationship with more accuracy, an independent registration of the CFRP-adhesive 

slip, of the adhesive-concrete slip and of the adhesive deformability is required. 

However, the implementation of this procedure with the equipments available in 

most laboratories is considered too complex. 
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Table 3.2 – Values of the parameters defining the local bond stress-slip relationship of the S1 series. 

Series ms  [mm] mτ  [MPa] α  α ′  e  [%] 

fcm35_Lb40_M 0.18 20.6 0.13 0.27 2.0 

fcm35_Lb60_M 0.23 20.7 0.19 0.35 5.9 

fcm35_Lb80_M 0.29 18.9 0.17 0.33 6.7 

fcm45_Lb40_M 0.14 21.4 0.21 0.23 4.7 

fcm45_Lb60_M 0.23 19.5 0.24 0.39 3.0 

fcm45_Lb80_M 0.43 19.5 0.35 0.45 2.8 

fcm70_Lb40_M 0.19 21.5 0.24 0.29 7.8 

fcm70_Lb60_M 0.21 18.0 0.21 0.29 3.4 

fcm70_Lb80_M 0.35 18.2 0.19 0.27 2.4 

Average 
0.25 

(36.2 %) 
19.8 

(6.6 %) 
0.21 

(29.1 %) 
0.32 

(21.5 %) − 

Note: the values in parentheses are the coefficients of variation of the corresponding series. 

 

 

Table 3.3 – Values of the parameters defining the local bond stress-slip relationship of the S2 series. 

Series ms  [mm] 1s  [mm] mτ  [MPa] α  α ′′  e  [%] 

fcm40_Lb60_M 0.26 1.8 17.5 0.40 0.40 1.2 

fcm40_Lb90_M 0.45 2.0 15.7 0.45 0.35 1.6 

fcm40_Lb120_M 0.47 2.0 14.3 0.50 0.41 2.5 

Average 
0.39 

(29.5 %) 
1.9 

(6.0 %) 
15.8 

(10.1 %) 
0.45 

(11.1 %) 
0.39 

(8.3 %) − 

Note: the values in parentheses are the coefficients of variation of the corresponding series. 

 

 

3.4 ANCHORAGE LENGTH 

Due to safety and economic reasons, the anchorage length anL  of the CFRP should be 

calculated, taking into account the requirements imposed by service and ultimate limit state 

analysis, i.e., 

 

 { }, ,max ,an an S an UL L L=  (4.8) 

 

where SanL ,  and UanL ,  are the anchorage length that fulfills the requirements of the service 

and ultimate limit state analyses, respectively. In order to determine the anchorage length, 
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the local bond stress-slip relationship must be known. In the present analysis the average 

values of mτ , α , α′ , α′′  and s′  are used (see Table 3.2 and Table 3.3). For the bond 

lengths considered in the carried out experimental program, a linear relationship between 

ms  and bL  was observed. However, additional experimental research with larger bond 

lengths should be undertaken in order to establish a more general relationship. Taking into 

account the available experimental data, the linear relationships 0.0042m bs L=  and 

0.0043m bs L=  are assumed, for the S1 and S2 series, respectively. 

 

For load levels at the service limit state it is desired that the free end does not slip 

(Focacci et al. 2000, De Lorenzis et al. 2002). For this reason, the value of the pullout force 

at the onset of the free end slip, ( )lN s , is of practical interest. The value of ( )lN s  can be 

calculated with the method described in Section 3.2.2. Figure 3.12 depicts ( )lN s  and ls  as 

a function of the bond length, for the S1 and S2 series. The experimental results are 

signaled with circles. Comparing the bond performance of the S1 and S2 series (see 

Figure 3.12), it is evident that the former is considerably higher. Using these diagrams, the 

anchorage length for a given pullout service load, SanL , , can be calculated. For instance, for 

a 200 mm bond length, the pullout force at the onset of free end slip is 53 kN and 17 kN for 

the S1 and S2 series, respectively. From this observation, and assuming a similar 

performance of the epoxy adhesive used in both series, higher bond efficiency can be 

obtained when the slit width decreases. 

 

The prediction of the peak pullout force requires the availability of the entire local 

bond stress-slip relationship (see Figure 3.7). Figure 3.13 shows the relationship between 

the peak pullout force and the bond length, which can be used to determine Lan,U. The 

curve that best fits the experimental results and the curve that corresponds to the numerical 

results are slightly different (see Figure 3.13), since mτ  was considered independent of the 

bond length. 

 

As a design example, a CFRP strip is assumed to be submitted to 10 kN and 30 kN in 

the service and ultimate limit state analysis, respectively. Using the charts represented in 

Figure 3.12(a) and Figure 3.13(a), the anchorage lengths thus determined are equal to 
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50 mm and 89 mm, in order to accomplish the service and ultimate limit state 

requirements, respectively. In order to satisfy both criteria, the latter value of the anchorage 

length must be adopted. 
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Figure 3.12 – Pullout force at the onset of the free end slip, ( )lN s  and loaded end slip, ls , as a function of the 

bond length: (a) S1 series; (b) S2 series. 
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Figure 3.13 – Relationship between the pullout force and the bond length: (a) S1 series; (b) S2 series. 
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3.5 SUMMARY AND CONCLUSIONS 

A research was developed with the aim of calibrating the analytical local bond stress-slip 

relationship between laminate strips of CFRP and concrete, considering a near-surface 

mounted strengthening technique. With this purpose, a numerical strategy was developed 

to solve the second-order differential equation that governs the slip phenomenon. The 

developed numerical method can also be used in the evaluation of the anchorage length of 

the CFRP which is required in both service and ultimate limit state analyses. Due to some 

limitations in the experimental equipments, the deformability of the epoxy adhesive, the 

CFRP-adhesive slip and the adhesive-concrete slip could not be measured, resulting in a 

local bond stress-slip relationship which is dependent on the bond length. In order to use 

this relationship in design practice, the influence of the bond length and thickness of the 

epoxy adhesive must be assessed experimentally. 
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CHAPTER 4 

N U M E R I C A L  M O D E L  F O R  C O N C R E T E  S T R U C T U R E S  

STRENGTHENED WITH NEAR-SURFACE MOUNTED CFRP 

L A M I N A T E  S T R I P S  

 

 

The finite element method is the basis of a powerful computational tool, which can be used 

to simulate the response of structures, structural components and materials, when 

submitted to a specified load. This tool has been extensively used to assess the behavior of 

concrete structures. 

 

In order to simulate the structural response of concrete structures under the finite 

element framework, a mathematical idealization of the material behavior is required. This 

mathematical approach is commonly named constitutive or material model, and provides 

the relation between the stress and strain tensors in a material point of the body. In order to 

predict with high accuracy the behavior of concrete structures, appropriate constitutive 

models must be used. These constitutive models must be capable of simulating the most 

relevant nonlinear phenomena of the intervening materials. 

 

The nonlinear fracture mechanics theory has been used to simulate the quasi-brittle 

failure of concrete (ACI 1991, ACI 1997). The discrete and the smeared crack concepts are 

the most used to model the concrete fracture under the framework of the finite element 

method. For concrete structures with a reinforcement ratio that assures crack stabilization, 

the smeared crack approach is more appropriate than the discrete approach, since several 

cracks can be formed in the structure. The discrete approach is especially suitable to 

simulate concrete structures where the failure is governed by the occurrence of a small 

number of cracks with a path that can be predicted. The discrete approach is not treated in 

the present work. Nevertheless, a comprehensive description of the discrete approach can 

be found elsewhere, e.g., Ngo and Scordelis (1967), Hillerborg et al. (1976), Rots (1988) 

and Bittencourt et al. (1992). 
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In smeared crack models, the fracture process is initiated when the maximum 

principal stress in a material point exceeds its tensile strength. The crack propagation is 

mainly controlled by the shape of the tensile-softening diagram and the material fracture 

energy. In order to assure mesh objectivity, the energy dissipated in the crack propagation 

process is associated with a characteristic length of the finite element (Bazant and 

Oh 1983). In the original smeared crack or single-fixed smeared crack concept, the 

orientation of the crack, i.e., the direction which is normal to the crack plane is coincident 

with the maximum principal stress orientation at crack initiation, and remains fixed 

throughout the loading process. However, due to aggregate interlock and dowel action of 

the reinforcement (Chen 1982), the principal stresses can change their orientation and, once 

more, exceed the tensile strength. In this case, the single-fixed smeared crack approach 

predicts a numerical response that is stiffer than the experimental observations. To avoid 

this inconvenience, rotating single smeared crack or multi-fixed smeared crack models 

have been developed. In the former, the local crack coordinate system is continuously 

rotating with the modification of the direction of the principal axes. In the multi-fixed 

smeared crack models, several fixed smeared cracks are allowed to form, according to a 

crack initiation criterion. 

 

Plasticity theory has been extensively used to model the concrete behavior, 

particularly under compressive states of stress (ASCE 1982, Chen and Han 1988). 

Plasticity theory is based on a micromechanical or a phenomenological approach. In the 

micromechanical approach, also named fundamental approach, the constitutive relations 

are established for the microstructural behavior. In contrast, the phenomenological 

approach, also known as the mathematical theory of plasticity, establishes the constitutive 

model directly based on observed features from experimental tests. Plasticity theory is a 

natural constitutive description for metals (Hill 1950), but it can also be used for 

cementitious materials. In the 1980s several tools were developed for mathematical 

plasticity, e.g., implicit Euler backward algorithms and consistent tangent operators (e.g., 

Ortiz and Popov 1985, Simo and Taylor 1985), which made this theory even more 

attractive to model the concrete behavior. 

 

Hybrid models derived from fracture mechanics and plasticity theories have been 

proposed by several researchers. In these models, fracture mechanics theory is used to 
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simulate the tensile post-cracking behavior of concrete, whereas plasticity theory is used to 

simulate its compressive behavior. Elasto-plastic multi-fixed smeared crack models seem 

to be suitable for the simulation of concrete structures, but due to their conceptual 

complexities and severe computational difficulties, only a few researchers were successful 

in the implementation of these models (de Borst and Nauta 1985, Crisfield and Wills 1989, 

Barros 1995). 

 

Interface elements are commonly used to model geometrical discontinuities. In the 

context of concrete structures, interface elements can be used to model discrete cracking 

(Ngo and Scordelis 1967, Rots 1988), aggregate interlock (Feenstra et al. 1990) and bond 

between steel reinforcement and concrete (Ingraffea et al. 1984, Mehlhom et al. 1985, 

Lundgren and Gylltoft 2000, Girard and Bastien 2002). Interface elements have also been 

used to model the interface between CFRP and concrete (Silva 1999, Henriques et al. 2001, 

Wong and Vecchio 2003). 

 

The numerical tools developed for the simulation of concrete structures strengthened 

with near-surface mounted CFRP laminate strips are detailed in this chapter. These tools 

include the development of constitutive models for the simulation of concrete and the 

CFRP-concrete interface, as well as a finite element formulation for interface elements. In 

the first part of this chapter, the solution procedures used in nonlinear finite element 

analysis, and also the most significant aspects of the developed finite element computer 

code are briefly described. Next, all relevant aspects of the developed elasto-plastic 

multi-fixed smeared crack model are described in detail. The description of the model is 

divided in three parts: the first part deals with the smeared crack model (Section 4.2); the 

second describes the elasto-plastic model (Section 4.3); and, finally, the third part presents 

the elasto-plastic multi-fixed smeared crack model (Section 4.4). Finally, a finite element 

formulation for interface elements, as well as the corresponding constitutive model are 

presented. The main purpose of this model is the simulation of the nonlinear behavior of 

the interface between CFRP and concrete. All the developed numerical tools are validated 

with results available in the literature and with the experimental results presented in 

Chapter 2. 
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4.1 NONLINEAR FINITE ELEMENT ANALYSIS 

In the first part of this section, a brief introduction to the nonlinear analysis of structures 

using the finite element method is given. A comprehensive description of this method can 

be found elsewhere, e.g., Zienkiewicz and Taylor (1989, 1991) and Bathe (1996). In the 

second part of this section, the finite element computer code used in this study is briefly 

described. 

 

 

4.1.1 Iterative techniques for the solution of nonlinear problems 

The displacement formulation of the finite element method leads to (Zienkiewicz and 

Taylor 1989) 

 

 K a F=  (4.1) 

 

where K  is the stiffness matrix, a  is the vector of the nodal displacements and F  is the 

vector of the nodal forces which are equivalent to the loads acting on the finite element. 

The stiffness matrix can be computed with the following expression 

 

 
T

V
K B DBdV= ∫  (4.2) 

 

where D  is the constitutive matrix, B  is a matrix that depends on the finite element type 

and V  is the volume of the finite element. Commonly, numerical integration is used to 

evaluate the integral in (4.2). When Gaussian or Newton-Cotes quadrature is adopted, the 

integrand function is evaluated in predefined integration points. 

 

In linear elasticity equation (4.1) corresponds to a system of linear equations, whose 

solution can be obtained using several techniques. The most common algorithms are based 

on direct methods, such as Gaussian elimination (Zienkiewicz and Taylor 1989) or iterative 

methods, like the conjugate gradient method (Azevedo and Barros 1990). 

 

In the context of nonlinear analysis, equation (4.1) is no longer linear, since the 

stiffness matrix depends on the values of the displacements, a . In order to obtain the 
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evolution of the structural response, F  must be applied in small steps. In the present work 

the total load at the end of each step is named combination. The solution at combination n  

can be computed by solving the system of nonlinear equations, 

 

 ( ) ( ) 0n n n na F F a′Ψ = Ψ = − =  (4.3) 

 

where nΨ  is the residual force vector, which is calculated as the difference between 

1n n nF F F−= + ∆  and the internal equivalent nodal forces, ( )nF a′ . Equation (4.3) can be 

solved by the Newton-Raphson method. The first two terms of the Taylor series expansion 

of ( )naΨ  can be used in (4.3) as an approximation, yielding 

 

 ( ) ( )
1

1 0
q

q q q
n n n

n

a a a
a

δ
−

−  ∂ΨΨ ≈ Ψ + = ∂ 
 (4.4) 

 

In this equation q  is the iteration counter. The initial solution of the Newton-Raphson 

method is 0
1n na a −= . In equation (4.4) 

 

 ( )
1 1

1
q q

q

T n
n n

F
K

a a

− −
−′   ∂Ψ ∂= − = −   ∂ ∂   

 (4.5) 

 

is the Jacobian matrix, which in this context corresponds to the tangential stiffness matrix. 

The iterative correction q
naδ  is obtained by solving the system of linear equations (4.4), 

i.e., 

 

 ( ) ( )1 1q q q
T n nn

K a aδ− −= Ψ  (4.6) 

 

The vector of the displacements is updated with 

 

 1
1

q q q q
n n n n na a a a aδ−

−= + ∆ = +  (4.7) 
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where 

 

 
1

q
q i
n n

i

a aδ
=

∆ =∑  (4.8) 

 

The Newton-Raphson method is illustrated in Figure 4.1. 
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Figure 4.1 – Newton-Raphson method. 

 

The iterative procedure described above is interrupted when a certain parameter 

becomes smaller than a predefined tolerance. The convergence criterion can be based on 

the force norm, the displacement norm or the energy norm (Zienkiewicz and Taylor 1991). 

In the present work a force norm is adopted, and the iterative procedure is successfully 

terminated when the following condition is verified 
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( )
( )

310

Ti i
n n

T

n nF F

−
Ψ Ψ

<  (4.9) 

 

In the incremental-iterative procedure two stress update strategies were implemented, 

which lead to a path dependent (PD) or to a path independent (PI) behaviors (see Figure 4.2 

and Figure 4.3). In the former (PD) the iterative variation of the displacements of the 

current iteration, q
naδ , is calculated using information of the previous iteration, 1q − . The 

new stress state, qσ , is calculated as an update of the stress state at the previous iteration, 

1qσ −  (see Figure 4.2). When a path independent (PI) strategy is adopted, the iterative 

variation of the displacements of the current iteration, q
naδ , is also calculated using the 

information of the previous iteration, 1q − . The new stress state, qσ , is calculated as an 

update of the stress state at the end of the iterative process of the previous combination, 

1nσ −  (see Figure 4.3). 

 

 

1. Calculate the iterative displacements: 1 1q q q
TK aδ ψ− −=  

2. Calculate the iterative strain: q qB aδ ε δ=  

3. Calculate the iterative stress: q q
TDδσ δ ε=  

4. Update the stress: qqq σδσσ += −1  

Figure 4.2 – Path dependent strategy. 

 

 

1. Calculate the iterative displacements: 1 1q q q
TK aδ ψ− −=  

2. Update the incremental displacements: 1q q qa a aδ−∆ = ∆ +  

3. Calculate the incremental strain: q qB aε∆ = ∆  

4. Calculate the incremental stress: q q
TDσ ε∆ = ∆  

5. Update the stress: 1
q q

nσ σ σ−= + ∆  

Figure 4.3 – Path independent strategy. 

 

According to Crisfield (1991), the path dependent strategy is not recommended since 

it may lead to “spurious unloading” during the iterative process. In spite of both strategies 
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(PD and PI) being available in the finite element computer code used in the present study, 

only the latter is adopted in the numerical simulations. 

 

 

4.1.2 FEMIX computer code 

All the numerical models and strategies described in the present work were implemented in 

version 4.0 of the FEMIX computer code (Azevedo et al. 2003). This version started to be 

developed in late 2000, by Álvaro Azevedo, Joaquim Barros and José Sena Cruz. Two 

years later Ventura Gouveia joined the original team. The present version also includes the 

contributions of Alberto Ribeiro (2004) and Vitor Cunha (2004). 

 

Table 4.1 lists the types of finite elements available in the present version of the 

computer code. For some types of elements a materially nonlinear analysis can be 

performed. Several nonlinear models are available, in order to simulate concrete and steel. 

The systems of nonlinear equations arising from the incremental-iterative procedure are 

solved by the Newton-Raphson method (see Section 4.1.1). The analyses can be performed 

using a path dependent or a path independent strategy, with load or displacement control. 

Other techniques, such as arc-length control or indirect displacement control, are also 

available. 

 

In the present study the following types of elements were used: plane stress elements 

to simulate the concrete, embedded cable and cable elements to simulate the 

reinforcements, and line interface elements to model the interface between the 

reinforcement and concrete. 
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Table 4.1 – Types of finite elements available in FEMIX 4.0 computer code. 

Applicability Description Shape 

Point spring (2D or 3D) 1-node  

Truss (2D or 3D) 

Beam (2D or 3D) 
Linear 2-node 

 

Linear 2-node 

 

Timoshenko beam (2D or 3D) 

Embedded cable (2D or 3D) 

Cable (2D or 3D) 

Line spring (2D or 3D) Quadratic 3-node 

 

Lagrangian 4-node 

 

Serendipity 8-node 

 

Plane stress (2D) 

Mindlin slab (2D) 

Mindlin shell (3D) 

Ahmad shell (3D) 

Surface spring (2D or 3D) 

Lagrangian 9-node 

 

Lagrangian 8-node 

 
Solid (3D) 

Serendipity 20-node 

 

Linear 4-node 

 

Line interface (2D) 

Quadratic 6-node 
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Table 4.1 (cont.) – Types of finite elements available in FEMIX 4.0 computer code. 

Lagrangian 8-node 

 

Serendipity 16-node 

 

Surface interface (3D) 

Lagrangian 18-node 

 

 

 

4.2 CRACK CONCEPTS 

In this section, firstly, the single-fixed smeared crack concept is described, followed by the 

generalization to the multi-fixed smeared crack concept. The most relevant algorithmic 

aspects are detailed. Finally, the developed numerical model is validated using results 

available in the literature. 

 

 

4.2.1 Smeared crack concept 

After crack initiation, the basic assumption of smeared crack models, is the decomposition 

of the incremental strain vector, ε∆ , into an incremental crack strain vector, crε∆ , and an 

incremental strain vector of the concrete between cracks, coε∆ : 

 

 cr coε ε ε∆ = ∆ + ∆  (4.10) 

 

The decomposition expressed by (4.10) has been adopted by several researchers 

(Litton 1974, Bazant and Gambarova 1980, de Borst and Nauta 1985, Rots et al. 1985, 

Rots 1988). 
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4.2.1.1 Crack strains and crack stresses 

Figure 4.4 shows the morphology of a crack for the case of plane stress. Two relative 

displacements define the relative movement of the crack lips: the crack opening 

displacement, w , and the crack sliding displacement, s . Axes n  and t  define the local 

coordinate system of the crack (CrCS), being n  and t  the crack normal and tangential 

directions, respectively. 
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Figure 4.4 – Crack stresses, relative displacements and local coordinate system of the crack. 

 

In the smeared crack approach w  is replaced with a crack normal strain defined in 

CrCS, cr
nε , and s  is replaced with a crack shear strain also defined in CrCS, cr

tγ . The same 

approach can be applied to the incremental normal and shear crack strains ( cr
nε∆  and 

cr
tγ∆ ). The incremental crack strain vector in CrCS, ε∆ l

cr , is defined by 

 

 ε ε γ ∆ = ∆ ∆ l
Tcr cr cr

n t  (4.11) 

 

The incremental crack strain vector in the global coordinate system (GCS), crε∆ , has the 

following three components, 
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 1 2 12ε ε ε γ ∆ = ∆ ∆ ∆ 
Tcr cr cr cr  (4.12) 

 

The transformation of the incremental crack strain vector from CrCS to GCS reads 

 

 

2
1

2
2

2 2
12

cos sin cos

sin sin cos

2sin cos cos sin

ε θ θ θ
ε

ε θ θ θ
γγ θ θ θ θ

   ∆ −
 ∆   ∆ =      ∆    ∆ −   

cr

cr
cr n

cr
cr t

 (4.13) 

 

or 

 

 ε ε ∆ = ∆  l
Tcr cr crT  (4.14) 

 

being 
TcrT    the crack strain transformation matrix and θ  the angle between 1x  and n  

(see Figure 4.4). The incremental local crack stress vector, σ∆ l
cr , is defined by 

 

 σ σ τ ∆ = ∆ ∆ l
Tcr cr cr

n t  (4.15) 

 

where cr
nσ∆  and cr

tτ∆  are the incremental crack normal and shear stresses in the crack, 

respectively. The relationship between σ∆ l
cr  and the incremental stress vector (in GCS), 

σ∆ , can be defined as 

 

 
12 2

22 2

12

cos sin 2sin cos

sin cos sin cos cos sin

σ
σ θ θ θ θ σ
τ θ θ θ θ θ θ τ

∆ 
   ∆  = ∆     ∆ − −    ∆ 

cr
n
cr
t

 (4.16) 

 

or 

 

 σ σ∆ = ∆l
cr crT  (4.17) 
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4.2.1.2 Concrete constitutive law 

Assuming linear elastic behavior for the concrete between cracks (undamaged concrete), 

the constitutive relationship between coε∆  and σ∆  is given by, 

 

 co coDσ ε∆ = ∆  (4.18) 

 

where coD  is the constitutive matrix according to Hooke's law, 

 

 

( )
2

1 0

1 0
1

0 0 1 2

c

co c
c

c
c

E
D

ν
ν

ν
ν

 
 =  −  − 

 (4.19) 

 

being cE  and cν  the Young's modulus and Poisson's ratio of plain concrete, respectively. 

 

 

4.2.1.3 Constitutive law of the crack 

In a similar way, a relationship between σ∆ l
cr  and ε∆ l

cr  is established to simulate the crack 

opening and the shear sliding using, 

 

 σ ε∆ = ∆l l
cr cr crD  (4.20) 

 

where crD  is the crack constitutive matrix including mode I and mode II crack fracture 

parameters. 

 

 

4.2.1.4 Constitutive law of the cracked concrete 

Combining the equations presented in the previous sections, a constitutive law for cracked 

concrete is obtained. Hence, incorporating equations (4.10) and (4.14) into (4.18) yields, 

 

 ( )σ ε ε ∆ = ∆ − ∆  l
Tco cr crD T  (4.21) 

 



84 Chapter 4 

 

Pre-multiplying both members of equation (4.21) by crT  leads to 

 

 σ ε ε ∆ = ∆ − ∆  l
Tcr cr co cr co cr crT T D T D T  (4.22) 

Substituting (4.17) into the left side of equation (4.22) yields 

 

 σ ε ε ∆ + ∆ = ∆ l l
Tcr cr co cr cr cr coT D T T D  (4.23) 

 

Including (4.20) into the left side of equation (4.23), the following equation defining the 

incremental crack strain vector in CrCS is obtained 

 

 ( ) 1

ε ε
−

 ∆ = + ∆ l
Tcr cr cr co cr cr coD T D T T D  (4.24) 

 

The inclusion of (4.24) in (4.21) leads to the constitutive law of the cracked concrete, 

which reads 

 

 ( ) 1T Tco co cr cr cr co cr cr coD D T D T D T T Dσ ε
−    ∆ = − + ∆     

 (4.25) 

 

or 

 

 crcoDσ ε∆ = ∆  (4.26) 

 

where crcoD  is the following constitutive matrix for the cracked concrete 

 

 ( ) 1T Tcrco co co cr cr cr co cr cr coD D D T D T D T T D
−

   = − +     (4.27) 

 

 

4.2.1.5 Crack fracture parameters 

In the present model, the crack constitutive matrix, crD , is assumed to be diagonal 
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0

0

cr
cr I

cr
II

D
D

D

 
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 

 (4.28) 

 

In this matrix cr
ID  and cr

IID  are the mode I and mode II stiffness modulus associated with 

the crack behavior. 

 

The crack-dilatancy effect and the shear-normal stress coupling is not considered in 

the present approach. The shear-normal stress coupling, however, may be simulated 

indirectly, allowing non-orthogonal cracks to form and relating cr
IID  with the crack normal 

strain (Rots 1988). This strategy is adopted in the present model. 

 

The crack initiation in the present model is governed by the Rankine yield surface 

(see Figure 4.5), i.e., when the maximum principal stress, Iσ , exceeds the uniaxial tensile 

strength, ctf , a crack is formed. This assumption is justified by the experimental results 

obtained by Kupfer et al. (1969) when the tensile cracking is not accompanied by 

significant lateral compression. 

 

 

σII

Iσ

 

Figure 4.5 – Rankine yield surface in the 2D principal stress space. 
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According to Bazant and Oh (1983), the most suitable approach to simulate the crack 

propagation under the finite element framework is by taking into account the concrete 

fracture parameters, namely, the shape of the tensile-softening diagram and the fracture 

energy. 

 

Two distinct tensile-softening diagrams are available in the developed computational 

code: tri-linear and exponential diagrams (see Figure 4.6). The tri-linear diagram shown in 

Figure 4.6(a) is defined by the following expressions 
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with, 
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The ultimate crack normal strain, ,
cr
n ultε , is given by, 

 

 , 4
fcr

n ult
ct

G
k

f h
ε =  (4.32) 
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where 

 

 4
1 1 2 2 1 2

2
k

ξ α ξ α ξ α
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+ − +
 (4.33) 
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Figure 4.6 – Tensile-softening diagrams: tri-linear (a) and exponential (b). 

 

The exponential softening diagram proposed by Cornelissen et al. (1986) (see 

Figure 4.6(b)) is defined by 
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where 1 3.0c =  and 2 6.93c = . The ultimate crack normal strain, ,
cr
n ultε , is obtained from, 
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where 
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3

3 31
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 (4.36) 

 

The mode I stiffness modulus is calculated with the following expression 

 

 

( )

2

1
1 2

, , ,

3
3
1

2 2 1 2
, , , ,

3 exp

1
exp 1 exp

cr cr
cr n n
I ct cr cr cr

n ult n ult n ult

cr cr cr
n n n

cr cr cr cr
n ult n ult n ult n ult

c
D f c c

c
c c c c

ε ε
ε ε ε

ε ε ε
ε ε ε ε

    
= − +          

      +  − − + − −                

 (4.37) 

 

The concrete fracture energy, fG , is the energy required to propagate a tensile crack 

of unit area. Generally, fG  is assumed to be a material parameter and according to the 

CEB-FIB (1993) it can be estimated from the concrete compressive strength, cf , and 

maximum aggregate size. 

 

In the smeared crack approach, the fracture zone is distributed in a certain width of 

the finite element, which is designated crack band-width, h , as indicated in Figure 4.7. In 

this model a constant strain distribution in the width h  is assumed. To assure mesh 

objectivity, the crack band-width must be mesh dependent. Several researchers have 

proposed different ways to estimate h  (Bazant and Oh 1983, Rots et al 1985, Leibengood 

et al. 1986, Oñate et al. 1987, Dahlblom et al. 1990, Oliver et al. 1990, Cervenka et 

al. 1990, Rots 1992, Feenstra 1993). In the present numerical model, the crack band-width 

can be estimated in three different ways: equal to the square root of the area of the finite 

element, equal to the square root of the area of the integration point or equal to a constant 

value. To avoid snap-back instability, the crack band-width is subjected to the following 

constraint (de Borst 1991), 
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where { }max ib k=  for tri-linear softening diagram and ( ) ( )( )3
2 1 21 expb k c c c= + + −  for 

exponential softening diagram. 
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Figure 4.7 – Two distinct approaches to model the tensile-softening diagram: (a) discrete and (b) smeared crack 
models. 

 

Applying the strain decomposition concept to the incremental shear strain, yields 

 

 cr coγ γ γ∆ = ∆ + ∆  (4.39) 

 

or, 
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The parameter β  is called the shear retention factor and its value depends on the crack 

normal strain and on the ultimate crack normal strain (Rots 1988, Póvoas 1991, 

Barros 1995), 
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,

1
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cr
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 (4.42) 

 

In this equation 1p  is a parameter that, currently, can assume the values of 1, 2 or 3 

(Barros 1995). When 0cr
nε =  (closed crack) a full interlock is assumed. For a fully open 

crack ( ,
cr cr
n n ultε ε≥ ) the shear retention factor is equal to zero, resulting in a null shear 

stiffness modulus that corresponds to a negligible aggregate interlock. 

 

 

4.2.2 Multi-fixed smeared crack concept 

In the previous sections the concept of the fixed smeared crack model was described. In 

this model only one fixed smeared crack was allowed to form at each integration point. To 

be capable of simulating the formation of more than one fixed smeared crack, as well as to 

be not restricted to the particular case of two orthogonal cracks (Azevedo 1985, 

Póvoas 1991), the formulation was extended, resulting in the multi-fixed smeared crack 

model. 

 

To deal with the eventual formation of crn  cracks at each integration point, the 

generalized crack transformation matrix, crT , and the crack constitutive matrix, crD , adopt 

the following format 
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In these matrices, ( )cr
i iT θ  and cr

iD  correspond to the crack transformation matrix and to 

the crack constitutive matrix of the i-th crack, respectively. Matrix crD  is diagonal since 

the sub-matrices cr
iD  have null off-diagonal terms (see Section 4.2.1.5). 

 

 

4.2.2.1 Crack initiation 

Cracking occurs when the maximum principal stress exceeds the concrete uniaxial tensile 

strength, ctf . After crack initiation, and assuming that the shear retention factor is non-null, 

i.e., the crack shear stresses can be transferred between the crack lips, the values and the 

orientation of the principal stresses can change during the loading process. For this reason 

the maximum principal stress in the concrete between cracks can also exceed ctf . In the 

present work a new crack is initiated when the following two conditions are satisfied 

simultaneously: 

• the maximum principal stress, Iσ , exceeds the uniaxial tensile strength, ctf ; 

• the angle between the direction of the existing cracks and the direction of Iσ , Iθ , 

exceeds the value of a predefined threshold angle, α th . 

 

Typically, the threshold angle varies between 30 and 60 degrees (de Borst and 

Nauta 1985). When the second condition is not verified (which means that the new crack is 

not initiated) the tensile strength is updated in order to avoid inconsistencies in the crack 

initiation process. With this strategy the updated tensile strength can significantly exceed 

the original concrete tensile strength (Rots 1988). 

 

 

4.2.2.2 Crack evolution history 

In a previously cracked integration point, the coupling between non-orthogonal cracks is 

simulated with fracture parameters associated to the new cracks. The fracture energy 

available for the next crack, next
fG , is calculated with (Barros 1995) 
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where 2p  is a parameter that, currently, can assume the values of 1, 2 or 3, α  is the angle 

(in radians) between the next and the previous crack and ,f aG  is the available fracture 

energy of the previous crack. Its value is calculated subtracting the fracture energy 

consumed by the previous crack, ,
prev
f cG , from the concrete fracture energy (see Figure 4.8), 
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Figure 4.8 – Fracture energy available for the next crack. 

 

 

4.2.3 Algorithmic aspects 

In a multi-fixed smeared crack model, the consideration of all the crack status changes that 

may occur during the loading process of a concrete element, requires the implementation of 

several computational procedures. Otherwise the model becomes unreliable and inefficient 

for practical use (de Borst and Nauta 1985, Rots 1988, Crisfield and Wills 1989, 
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Barros 1995, Hofstetter and Mang 1995). The implementation of these algorithms in the 

FEMIX computer code is described below. 

 

 

4.2.3.1 Stress update 

When the strain field in a cracked integration point is submitted to an increment defined by 

ε∆ m , the stress state of the integration point is also modified and must be updated (σ m ). 

The incremental relationship (4.17) can be written in terms of total stresses, 

 

 ,σ σ=l
cr cr

m m mT  (4.47) 

 

This equation is equivalent to 

 

 ( ), 1 , 1σ σ σ σ− −+ ∆ = + ∆l l
cr cr cr

m m m m mT  (4.48) 

 

Including (4.21) in (4.48) yields 

 

 ( )( ), 1 , 1 ,σ σ σ ε ε− −  + ∆ = + ∆ − ∆ l l l
Tcr cr cr co cr cr

m m m m m m mT D T  (4.49) 

 

Equation (4.49) can be written as 

 

 ( ), 1 , , , 1 0σ σ ε ε σ ε− − + ∆ ∆ + ∆ − − ∆ = l l l l
Tcr cr cr cr co cr cr cr cr co

m m m m m m m m m mT D T T T D  (4.50) 

 

where ,
cr

mσ∆ l depends on ,
cr

mε∆ l . The components of the incremental crack strain vector, 

,ε∆ l
cr

m , are the unknown variables of the nonlinear equations (4.50). This vector contains 

the two local strain components of the active cracks, i.e., non-closed cracks. To solve this 

equation two different methods were implemented: the Newton-Raphson and the 

fixed-point iteration methods (Chapra and Canale 1998). The methods exhibiting quadratic 

convergence, such as the Newton-Raphson method, are usually very efficient, but in some 

cases the solution cannot be obtained. In these cases the Newton-Raphson method is 
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replaced with the fixed-point iteration method which exhibits linear convergence. In the 

following algorithms the first member of equation (4.50) is referred to as a function f  of 

,
cr

mε∆ l , 

 

 ( ) ( ), , 1 , , , 1ε σ σ ε ε σ ε− − ∆ = + ∆ ∆ + ∆ − − ∆ l l l l l
Tcr cr cr cr cr co cr cr cr cr co

m m m m m m m m m m mf T D T T T D  (4.51) 

 

With this assumption, equation (4.50) becomes ( ), 0ε∆ =l
cr

mf . 

 

Figure 4.9 shows the flowchart of the Newton-Raphson method adapted to the 

solution of (4.50). The calculation of the initial solution (step (2) in Figure 4.9) is 

performed with equation (4.50), considering ( ), ,σ ε∆ ∆l l
cr cr

m m  equal to 1 ,ε− ∆ l
cr cr
m mD , where 1−

cr
mD  

is the tangential crack constitutive matrix of the previous converged stress state. 

 

In step 3 610 cToler f−= , where cf  is the concrete compressive strength. The symbol 

∞
 means the infinite norm of the vector, i.e., the maximum absolute value found in 

vector f . The first derivatives of f  in order to the incremental crack strain vector can be 

defined as 
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and 
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When equation (4.42) is adopted to define (4.41) the non-null term of (4.54) is 
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When the convergence is not obtained using the Newton-Raphson method, the 

fixed-point iteration method, shown in Figure 4.10 is tried. 
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Figure 4.9 – Flowchart of the Newton-Raphson method. 
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Figure 4.10 – Fixed-point iteration method. 

 

 

4.2.3.2 Crack status 

Depending on the followed cr cr
n nσ ε−  path, a crack can assume one of six crack statuses as 

shown in Figure 4.11. The first (1) is named initiation and corresponds to the crack 

initiation. The opening status occurs when the crack is in the softening branch (2). In the 

present model a secant branch is assumed to simulate the unloading (3) and the reloading 

(5) phases. The closing status designates the unloading phase while the reopening status is 

attributed to the crack in the reloading phase. This assumption does not correspond to the 
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most realistic approach, since cyclic tests reveal the occurrence of a hysteretic behavior 

(Hordijk 1991). Since the present model was developed to simulate the behavior of 

concrete structures under monotonic loading, this simple approach is sufficiently accurate. 

If a crack closes, i.e., 0cr
nε = , the crack status receives the designation of closed (4). The 

fully open (6) status occurs when in the crack the mode I fracture energy is fully exhausted. 
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Figure 4.11 – Crack status. 

 

The stress update procedure described in the previous section is only applied to the 

active cracks, i.e., when 0cr
nε > . When a crack initiates ( I ctfσ >  and Iθ α≥ ), when a 

crack closes ( 0cr
nε < ) or when a closed crack reopens ( 0cr

nσ > ), the incremental strain 

vector ε∆  must be successively decomposed in order to accurately simulate the crack 

status evolution (see Figure 4.12). These three crack status changes were named critical 

crack status changes. This decomposition is necessary since the content of crD  and crT  

matrices depend on the number of active cracks. For instance, when a new crack is formed 

the size of these matrices must be extended in order to accommodate new terms (see 

equations (4.43) and (4.44)). 
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Figure 4.12 – Algorithm used for the decomposition of the incremental strain vector. 
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The calculation of the number of active cracks (step (2) in Figure 4.12) is based on 

the content of the database containing the historical data. This database stores, for each 

integration point and for each iteration of the incremental-iterative procedure, all the 

critical parameters such as the stress and strain vectors, the number of cracks, the crack 

stress and strain vectors, the crack statuses, the crack orientation and data associated with 

the crack evolution history. 

 

The stress update procedure, described in the Section 4.2.3.1, is performed in step (4) 

of Figure 4.12. When one of the critical crack status changes occurs, the current 

incremental strain vector, ε∆ , must be decomposed. 

 

To calculate the transition point corresponding to crack initiation, ,new mk , to a closed 

crack reopening, ,reopen mk , or to an open crack closure, ,close mk , two algorithms were 

implemented: the Newton-Raphson method (Figure 4.13) and the bisection method 

(Figure 4.14). The latter one is used when the former fails. Table 4.2 contains the definition 

of the function ( )f k , the initial solution and the parameter Toler  of the critical crack 

status changes. These functions and parameters are used in the algorithms shown in 

Figure 4.13 and Figure 4.14. 

 

 

Table 4.2 – Definition of the function f  used in the algorithms shown in Figure 4.13 and Figure 4.14, and the 

respective initial solution and convergence criterion parameter. 

Critical crack status changes 
 

New crack initiation Closed crack reopening Open crack closure 
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Besides the crack initiation conditions described in Section 4.2.2.1 (tensile strength 

and threshold angle), an additional check is required. When a new crack is initiating, ,new mk  

is calculated (see Figure 4.12). At this phase, the new crack is only considered as a 
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potential crack. At the end of the first part of the incremental strain vector, , 1new m mk ε −∆ , the 

crack normal stress, cr
nσ , is equal to the current tensile strength, ctf , and its crack normal 

strain, cr
nε , has a null value (point 1 in Figure 4.11). For the remaining part of the 

incremental strain vector, ( ), 11 ε −− ∆new m mk , the potential crack is already considered in 

equation (4.50). To become a definitive crack, cr
nε∆  of the potential crack must be positive 

during the evaluation of equation (4.50). If this condition is not fulfilled, the crack 

initiation procedure is aborted and the tensile strength is replaced with the value of the 

current maximum principal stress. 

 

After the determination of the transition point corresponding to the first critical crack 

status change (step 7 in Figure 4.12), the stress vector is calculated, and the historical data 

of the cracks and the incremental strain vector are updated. The decomposition of the 

incremental strain vector ends when no more critical crack status changes occur (see 

Figure 4.12). 

 

In this section, m  is the counter of critical crack status changes, requiring a 

decomposition of the vector ε∆ . In Table 4.3 the meaning of “previous iteration” 1−m  is 

clarified. 

 

 

Table 4.3 – Meaning of 1−m  (previous iteration). 

m  value Algorithmic strategy (PD or PI) Meaning of 1−m  

Path dependent Previous Newton-Raphson iteration 
0=m  

Path independent Previous converged combination 

0>m  Path dependent or path independent 
Previous iteration in the algorithm of 
Figure 4.12 
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Figure 4.13 – Calculation of the transition point by the Newton-Raphson method. 
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Figure 4.14 – Calculation of the transition point by the bisection method. 
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4.2.3.3 Singularities 

When two fully open orthogonal cracks occur at an integration point, it can be shown that, 

in the system of nonlinear equations (4.50), the shear equations related to these cracks are 

linearly dependent. This situation can be illustrated with the following example. 

 

Considering two orthogonal cracks, being one horizontal ( 1 90ºθ = ) and the other 

vertical ( 2 0ºθ = ), and considering that both are fully open. In this case the variation of the 

crack stress vector, σ∆ l
cr , is null. Assuming that in the previous state , 1 1σ σ− −=l

cr cr
m m mT , 

equation (4.50) leads to 

 

 , 0ε ε  ∆ − ∆ =  l
Tcr co cr cr cr co

m m m m mT D T T D  (4.56) 

 

resulting in 

 

 

,1
2

,1 ,2
12

,2
1

,1 ,2
12

cr
n

cr cr
t t

cr
n

cr cr
t t

ε ε
γ γ γ

ε ε
γ γ γ

∆ = ∆
+∆ − ∆ = −∆
∆ = ∆
−∆ + ∆ = +∆

 (4.57) 

 

where ,1cr
nε∆ , ,1cr

tγ∆ , ,2cr
nε∆  and ,2cr

tγ∆  are the normal and shear crack strain variations of 

the crack 1 and 2, respectively. The system of equations (4.57) cannot be solved since the 

second and fourth equations are linearly dependent. A physical interpretation of this 

situation is presented in Figure 4.15. The crack normal strain variations can be obtained 

directly from the global strain variations. 

 

The solution of (4.50) for the case of fully open orthogonal cracks requires the 

introduction of the following additional condition 

 

 , , 0γ γ∆ + ∆ =cr i cr j
t t  (4.58) 

 

where ,γ∆ cr i
t  and ,γ∆ cr j

t  are the crack shear strain variations of a pair of orthogonal cracks. 
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Figure 4.15 – Crack strain variation: (a) normal strain and (b) shear strain. 

 

To calculate the stiffness matrix of an element, K , the constitutive matrix, D , is 

required. The calculation of D  of a cracked concrete integration point requires the 

inversion of the matrix that results from the evaluation of the following expression (see 

Section 4.2.1.4, equation (4.27)) 

 

 ′  = +  
Tcr cr co crD D T D T  (4.59) 

 

When an integration point has two fully open orthogonal cracks, crD  is null resulting in a 

singular ′D  matrix. To overcome this problem the following residual value is assigned to 

crD , 

 

 610cr
II cD G−=  (4.60) 

 

 

4.2.4 Model appraisal 

The performance of the developed multi-fixed smeared crack model is assessed using 

results published by other researchers. Since the concrete plastic deformation is not 

considered in the formulation described, the example selected to validate the model exhibit 

a linear behavior in compression. 
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Three-point bending tests are commonly used to evaluate the concrete tensile strength 

and the fracture energy (RILEM 1985). The tests carried out by Kormeling and 

Reihnardt (1983) are simulated using the implemented numerical model. The adopted mesh 

(see Figure 4.16) is composed of 4-node Lagrangian plane stress elements with 2×2 

Gauss-Legendre integration scheme. In order to obtain a well-defined crack pattern at 

mid-span, 1×2 Gauss-Legendre integration rule is used in the elements that cross the center 

line. 
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+
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+
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×1

0.
0

 

Figure 4.16 – Notched beam: geometry, mesh, loading configuration and support conditions. Note: all 
dimensions are in millimeters. 

 

The concrete properties used in the present simulation are listed in Table 4.4. Three 

different types of tensile-softening diagrams were used: linear, tri-linear and exponential. 

The beam weight is included in the simulation. 

 

Figure 4.17 shows the response obtained using the three different types of 

tensile-softening diagrams described above. The experimental results are also displayed. It 

can be observed that all numerical simulations have the same pre-peak response, up to 

1050 kN. The maximum numerical peak load is obtained with the linear softening diagram. 

The tri-linear and the exponential tensile-softening diagrams lead to an identical response 

in the post-peak phase, in good agreement with the experimental results. 
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Figure 4.18 shows the crack pattern at the final stage, for the case of tri-linear 

diagram. A well-defined crack above the notch can be observed. Spurious cracks with 

closing status were formed in the neighborhood of the fracture surface. 

 

 

Table 4.4 – Concrete properties used in the simulation of the three point bending test. 

Density 6 32.4 10 N/mmρ −= ×  

Poisson's ratio 0.20cν =  

Initial Young's modulus 220000.0 N/mmcE =  

Compressive strength 248.0 N/mmcf =  

Tensile strength 22.4 N/mmctf =  

Tri-linear softening parameters 1 0.4ξ = ; 1 0.6α = ; 2 0.8ξ = ; 2 0.2α =  

Fracture energy 0.113 N/mmfG =  

Parameter defining the mode I fracture energy 
available to the new crack 1 2=p  

Shear retention factor  Exponential ( 2 2=p ) 

Crack band-width Square root of the area of the element 

Threshold angle 30ºα =th  
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Figure 4.17 – Influence of the type of tensile-softening diagram on the load-deflection response. 
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OPENING CLOSINGFULLY OPEN  

Figure 4.18 – Numerical crack pattern at the final stage using the tri-linear diagram. 

 

 

4.3 PLASTICITY 

The plasticity theory has been used by many researchers in the simulation of the behavior 

of structures built with materials exhibiting irreversible deformations, such as concrete 

(Chen 1982), soils (Chen and Mizuno 1990) or masonry (Lourenço 1996). An extensive 

study of this subject can be found in the literature (Lemaitre anb Caboche 1985, 

Lubliner 1990, Crisfield 1997, Simo and Hughes 1998). In the simulation of the concretein 

compression, a model based on the plasticity theory is adopted. This model is described in 

the following sections. Results available in the literature are used to assess the performance 

of the model. 

 

 

4.3.1 Basic assumptions 

The basic assumption of the plasticity theory, in the context of small strains, is the 

decomposition of the incremental strain, ε∆ , in an elastic reversible part, eε∆ , and an 

irreversible or plastic part, pε∆ : 

 

 e pε ε ε∆ = ∆ + ∆  (4.61) 

 

The elastic constitutive matrix, eD , is used to obtain the incremental stress vector, 

σ∆ , 
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 ( )e e e pD Dσ ε ε ε∆ = ∆ = ∆ − ∆  (4.62) 

 

Plasticity based models depend on the concepts of yield surface, flow rule and 

hardening (or softening) law. The yield surface, defined in the stress space, limits the 

elastic behavior domain. In general, this surface is a function of the stress state in a point, 

σ , and of some internal variables, a  and κ , that define the evolution of the yield surface. 

The general equation of the yield surface is 

 

 ( ), , 0f aσ κ =  (4.63) 

 

The back-stress vector, a , locates the origin of the yield surface and κ  is the scalar 

hardening parameter, which defines the amount of hardening or softening. 

 

Depending on the evolution of the yield surface during the loading process, three 

basic hardening types can be defined (see Figure 4.19): isotropic hardening (Odqvist 1933), 

kinematic hardening (Prager 1955) and mixed hardening (Hodge 1957). The internal 

variables involved in these hardening rules are indicated in Table 4.5. 
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Figure 4.19 – Basic hardening rules: (a) isotropic hardening, (b) kinematic hardening and (c) mixed hardening. 
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Table 4.5 – Basic hardening rules. 

Hardening rule Variables involved 

No hardening (ideal plasticity) ( )f σ  

Isotropic hardening (Figure 4.19(a)) ( ),f σ κ  

Kinematic hardening (Figure 4.19(b)) ( ),f aσ  

Mixed hardening (Figure 4.19(c)) ( ), ,f aσ κ  

 

In the geometric representation shown in Figure 4.19 a  defines the location of the 

origin of the yield surface whereas κ  controls the size and shape of the yield surface. Good 

results can be obtained with the isotropic hardening when loading is monotonic. However, 

more complex hardening rules are required when the material is submitted to cyclic 

loading. Since the aim of the present model is to simulate the behavior of concrete 

structures under monotonic loading, the back-stress vector will not be considered as a yield 

surface parameter. With these assumptions the yield condition adopted for the present 

model is the following 

 

 ( ), 0f σ κ =  (4.64) 

 

The evolution of the plastic strain is given by the following flow rule 

 

 
p gε λ

σ
∂∆ = ∆
∂

 (4.65) 

 

where λ∆  is a non-negative scalar termed plastic multiplier and g  is the plastic potential 

function in the stress space. When g  and f  coincide, the flow rule is named associated. 

Otherwise, a non-associated flow rule is obtained. The yield function and the plastic 

multiplier are constrained by the following conditions 

 

 0f ≤ , 0λ∆ ≥  and 0fλ∆ =  (4.66) 

 

The variation of the hardening parameter, κ∆ , coincides with the equivalent plastic 

strain variation epsε∆  (strain hardening) or with the plastic work variation pW∆  (work 
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hardening). When the first hypothesis holds ( epsκ ε∆ = ∆ ), the hardening parameter is 

defined by 

 

 ( )Teps p pcκ ε ε ε∆ = ∆ = ∆ ∆  (4.67) 

 

The assumption of 2 3c =  assures that the plastic strain in the loading direction of 

a uniaxial test is equal to the equivalent plastic strain variation, i.e., 1
eps pε ε∆ = ∆  and 

2 3 1 2p p pε ε ε∆ = ∆ = −∆  (Owen and Hinton 1980). 

 

The equivalent plastic strain variation can also be defined as a function of the plastic 

work per unit volume, pW∆ , resulting 

 

 
1p

eps T pWκ ε σ ε
σ σ

∆∆ = ∆ = = ∆  (4.68) 

 

where σ  is the uniaxial yield stress which depends on the hardening parameter, and is 

currently named hardening law. When the variation of the hardening parameter is defined 

with the work hardening hypothesis ( pWκ∆ = ∆ ), the following relation holds 

 

 p T pWκ σ ε∆ = ∆ = ∆  (4.69) 

 

 

4.3.2 Integration of the elasto-plastic constitutive equations 

The integration of the elasto-plastic constitutive equations over a finite step in a consistent 

manner is one of the main challenges in computational plasticity. At the previous step 

1n − , the stress state and the internal variables are known ( 1nσ − , 1nκ − , 1nε − , 1
p
nε − ), and the 

main task is the calculation of the current values of these variables when a strain variation 

occurs, nε∆ . This problem can be solved with an implicit Euler backward integration 

algorithm. The stability and accuracy of this algorithm has been demonstrated by several 

researchers (Ortiz and Popov 1985, de Borst and Feenstra 1990, Schellekens and de 

Borst 1990). The algorithm has two phases: an elastic predictor phase and a plastic 
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corrector phase. In the former null plastic flow is assumed, which leads to a discrete set of 

equations 

 

 

( )

1

1

, 0

e e
n n n

n n

e
n n n

D

f f

σ σ ε
κ κ

σ κ

−

−

 = + ∆
 =
 = =

 (4.70) 

 

When the elastic trial stress, e
nσ , lies outside the yield surface, plastic flow must be 

considered and the plastic corrector phase of the algorithm is used to find an admissible 

stress state. Otherwise, the load step is considered linear elastic. The algorithm used to find 

an admissible stress state is named return-mapping algorithm and consists in the solution of 

the following system of nonlinear equations, 

 

 

( )

( )

1

1

0

0

, 0

e e
n n n

n

n n n

n n n

g
D

f

σ σ λ
σ

κ κ κ

σ κ

−

−

  ∂  − + ∆ =    ∂ 
 − − ∆ =


 =


 (4.71) 

 

The first equation of the system of nonlinear equations is obtained from the equation 

 

 ( )1
e p e e p

n n n n n nD Dσ σ ε ε σ ε−= + ∆ − ∆ = − ∆  (4.72) 

 

where p
nε∆  is replaced with the right-hand side of equation (4.65). The Newton-Raphson 

method is used to solve the system of nonlinear equations (4.71), where nσ , nκ  and nλ∆  

are the unknowns. 

 

 

4.3.3 Evaluation of the tangent operator 

As indicated in Section 4.1.1, the Newton-Raphson method is used to calculate the solution 

of the system of nonlinear equations resulting from the nonlinear finite element analysis. 
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The nonlinear problem is converted into a sequence of linear iterations until convergence is 

reached, as shown in Figure 4.1. The linearized form of the equations depends on a tangent 

stiffness matrix, TK , which plays a crucial role in the performance and robustness of the 

Newton-Raphson method. In the context of the mathematical plasticity, and according to 

Simo and Taylor (1985), the tangent stiffness matrix must be obtained by consistent 

linearization of the stress update resulting from the return-mapping algorithm at the end of 

the iteration i . 

 

The elasto-plastic consistent tangent constitutive matrix can be determined from the 

total differentials ndσ , p
ndε  and ndf  (Hofstetter and Mang 1995) or from part of the 

Jacobian matrix used in the Newton-Raphson method of the return-mapping algorithm 

(Lourenço 1996). 

 

 

4.3.4 Elasto-plastic concrete model 

Several elasto-plastic models have been proposed to simulate the concrete behavior. These 

models differ from each other, mainly, in the shape of the yield surface and in the 

hardening and flow rules. The model described in this section is suitable to simulate the 

concrete compressive behavior under monotonic loading, admitting that the tensile stresses 

do not exceed the concrete tensile strength. 

 

 

4.3.4.1 Yield surface 

The yield surface proposed by Owen and Figueiras (1983) was adopted in the present 

model. Its main characteristic is the consideration of parabolic meridians. This yield 

surface is defined with the following equation 

 

 ( ) ( ) ( )1 2
, 0T Tf P qσ κ σ σ σ σ κ= + − =  (4.73) 

 

where P  is the projection matrix, given by 
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0

0

0 0

a b

P b a

c

 
 =  
  

 (4.74) 

 

and q  is the projection vector defined by 

 

 [ ]1 1 1 0
T

q dq d= =  (4.75) 

 

The parameters a , b , c  and d  can be obtained with 

 

 
2

2

A
a B

 = + 
 

, 
2

2 2

A B
b

 = − 
 

, 3c B= , 
2

A
d =  (4.76) 

 

where the scalars A  and B  assume the values that result from the fitting process between 

the present model and the experimental results obtained by Kupfer et al. (1969). In these 

circumstances, A  and B  assumes the values of (Owen and Figueiras 1983) 

 

 0.355A =  and 1.355B =  (4.77) 

 

Figure 4.20 represents the initial and the limit yield surfaces. This initial yield surface 

is the limiting surface for elastic behavior. Experimental results obtained by Kupfer et 

al. (1969) are also included. 

 

 

4.3.4.2 Hardening behavior 

Figure 4.21 represents the relationship between the yield stress, σ , and the hardening 

parameter, κ , used to simulate the hardening and softening phases of the concrete 

behavior. Three points define the transitions between branches of the curve. The location of 

these points is obtained from uniaxial compression tests: 0 0 cfσ α= , p cfσ =  and 

lim 0.5 cfσ = . The equivalent plastic strain corresponding to the peak compressive strength, 

pκ , with the following equation 
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 1p c c cf Eκ ε= −  (4.78) 

 

where 1cε  is the total strain at the peak compressive strength. Parameter 0α  defines the 

beginning of the plastic behavior. In most cases, 0α  can assume the value 0.3. 
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Figure 4.20 – Yield surfaces for concrete. 

 

For the hardening branch, ( )1σ κ , the relationship used by Lourenço (1996) was 

adopted, whereas for the softening phase, ( )2σ κ  and ( )3σ κ , the post-peak relationship 

proposed by CEB-FIB (1993) for the uniaxial compressive behavior was used. The 

expressions of the hardening and softening behavior relationships are included in 

APPENDIX C. 

 

The plastic strain variation is described by the following expression which is 

assumed to be valid when an associated flow rule is considered 
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p

c

g f
hε λ λ

σ σ
∂ ∂∆ = ∆ = ∆
∂ ∂

 (4.79) 

 

The scalar function ch  is included in this equation in order to amplify the contribution of 

fλ σ∆ ∂ ∂  to pε∆ . Function ch  depends on the hydrostatic pressure, p, and reads 

(ABAQUS 2002) 

 

 ( )
2

01c c
c

p
h h c

f
σ

 
= = +  

 
 (4.80) 

 

A value of 6.056 for 0c  was obtained based on the condition that under biaxial 

compression, with equal compressive stress in both directions, the plastic strain at failure 

is, according to Kupfer et al. (1969), approximately 1.28 times the plastic strain at failure 

under uniaxial compression. 
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Figure 4.21 – Hardening and softening relationships for concrete. 

 

 

4.3.4.3 Return-mapping algorithm 

Assuming the strain-hardening hypothesis, κ λ∆ = ∆  (Cachim 1999, Abaqus 2002), the 

system of nonlinear equations (4.71) can be reduced to the following pair of equations, 



 Numerical model for concrete structures strengthened with near-surface mounted CFRP laminate strips 117 

 

 

( )

( )

1

1, ,

2,

0

, 0

e e
n nn n c n

n

nn n

f
f D h

f f

σ σ κ
σ

σ κ

−  ∂  = − + ∆ =    ∂ 

 = =

 (4.81) 

 

Figure 4.22 shows the return-mapping algorithm currently implemented in the 

computer code. The pair of norms defined in step (4) is given by 

 

 
( )

( )

1

,

,

q

e q e q q
n n n c n

q
nn

q q
n n

f
D h

r

f

σ σ κ
σ

σ κ

−

∞

  ∂  − + ∆    ∂  =
 
 
 

 (4.82) 

 

where the superscript q  corresponds to the iteration counter. The Jacobian matrix used in 

step (6) is defined by the following four blocks 
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where 
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Figure 4.22 – Return-mapping algorithm of the elasto-plastic model. 
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4.3.4.4 Consistent tangent operator 

The consistent tangent constitutive matrix adopted in the present numerical model is 

deduced in APPENDIX D, resulting 

 

 

T

ep
T

f f
H H

D H
f f

h H

σ σ

σ σ

 ∂ ∂
 ∂ ∂ = −

 ∂ ∂+  ∂ ∂ 

 (4.85) 

 

where 

 

 
12

1

2
e

c

f
H D h λ

σ

−
− ∂ = + ∆   ∂ 

 (4.86) 

 

 

4.3.5 Model appraisal 

The performance and the accuracy of the developed elasto-plastic model are assessed using 

results available from the literature. All the selected examples are governed by the 

compressive behavior. 

 

 

4.3.5.1 Uniaxial compressive tests 

The uniaxial compressive tests 3B2-4 to 3B2-6, carried out by Van Mier (1984), were 

selected for a comparison with the proposed model. One single 4-node Lagrangian plane 

stress finite element with 1×1 Gauss-Legendre integration scheme is used to simulate the 

experimental results. The dimensions of the finite element coincides with those of 

specimen (200×200×200 mm3). Table 4.6 shows the adopted concrete properties. The 

numerical and the experimental results are compared in Figure 4.23. 

 

Up to peak stress, the model matches with high accuracy the experimental results. In 

the softening phase, and for strains higher than 4.5 ‰, the model estimates a residual 

strength that is lower than those experimentally obtained. This indicates that the softening 
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branch of the uniaxial compressive behavior proposed by CEB-FIB (1993), mainly the 

second softening branch, ( )3σ κ , may not be suitable to reproduce this type of test. 

 

 

Table 4.6 – Concrete properties used in the simulation of the uniaxial compressive test. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 233344.0 N/mmcE =  

Compressive strength 243.24 N/mmcf =  

Strain at peak compression stress 3
1 2.7 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  

 

 

0 2 4 6 8 10
0

10

20

30

40

50

 Numerical model
 Experimental: Van Mier (1984)

 

S
tr

es
s 

[N
/m

m
2 ]

Strain [mm/m]  

Figure 4.23 – Stress-strain relationships: experimental and numerical results. 

 

 

4.3.5.2 Biaxial compressive test 

To evaluate the importance of the ch  parameter in the flow rule, the biaxial compressive 

tests carried out by Kupfer et al. (1969) were selected. One single 4-node Lagrangian plane 

stress element with 1×1 Gauss-Legendre integration scheme is used in the numerical 

model. Table 4.7 shows the properties adopted for the concrete and for the yield surface. In 
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Figure 4.24 the numerical simulations with 0 0c =  ( 1.0ch = ) and 0 6.056c =  are compared 

with the experimental results. 

 

 

Table 4.7 – Concrete properties used in the simulation of the biaxial compressive test. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 230180.0 N/mmcE =  

Compressive strength 232.06 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  
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Figure 4.24 – Influence of the 0c  parameter in numerical response. 

 

The results shown in Figure 4.24 indicate that the response obtained with 0 0c =  is 

stiffer in the hardening phase and too brittle after the peak stress. A good agreement with 

the experimental results is obtained with 0 6.056c = . 
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4.4 ELASTO-PLASTIC MULTI-FIXED SMEARED CRACK MODEL 

In the present section an elasto-plastic multi-fixed smeared crack model is proposed. This 

model corresponds to the coupling of the multi-fixed smeared crack model described in 

Section 4.2 and the elasto-plastic model presented in Section 4.3. In the following sections 

the implemented model is described. 

 

 

4.4.1 Yield surface 

Two types of yield surface are combined in the proposed numerical model: the Rankine 

criterion (described in Section 4.2.1.5) for concrete in tension, and the Owen and 

Figueiras (1983) yield surface (described in Section 4.3.4.1) for concrete in compression. 

Figure 4.25 represents the initial and the limit yield surfaces. Experimental results from 

Kupfer et al. (1969) are also included. 
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Figure 4.25 – Yield surface adopted in the elasto-plastic multi-fixed smeared crack model. 

 

 



 Numerical model for concrete structures strengthened with near-surface mounted CFRP laminate strips 123 

 

4.4.2 Integration of the constitutive equations 

The incremental strain vector is decomposed in an incremental crack strain vector, crε∆ , 

and an incremental strain vector of the concrete between cracks, coε∆ . This vector is 

decomposed in an elastic reversible part, eε∆ , and an irreversible or plastic part, pε∆ , 

resulting 

 

 cr co cr e pε ε ε ε ε ε∆ = ∆ + ∆ = ∆ + ∆ + ∆  (4.87) 

 

The constitutive equations of the present model follow the multi-fixed smeared crack 

model and the elasto-plastic model and are deduced in the following sections. 

 

 

4.4.2.1 Constitutive equations from the multi-fixed smeared crack model 

The incremental stress vector can be computed from the incremental elastic strain vector, 

 

 σ ε∆ = ∆e e
m mD  (4.88) 

 

Incorporating (4.88) into (4.48) leads to 

 

 ( ), 1 , 1σ σ σ ε− −+ ∆ = + ∆l l
cr cr cr e e

m m m m mT D  (4.89) 

 

Substituting (4.87) into (4.89) yields 

 

 ( ), 1 , 1 ,σ σ σ ε ε ε− −  + ∆ = + ∆ − ∆ − ∆ l l l
Tcr cr cr cr e p cr e cr cr

m m m m m m m m m mT T D T D T  (4.90) 

 

and including (4.79) in (4.90) results in 
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σ

− − + ∆ ∆ + ∆ − − 
  ∂ ∆ − ∆ =  ∂  

l l l l
Tcr cr cr cr e cr cr cr

m m m m m m m m

cr e
m m m c m

m

T D T T

f
T D h

 (4.91) 
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4.4.2.2 Constitutive equations from the elasto-plastic model 

The incremental elastic strain vector, e
mε∆ , multiplied by the elastic constitutive matrix, 

eD , is used to update the stress vector, which leads to 

 

 1σ σ ε−= + ∆e e
m m mD  (4.92) 

 

Including (4.87) and (4.79) in (4.92) yields to 

 

 ( )1 ,σ σ ε ε λ
σ−

 ∂ = + ∆ − ∆ − ∆  ∂ 
e cr e

m m m m m c m

m

f
D h D  (4.93) 

 

This equation can be written in a more suitable format as 

 

 ( )( )1

1 , 0σ σ ε ε λ
σ

−

−
 ∂   − − ∆ − ∆ + ∆ =   ∂ 

e e cr
m m m m m c m

m

f
D D h  (4.94) 

 

or 

 

 ( )( )1

1 , , 0σ σ ε ε λ
σ

−

−
 ∂    − − ∆ − ∆ + ∆ =     ∂ 

Te e cr cr
m m m m l m m c m

m

f
D D T h  (4.95) 

 

 

4.4.2.3 Return-mapping algorithm 

Equations (4.91), (4.95) and (4.73) define the system of nonlinear equations that 

corresponds to the return-mapping algorithm of the present model. Assuming κ λ∆ = ∆  

(see Section 4.3.4.3) this system becomes 
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 (4.96) 

 

In the system of nonlinear equations (4.96) the unknowns are ,ε∆ l
cr

m , σ m  and κm . 

Figure 4.26 shows the return-mapping algorithm implemented in the present computer 

code. The determination of the initial solution is based on the assumption of null plastic 

flow (see step 2). The residual vector defined in step (3) is given by 

 

 1, 2, 3, =  
T

m m m mr f f f  (4.97) 

 

and the corresponding norms (step 4) are defined as 

 

 1, 2, 3,∞ ∞
 =  

T

m m m mr f f f  (4.98) 

 

The Jacobian matrix of step (6) is composed of nine blocks 
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Figure 4.26 – Return-mapping algorithm of the elasto-plastic multi-fixed smeared crack model. 
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These derivatives are defined in Sections 4.2.3.1 and 4.3.4.3. In the present model 

0ch κ∂ ∂ = . 

 

 

4.4.2.4 Method proposed by de Borst and Nauta 

An additional algorithm was implemented to be used when the algorithm of Figure 4.26 

fails. This algorithm was proposed by de Borst and Nauta (1985). In the method proposed 

by de Borst and Nauta the constitutive equations of the smeared crack model and the 

constitutive equations of the elasto-plastic model are solved separately. To solve the 

constitutive equations of the smeared crack model, the procedure described in Section 4.2.3 

is used, replacing ε∆  by pε ε∆ − ∆ . The constitutive equations of the elasto-plastic model 
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are solved using the procedure described in Section 4.3.4, replacing ε∆  by crε ε∆ − ∆ . 

Figure 4.27 shows the implemented algorithm. The determination of the initial solution is 

based on the assumption of null plastic flow (see step 2). The solution is reached when the 

yield surface is not violated (step 4). 
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Figure 4.27 – Method proposed by de Borst and Nauta (1985). 
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4.4.3 Consistent tangent operator 

The elasto-plastic cracked consistent tangent operator, epcrD , can be calculated from the 

elasto-plastic consistent tangent constitutive matrix epD  (see Section 4.3.4.4) and from the 

constitutive matrix of cracked concrete, crcoD  (see Section 4.2.1.4). The incremental stress 

vector, σ∆ , is obtained with 

 

 ep epDσ ε∆ = ∆  (4.103) 

 

where epD  is the elasto-plastic consistent tangent constitutive matrix, and epε∆  is the 

incremental elasto-plastic strain vector, which includes the elastic and the plastic variations 

of the strain vector ( e pε ε∆ + ∆ ). Incorporating equation (4.87) into (4.103) and using 

(4.14) yields 

 

 ( )Tep cr crD Tσ ε ε ∆ = ∆ − ∆  l  (4.104) 

 

Pre-multiplying equation (4.104) by crT  and substituting (4.17) and (4.20) in the left side 

of (4.104), an expression that evaluates the incremental crack strain vector from the 

incremental cracked concrete strain vector is obtained, 

 

 ( ) 1Tcr cr cr ep cr cr epD T D T T Dε ε
−

 ∆ = + ∆ l  (4.105) 

 

Including (4.105) in (4.104) the constitutive law for cracked concrete is obtained 

 

 ( ) 1T Tep ep cr cr cr ep cr cr epD D T D T D T T Dσ ε
−    ∆ = − + ∆     

 (4.106) 

 

or 

 

 epcrDσ ε∆ = ∆  (4.107) 
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where epcrD  is the consistent tangent constitutive matrix for the elasto-plastic cracked 

concrete 

 

 ( ) 1T Tepcr ep ep cr cr cr ep cr cr epD D D T D T D T T D
−

   = − +     (4.108) 

 

 

4.4.4 Model appraisal 

The first part of this section describes some numerical tests that have the main purpose of 

evaluating the performance of the model under cyclic loading, inducing different crack 

statuses and irreversible deformations. In the second part, the performance of the developed 

elasto-plastic multi-fixed smeared crack model is assessed using results available from the 

literature. 

 

The numerical tests were performed using one single 4-node Lagrangian plane stress 

element with 1×1 Gauss-Legendre integration scheme. Table 4.8 shows the adopted 

parameters. Three numerical tests were selected from all that were carried out during the 

developing phase of the model. In the remaining part of this section a description of these 

tests is performed. 

 

 

Table 4.8 – Concrete properties used in the simulation of the numerical tests. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 233550.0 N/mmcE =  

Compressive strength 238.0 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×  

Parameter defining the initial yield surface 0 0.3α =  

Tensile strength 22.9 N/mmctf =  

Type of softening diagram Exponential 

Fracture energy 0.5 N/mmfG =  

Shear retention factor Exponential ( 2 2=p ) 

Crack band-width Square root of the area of the element 
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4.4.4.1 Traction-compression-traction (TCT) numerical test 

In the first uniaxial test, the element is, initially, submitted to a tensile force up to the 

formation of a single crack (steps 1 and 2 in Figure 4.28(a)). With the purpose of inducing 

plastic deformation under compression, compressive forces are applied (step 3 and 4). In 

the beginning of the compressive softening phase response, the loading direction is 

reversed causing a return to the crack-opening process (steps 5 and 6). The loading 

procedure is terminated at step 7, which corresponds to a complete dissipation of the 

fracture energy (fully open crack status). 
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Figure 4.28 – Numerical tests: (a) TCT test; (b) CTC test. 

 

 

4.4.4.2 Compression-traction-compression (CTC) numerical test 

This uniaxial test consists in, firstly, submitting the element to a compressive force up to 

the occurrence of plastic deformation under compression (steps 1, 2 and 3 in 

Figure 4.28(b)). Afterwards, loading is reversed and is increased up to crack formation 

(step 4) and crack propagation (step 5). At the tensile softening phase loading is again 

reversed until the compressive softening response is reached. 

 

 



132 Chapter 4 

 

4.4.4.3 Biaxial numerical test 

The biaxial test consists in the application of biaxial tensile forces up to the formation of 

two orthogonal cracks (step 1 in Figure 4.29). Afterwards, loading in x1 direction is 

reversed in order to induce compressive forces with the same direction. In x2 direction the 

load continues its progression in the same direction until total dissipation of the fracture 

energy (step 2 and 3 in Figure 4.29). In step 4, the concrete reaches a compressive 

softening phase (x1 direction) and the crack orthogonal to x2 direction remains with fully 

open status. Figure 4.29 shows the obtained response in terms of x1 and x2 normal stresses. 
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Figure 4.29 – Biaxial numerical test. 

 

 

4.4.4.4 Beam failing by shear 

Figure 4.30 shows the finite element mesh adopted in the simulation of the behavior of the 

beam tested by Walraven (1978). Due to its load and properties the beam failed by shear. In 

the simulation, 8-node Serendipity plane stress elements with 3×3 Gauss-Legendre 

integration scheme are used. Table 4.9 includes the main properties of the concrete. The 

properties of the elasto-perfect-plastic steel reinforcement located in the bottom side of the 

beam are: Young modulus's 2210000 N/mmsE = ; yield stress 2440 N/mmsyf = . 
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Some researchers have already used this test with the aim of assessing the performance of 

other models (de Borst and Nauta 1985, Póvoas 1991, Barros 1995). The obtained results 

indicate that the simulation of beams failing by shear is a difficult task. 
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Figure 4.30 – Finite element mesh of the moderately deep beam. Note: all dimensions are in millimeters. 

 

 

Table 4.9 – Concrete properties used in the simulation of the beam failing by shear. 

Poisson's ratio 0.20cν =  

Initial Young's modulus 228000.0 N/mmcE =  

Compressive strength 220.0 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  

Tensile strength 22.5 N/mmctf =  

Tri-linear softening diagram parameters 1 0.01ξ = ; 1 0.45α = ; 2 0.05ξ = ; 2 0.10α =  

Fracture energy 0.06 N/mmfG =  

Parameter defining the mode I fracture energy 
available to the new crack 1 2=p  

Shear retention factor Exponential ( 2 2=p ) 

Crack band-width Square root of the area of the integration point 

Threshold angle 30ºα =th  

 

Figure 4.31 and Figure 4.32 show the experimental and the numerical crack pattern 

obtained, respectively. A shear crack near the middle of the shear-span of the represented 
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part of the beam can be easily identified. Due to the perfect bond assumed between the 

reinforcement and the concrete, the numerical model has predicted the formation of cracks 

at the reinforcement level, which were not observed in the experimental test. Figure 4.33 

includes all cracks and the plastic zones. In some integration points, the concrete is cracked 

and exhibits plastic deformation, simultaneously. 

 

 

 

Figure 4.31 – Experimental crack pattern at impending failure (de Borst and Nauta 1985). 

 

F

 

Figure 4.32 – Numerical crack pattern at the final stage (only cracks with opening status are included). 

 

F

 

Figure 4.33 – Numerical crack pattern (all cracks) and plastic zones (represented by circles) at the final stage. 
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Figure 4.34 shows the relationship between the load and the deflection at mid-span, 

for both the experimental test and the numerical analysis. A good agreement can be 

observed with the exception of the ultimate load, which is higher in the numerical 

simulation. The reason for this behavior is the non-shear failure obtained with the 

numerical model. 
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Figure 4.34 – Load vs. deflection at mid-span: experimental and numerical results. 

 

 

4.5 LINE INTERFACE FINITE ELEMENT 

In this section a finite element formulation for interface elements is presented. Interface 

elements can be divided into two classes: the continuous interface elements and the nodal 

or point interface elements (Schellekens 1990). The latter, to a certain extent, are identical 

to spring elements (Ngo and Scordelis 1967). The stiffness matrix of a continuous interface 

element can be numerically or lumped integrated. The first approach is used in the present 

work. A description of nodal interface elements and lumped continuous interface elements 

can be found elsewhere, e.g., Ngo and Scordelis (1967) or Schellekens (1990). 
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4.5.1 Finite element formulation 

The four and six-node 2D line interface elements used in the present work are 

schematically represented in Figure 4.35. The nodal coordinates defining the mean line 

(dashed line in Figure 4.35) define the local coordinate system ( )1 2,x x′ ′  and are calculated 

by means of a linear interpolation between the bottom and top nodal coordinates. The first 

axis of the local coordinate system, 1x′ , is tangent to the mean line, and the second, 2x′ , is 

normal to the same line. In the local coordinate system, ix′ , the continuous displacement 

field is 

 

 [ ]1 2 1 2' ' ' '
T

B B T Tu u u u u′ =  (4.109) 

 

where Biu′  is the i-th component of the displacement field in the bottom line of the finite 

element, and Tiu′  has the same meaning but corresponds to the top line. 
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Figure 4.35 – 2D line interface elements: (a) linear 4-node; (b) quadratic 6-node. 

 

In this section the expressions of the stiffness matrix and of the internal equivalent 

nodal forces are determined taking the 6-node element as an example. The treatment of the 

4-node element would be similar. The final expressions are applicable to line interface 

elements with any even number of nodes. 
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The nodal displacements, in the local coordinate system, of the element represented 

in Figure 4.35(b) are grouped in the following vector 

 

 [ ]11 12 21 22 31 32 41 42 51 52 61 62

T
a a a a a a a a a a a a a′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′=  (4.110) 

 

where ija′  is the displacement of node i in the jx′  direction. The continuous displacement 

field is obtained from the element nodal displacements using the interpolation 

 

 u N a′ ′=  (4.111) 

 

where N  is the matrix of the element shape functions. Equation (4.111), in expanded 

format, reads 
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 (4.112) 

 

where iN  is the i-th shape function of a quadratic 3-node unidimensional element 

(Zienkiewicz and Taylor 1989). The components of the relative displacement vector, u′∆ , 

can be obtained from the u′  vector 

 



138 Chapter 4 

 

 

1 1 1

2 2 2

1

2

1

2

1 0 1 0

0 1 0 1

T B

T B

B

B

T

T

u u u
u

u u u

u

u

u

u

Lu

′ ′ ′∆ −   ′∆ = =   ′ ′ ′∆ −   
′ 

 ′−   =   ′ − 
 ′ 

′=

 
(4.113) 

 

Substituting (4.111) into (4.113) results 

 

 
u L N a

B a

′ ′∆ =
′=

 (4.114) 

 

where 

 

 B L N=  (4.115) 

 

which, in expanded format, reads 

 

 
3 31 2 1 2

3 31 2 1 2

0 00 0 0 0

0 00 0 0 0

N NN N N N
B

N NN N N N

−− − 
=  −− − 

 (4.116) 

 

The constitutive behavior of the interface element is simulated with the following stress-

relative displacement relationship 

 

 
1

2

D u
σ

σ
σ

′ ′ ′= = ∆ ′ 
 (4.117) 

 

where 1σ ′  and 2σ ′  are the tangential and normal stress components of σ ′ , and D  is the 

constitutive matrix 
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with tD  and nD  being the tangential and normal stiffness. For accurate simulations of 

nonlinear phenomena in concrete structures, such as crack propagation in concrete or 

slipping between reinforcement and concrete, appropriate laws defining tD  and nD  must 

be used. 

 

From the principle of virtual work (PVW), the internal work is 

 

 ( )int

T

S

W u dSδ σ′ ′= ∆∫  (4.119) 

 

where ( )T
uδ ′∆  is the virtual relative displacement vector. The element nodal displacement 

vector in the local coordinate system (see Figure 4.35), a′ , can be obtained from the 

element nodal displacement vector in the global coordinate system, a , 

 

 a T a′ =  (4.120) 

 

where T  is the appropriated transformation matrix. Replacing (4.120) into (4.114) yields 

 

 u B a BT a′ ′∆ = =  (4.121) 

 

and substituting (4.121) into (4.117) leads to 

 

 D BT aσ ′ =  (4.122) 

 

Substituting (4.121) and (4.122) into (4.119) yields 

 

 

int
T T T

S

T T T

S

W a T B D BT a dS

a T B D BT dS a

δ

δ

=

=

∫

∫
 (4.123) 

 

The work produced by the external forces due to virtual displacements is given by 
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 ( )T

extW a Fδ ′ ′=  (4.124) 

 

where 

 

 F T F′ =  (4.125) 

 

Substituting (4.120) and (4.125) into (4.124) yields 

 

 
T T

ext

T

W a T T F

a F

δ
δ

=

=
 (4.126) 

 

From the PVW, intextW W= , resulting 

 

 
T T

S

T B D BT dS a F=∫  (4.127) 

 

or 

 

 K a F=  (4.128) 

 

with 

 

 
T T

S

K T B D BT dS= ∫  (4.129) 

 

In (4.128), K , is the element stiffness matrix and F  is the load vector. 

 

To avoid erroneous oscillations in the stress field, an appropriate integration scheme 

must be selected (Rots 1988, Schellekens 1992). In the present study the interface elements 

are integrated with the Gauss-Lobatto integration scheme. 
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4.5.2 Model appraisal 

The results obtained in the series fcm70_Lb80_M of the pullout-bending tests described in 

Chapter 2 are used to evaluate the performance of the developed line interface element. 

The pullout-bending test is considered a plane stress problem. Figure 4.36 shows the finite 

element mesh adopted in the simulation, where 4-node Lagrangian plane stress elements 

with 2×2 Gauss-Legendre integration scheme are used to simulate the concrete beam and 

the steel hinge. The CFRP is simulated with 2D frame elements. Linear elastic behavior is 

assumed for these materials, with properties obtained in the experimental program. To 

connect the CFRP to concrete, 4-node line interface elements with two-point 

Gauss-Lobatto integration rule are used. The bond stress-slip relationship obtained for the 

series fcm70_Lb80_M is used to model the tangential stiffness of the interface elements 

(see Section 3.3), 
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 (4.130) 

 

Assuming that the normal stiffness of the interface element has marginal effect on the 

bonding behavior between CFRP and concrete, a constant value of 106 N/mm3 is attributed 

to nD . The load is applied by direct displacement-control at the loaded point. 
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Figure 4.36 – Finite element model. Note: all dimensions are in millimeters. 
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In Figure 4.37 the relationship between the pullout force and the loaded end slip 

obtained numerically is compared with the results registered experimentally. As expected, 

a good agreement is observed. 

 
 

 

Figure 4.37 – Pullout force vs. loaded end slip: experimental and numerical results. 

 

 

4.6 SUMMARY AND CONCLUSIONS 

The present chapter described the developed tools whose purpose is the numerical 

simulation of concrete structures strengthened with near-surface mounted CFRP laminate 

strips. 

 

The Newton-Raphson method as an iterative technique for the solution of nonlinear 

finite element problems was briefly presented. The proposed numerical tools are 

implemented in a finite element computer code whose main characteristics were briefly 

described. 

 

The formulation of the developed elasto-plastic multi-fixed smeared crack model was 

described in detail. This model has two independent yield surfaces: one for concrete in 

tension and the other for concrete in compression. The former controls crack initiation and 

propagation and the latter controls the plastic behavior of compressed concrete. The 
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incremental strain vector ε∆  is decomposed in order to accurately simulate the crack status 

evolution. The post-cracking behavior of concrete depends on the tension-softening 

diagram. In the developed computer code several alternatives for this diagram are 

available. Fully implicit Euler backward integration schemes are used to integrate the 

constitutive equations. Data available in the literature was used to show that the developed 

model can predict, with enough accuracy, the nonlinear behavior of concrete structures. 

 

A finite element formulation for interface elements, whose purpose is the simulation 

of the CFRP-concrete interface, was presented. The tangential component of the 

corresponding constitutive matrix is based on the relationship obtained in the analytical 

analysis performed in Chapter 3. The developed interface element was validated by means 

of a comparison with the experimental results presented in Chapter 2. 
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CHAPTER 5 

N U M E R I C A L  A P P L I C A T I O N S  

 

 

The applications described in this chapter assess the ability of the developed numerical 

tools in the simulation of the main features observed in the experimental tests of reinforced 

concrete structures strengthened with near-surface mounted CFRP laminate strips. Aspects 

such as crack initiation, stiffness degradation, yield initiation in the rebars, load carrying 

capacity and crack patterns will also be focused. The importance of modeling the bond-slip 

behavior at the CFRP-concrete interface in this type of structures is investigated. Two 

groups of reinforced concrete beams are analyzed. The first group is composed of beams 

with flexural strengthening, whereas the second group deals with shear-strengthened 

beams. Both groups of beams were tested in the Laboratory of the Structural Division of 

the Civil Engineering Department of the University of Minho, Portugal. 

 

 

5.1 CONCRETE PROPERTIES 

The previously described concrete constitutive model requires the definition of a 

considerable number of material properties. These properties must characterize the 

concrete used in the structures to be analyzed, in order to assure numerical simulations with 

enough accuracy. These aspects are treated in the following sections. 

 

 

5.1.1 Uniaxial behavior of plain concrete 

Figure 5.1(a) shows the typical stress-strain response of a concrete specimen under uniaxial 

compressive loading. Up to approximately 30 % of the compressive strength, cf , the 

concrete exhibits a linear elastic behavior. From this stress level up to the peak load, a 

gradual decrease of the stiffness is observed. After the peak stress, the stiffness becomes 

negative and the descending branch of the stress-strain curve characterizes the softening 

behavior of concrete under uniaxial compressive loading. According to van Mier et al. 

(1997), the concrete compressive strength depends on the type of test machine loading 

platens and the slenderness of the specimen, h d , where h  is the height of the specimen 
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and d  is either the diameter of a cylinder specimen or the width of a prism, depending on 

which type of geometry is used. When the friction between platen and specimen is high, a 

decrease of the h d  ratio causes an increase of the concrete compressive strength. In 

contrast, when the friction is low, the concrete compressive strength measured in prisms or 

cylinders is independent of the h d  ratio. When low-friction platens are used, the pre-peak 

branch of the compressive stress-strain curve is also independent of the slenderness of the 

specimen. However, in the post-peak branch and for all loading systems, the ductility is 

significantly increased with the decrease of the h d  ratio. According to van Mier et 

al. (1997), the post-peak behavior seems to be a mixture of material and structural 

behavior. 
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Figure 5.1 – (a) Stress-strain response of concrete under uniaxial compressive loading. (b) Stress-displacement 
response of concrete under uniaxial tensile loading. 

 

The characterization of the concrete used in most experimental programs is scarce 

and is commonly limited to the determination of the uniaxial compressive strength, which 

is based on direct compression tests, with cylinders of 150 mm diameter and 300 mm 

height. With these tests, the mean value of the uniaxial compressive strength, cmf , is 

evaluated. The characteristic compressive strength, ckf , can be estimated with the 

following expression (CEB 1993) 
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 8ck cmf f= −  [MPa] (5.1) 

 

Young's modulus of concrete, ciE , is defined as the initial slope of the uniaxial 

compressive stress-strain diagram (see Figure 5.1(a)). The values of ciE  for normal weight 

concrete can be estimated from (CEB 1993) 

 

 1 39979ci cmE f=  [MPa] (5.2) 

 

Following the recommendations of CEB-FIB (1993), the strain value at the peak 

stress, 1cε , is considered constant and equal to 0.0022. 

 

Poisson's ratio of concrete, cν , ranges between 0.1 and 0.2. In the numerical 

simulations of the present chapter a Poisson's ratio of 0.15 is adopted. 

 

Figure 5.1(b) shows the stress-displacement curve obtained in a uniaxial tensile test. 

Up to approximately 90 % of the maximum tensile strength, ctf , the concrete behaves as a 

linear elastic material. At this stage, strains and micro-cracks start to localize in a narrow 

zone, named process zone, and afterwards a continuous macro-crack is developed. The 

width of the macro-crack increases and the stiffness reduces rapidly until the macro-crack 

cannot transfer any tensile stress. The post-peak branch of the stress-displacement curve is 

usually named softening branch. 

 

The tensile strength is influenced by the shape and surface texture of the aggregates 

and may be reduced substantially by environmental effects. The lower and upper values of 

the characteristic tensile strength, ,minctf  and ,maxctf , respectively, can be estimated from the 

characteristic compressive strength, ckf  (CEB 1993) 

 

 2 3
,min 0.20ct ckf f=  [MPa] (5.3) 

 

 2 3
,max 0.40ct ckf f=  [MPa] (5.4) 
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and the mean value of the tensile strength is given by (CEB 1993) 

 

 2 30.30ctm ckf f=  [MPa] (5.5) 

 

In the present study, the values of the tensile strength adopted in the numerical simulations 

vary between ,minctf  and ctmf . 

 

The fracture energy of plain concrete, fG , is the energy required to propagate a 

tensile crack of unit area. In Figure 5.1(b), fG  corresponds to the area under the post-peak 

branch of the stress-displacement curve and is commonly assumed as a material parameter. 

In the absence of experimental data, fG  may be estimated from (CEB 1993) 

 

 0.7
00.2f f cmG G f=  [Nmm/mm2] (5.6) 

 

where 0fG  is the base value of fracture energy, which depends on the maximum aggregate 

size, maxd . When maxd  is equal to 8 mm, 16 mm or 32 mm, the value of 0fG  is 

0.025 Nmm/mm2, 0.030 Nmm/mm2 or 0.058 Nmm/mm2, respectively. 

 

Tri-linear diagrams are used in the present study to model the concrete 

tensile-softening behavior (see Figure 4.6). For the case of plain concrete, the parameters 

1ξ , 1α , 2ξ  and 2α  must be carefully selected in order to accurately simulate the concrete 

post-cracking behavior. 

 

 

5.1.2 Uniaxial behavior of reinforced concrete 

Uniaxial compressive behavior of reinforced concrete is commonly simulated with the 

uniaxial compressive model used for plain concrete, which was previously discussed. 

Concrete cracking is also an influential phenomenon governing the tensile behavior of 

reinforced concrete elements. Figure 5.2 illustrates the force-displacement diagram of a 

tensile test. When the load increases, the existing cracks localized in narrow bands evolve 

and a number of primary macro-cracks are formed. Due to the existence of bond between 
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concrete and reinforcement, a gradual redistribution of the internal forces from the concrete 

to the reinforcement occurs, inducing the formation of secondary cracks. This process of 

stress redistribution and crack formation ends when the crack pattern stabilizes. It is clear 

that the stiffness of the tensile member is increased with reference to the rebar by the 

stiffness of the concrete. This effect is usually referred to in the literature as 

tension-stiffening and depends on the reinforcement ratio, the stress level at the rebar, the 

characteristics of the surface of the rebar, the angle between the rebar and the crack, as well 

as the fracture concrete properties and the type of loading (Barros 1995). 
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Figure 5.2 – Behavior of a reinforced concrete tensile member. 

 

Previous research has revealed that the most appropriate tension-stiffening models 

must be based on a stress-strain diagram that considers the following aspects: crack 

stabilization, reinforcement yielding at the crack, member strain at point Y  of Figure 5.2 

equal to the reinforcement yield strain (Barros 1995). In the present work, the diagram 

represented in Figure 4.6 is used to model the tension-stiffening effect, since an appropriate 

choice of values for the parameters 1ξ , 1α , 2ξ  and 2α  leads to a model that satisfies the 

desired characteristics. 

 

At the cross section level, only the concrete area surrounding the reinforcement is 

affected by the tension-stiffening phenomenon. This area is usually referred to in the 
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literature as the effective tension area, eff effA h b=  (see Figure 5.3), where effh  can be 

estimated according to the following CEB-FIB (1993) recommendation 

 

 ( ) ( ){ }min 2.5 , 3effh h d h x= − −  (5.7) 

 

In this equation d  is the distance between the top surface of the beam (zone in 

compression) and the centroid of the reinforcement in tension, and x  is the distance 

between the neutral axis and the top surface of the beam. Since x  is only known during the 

analysis process, the relation ( )2.5effh h d= −  is adopted in the present work. 
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Figure 5.3 – Effective tension area of a beam. 

 

 

5.2 STEEL REINFORCEMENT PROPERTIES 

The material properties of the steel reinforcement are commonly determined using standard 

tensile tests. The obtained stress-strain diagram is usually replaced with an idealized 

relationship, as shown Figure 5.4. This figure represents the adopted uniaxial constitutive 

model of the rebars. The curve (under compressive or tensile loading) is composed of four 

branches (see equation (5.9)). In order to define the four branches three points 

( )PT1 ,sy syε σ= , ( )PT2 ,sh shε σ=  and ( )PT3 ,su suε σ=  and the parameter p  are required. 
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Typically, the value of the parameter p  varies between 1.0 and 4.0. Unloading and 

reloading linear branches with slope sE  are assumed in the present approach. Defining sE  

as 

 

 s sy syE σ ε=  (5.8) 

 

the curve is given by 
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 (5.9) 

 

where 

 

 ( ) ( )sy sh sy sh syE σ σ ε ε= − −  (5.10) 
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Figure 5.4 – Uniaxial constitutive model of the rebars. 
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5.3 MODELING OF BEAMS WITH FLEXURAL STRENGTHENING 

In this section the simulation of the experimental tests carried out by Barros and Fortes 

(2002) is presented. The main purpose of this experimental program was to assess the 

ability of the NSM strengthening technique as a means of increasing the flexural capacity 

of reinforced concrete beams. Two distinct analyses are performed: in the former a perfect 

bond between the CFRP and concrete is assumed, while in the latter slip can occur. 

 

Figure 5.5 to Figure 5.7 show the geometry, finite element mesh, loading 

configuration and support conditions adopted in this study. The reference beams (V1, V2, 

V3 and V4) are simulated with the setup shown in Figure 5.5, whereas Figure 5.6 and 

Figure 5.7 present the setup adopted for the strengthened beams (V1R1, V2R2, V3R2 and 

V4R3) assuming perfect bond and allowing slip at the CFRP-concrete interface, 

respectively (see Chapter 1). The height of each beam is indicated in Figure 1.5. In order to 

simulate the concrete part of the specimen, 8-node Serendipity plane stress elements with 

3×3 Gauss-Legendre integration scheme are used. The longitudinal and transverse steel 

reinforcements, as well as the CFRP laminates, are simulated with 3-node quadratic 

embedded cable elements with two Gauss-Legendre integration points. When slip is 

allowed at the CFRP-concrete interface, the CFRP laminates are simulated with 3-node 

quadratic cable elements with two Gauss-Legendre integration points, and the 

CFRP-concrete interface is discretized with 6-node quadratic interface elements with two 

Gauss-Lobatto integration points. 

 

Table 5.1 includes the concrete properties used in the numerical simulations. From 

the mean value of the experimentally obtained compressive strengths, cmf , all the other 

parameters were estimated according to the expressions indicated in Section 5.1. In order to 

simulate the post-cracking behavior of reinforced concrete, a tri-linear tension-stiffening 

diagram is used. The material that exhibits this type of behavior is located in the first rows 

of each finite element mesh, counting from the bottom of the beam (see Figure 5.5 to 

Figure 5.7). In the parts of the mesh where no longitudinal reinforcement is present (upper 

rows), a tri-linear tension-softening diagram is used. The total height of the finite element 

rows where the material is treated as reinforced concrete is defined by the parameter effh  

(see Figure 5.3). In the cases where CFRP reinforcement is also present, the post-cracking 
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behavior of concrete must be treated differently. Therefore, a realistic tension-stiffening 

model for the simulation of the post-cracking behavior of these elements should also take 

into account the properties of the CFRP materials. In the present work, the tri-linear 

stress-strain diagram, represented in Figure 4.6, is used to simulate the post-cracking 

behavior of reinforced concrete elements strengthened with CFRP materials. The main 

advantage of this diagram is the possibility of changing the values of 1ξ , 1α , 2ξ  and 2α , 

thus providing enough flexibility in order to model the most important aspects of the 

tension-stiffening effect. Since no previous research could be found regarding the selection 

of appropriate values for the referred parameters, several attempts were made with the aim 

of fitting the numerical results with the experimental results, in terms of global beam 

behavior. 

 

All the parameters that define the material model of the rebars (longitudinal and 

transverse reinforcements) and CFRP laminates are included in Table 5.2. These 

parameters were estimated by Barros and Fortes (2004). 

 

In the experimental program carried out by Barros and Fortes (2002), and in the 

pullout-bending tests performed in this work, the geometry of the slits and the obtained 

properties of the epoxy adhesive are not coincident. In the present numerical analysis the 

following relationship is adopted to simulate the nonlinear behavior of the CFRP-concrete 

interface 
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 (5.11) 

 

In order to evaluate the influence of the occurrence of slip on the global behavior of the 

beams, the sτ −  relationship should allow a large contribution of the slip phenomenon. 

Therefore, the smallest value found in the results of the analytical modeling described in 

Chapter 3 was attributed to parameter mτ . The values of the other parameters of the sτ −  

relationship were selected taking into account the values obtained in the experimental 

program described in Chapter 2 and considering the width of the slits of the analyzed 
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beams. Assuming that the normal stiffness of the interface elements has a marginal effect 

on the bonding behavior, a constant value of 106 N/mm3 is attributed to nD . 

 

In all the numerical simulations the load is applied by direct displacement-control at 

the loaded point. 
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Figure 5.5 – Geometry, mesh, loading and support conditions of reinforced concrete beams. Note: all dimensions 
are in millimeters. 

 

 

50 500 250

F/2

Longitudinal reinforcement (bottom)

Transverse
reinforcement

H

Longitudinal
reinforcement (top)

CFRP

T
en

si
on

-
st

iff
en

in
g

T
en

si
on

-
so

fte
ni

ng

 

Figure 5.6 – Geometry, mesh, loading and support conditions of reinforced concrete beams strengthened with 
CFRP laminate strips. Perfect bond between the CFRP and concrete is assumed. Note: all dimensions are in 
millimeters. 
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Figure 5.7 – Geometry, mesh, loading and support conditions of reinforced concrete beams strengthened with 
CFRP laminate strips. Bond-slip at the CFRP-concrete interface is modeled. Note: all dimensions are in 
millimeters. 

 

 

Table 5.1 – Concrete properties used in the simulation of beams with flexural strengthening. 

Poisson's ratio 0.15cν =  

Initial Young's modulus 235757 N/mmcE =  

Compressive strength 246.0 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  

Tri-linear tension-softening diagram 

23.0 N/mmctf = ; 0.087 N/mmfG =  

1 0.02ξ = ; 1 1 3α = ; 2 0.48ξ = ; 2 1 6α =  

Tri-linear tension-stiffening diagram of the 
beams V1, V2, V3 and V4 

23.0 N/mmctf = ; 0.24 N/mmfG =  

1 0.05ξ = ; 1 0.5α = ; 2 0.8ξ = ; 2 0.4α =  

Tri-linear tension-stiffening diagram of the 
beams V1R1, V2R2, V3R2 and V4R3 

23.0 N/mmctf = ; 0.7 N mmfG =  

1 0.1ξ = ; 1 0.6α = ; 2 0.45ξ = ; 2 0.3α =  

Parameter defining the mode I fracture energy 
available to the new crack 1 2=p  

Shear retention factor Exponential ( 2 2=p ) 

Crack band-width Square root of the area of the element 

Threshold angle 60ºthα =  
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Table 5.2 – Reinforcement properties used in the simulation of beams with flexural strengthening. 

Reinforcement ( );sy syε σ  ( );sh shε σ  ( );su suε σ  p  

∅3 ( )-48.97 10 ;175×  ( )-11.44 10 ;288×  ( )-11.44 10 ;288×  1.0  

∅6 ( )-33.50 10 ;700×  ( )-35.00 10 ;760×  ( )-23.17 10 ;800×  1.0  

∅8 ( )-32.62 10 ;524×  ( )-23.00 10 ;554×  ( )-11.50 10 ;614×  2.6  

CFRP ( )-317.1 10 ;2700×  ( )-317.1 10 ;2700×  ( )-317.1 10 ;2700×  1.0  

Note: all stresses are in megapascal. 

 

Figure 5.8(a) to Figure 5.11(a) show the relationship between deflection at beam 

mid-span and load, for both the experimental tests and the numerical analyses (assuming 

perfect bond). The main aspects observed in the experimental tests of the reference beams 

(V1, V2, V3 and V4), such as crack initiation, stiffness degradation, yield initiation of 

rebars, and load carrying capacity are well simulated. The exception occurred in beam V3, 

where the model has predicted a crack initiation load greater than the experimentally 

observed one. A possible reason for this discrepancy is a slight damage of beam V3 that 

might have occurred before the test. Due to some difficulties in the convergence of the 

Newton-Raphson iterative procedure, the predicted ultimate deflection was lower than the 

one obtained experimentally in the reference beams. 

 

The numerical simulation of the strengthened beams (V1R1, V2R2, V3R2 and 

V4R3), assuming perfect bond at the CFRP-concrete interface, has also reproduced the 

main aspects observed in the experimental tests. However, the numerical model did not 

predict the maximum load carrying capacity obtained experimentally, due to the 

non-convergence of the Newton-Raphson iterative procedure at a load level of about 90% 

of the experimental maximum load carrying capacity. For all the strengthened beams, the 

maximum difference between the numerically obtained ultimate load and the 

experimentally observed maximum load did not exceed 12 % of the latter. 
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Figure 5.8 – (a) Load vs. deflection at mid-span obtained experimentally and numerically (assuming perfect 
bond) for the beams V1 and V1R1. (b) Load vs. deflection at mid-span obtained numerically assuming perfect 
bond and allowing slip at the CFRP-concrete interface. 
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Figure 5.9 – (a) Load vs. deflection at mid-span obtained experimentally and numerically (assuming perfect 
bond) for the beams V2 and V2R2. (b) Load vs. deflection at mid-span obtained numerically assuming perfect 
bond and allowing slip at the CFRP-concrete interface. 
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Figure 5.10 – (a) Load vs. deflection at mid-span obtained experimentally and numerically (assuming perfect 
bond) for the beams V3 and V3R2. (b) Load vs. deflection at mid-span obtained numerically assuming perfect 
bond and allowing slip at the CFRP-concrete interface. 
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Figure 5.11 – (a) Load vs. deflection at mid-span obtained experimentally and numerically (assuming perfect 
bond) for the beams V4 and V4R3. (b) Load vs. deflection at mid-span obtained numerically assuming perfect 
bond and allowing slip at the CFRP-concrete interface. 

 

Figure 5.8(b) to Figure 5.11(b) depict the numerical relationship between the load 

and deflection at mid-span, for the assumption of perfect bond and allowing slip at the 

CFRP-concrete interface. Modeling the bond-slip behavior at the CFRP-concrete interface 

did not contribute to an increase of the maximum deflection obtained in the analyses with 
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perfect bond, thus indicating that in this type of beams the slip between the CFRP and 

concrete has a marginal contribution to the global response. This can also be inferred from 

the observed failure modes of the tested beams (Barros and Fortes 2004), since the main 

cause of failure was the detachment of a concrete layer composed of the concrete cover and 

fragments of concrete located above the longitudinal tensile rebars. 

 

In the beams tested by Barros and Fortes (2002) the strains in the CFRP were also 

recorded. Two strain gages (1 and 2) were located as indicated in Figure 5.12. A third 

strain gage was placed at the specimen mid-span. In Figure 5.12 the strains recorded in the 

strain gages 1 and 2 are compared with the values obtained from the numerical model, 

assuming perfect bond between the CFRP and the concrete. The evolution of the strain 

with the load is well predicted up to the point where convergence could no longer be 

obtained. In the remaining strengthened beams (V1R1, V3R3 and V4R3) the numerical 

model produced results with similar characteristics. 

 

 

0 20 40 60 80 100
0

4

8

12

16

20

F/2

50 250

CFRP

250250

Strain gage 1 Strain gage 2

Strain 1

 

S
tr

ai
n 

[m
m

/m
]

Load [kN]

 Numerical
 Experimental

Strain 2

 

Figure 5.12 – Comparison between numerical and experimental CFRP strains in the test of beam V2R2. 

 

Figure 5.13(a) represents the distribution of the CFRP strain in beam V2R2 at three 

distinct load levels: crack initiation, onset of rebar yielding and last converged 

combination. As expected, the CFRP strains at crack initiation are marginal. When the 
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rebars yield, the CFRP strain varies linearly with x , from 0 mmx =  to 450 mmx = , and 

remains constant in the pure bending zone. For higher load levels, the strain in the shear 

span varies nonlinearly with x . In the pure bending zone the strain distribution is almost 

constant. 

 

The bond stress distribution in the last converged combination is presented in 

Figure 5.13(b) for the beam V2R2. The bond stress decreases significantly in the range 

0 mm to 100 mm. The bond stress oscillations are caused by the presence of flexural 

cracks. The maximum bond stress does not exceed the bond strength considered in the 

sτ −  relationship and the slip is always lower than 0.3 mm. 
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Figure 5.13 – Numerical results obtained at the CFRP level in the beam V2R2: (a) evolution of the CFRP strain 
along the longitudinal axis of the CFRP; (b) evolution of the bond stress along the longitudinal axis of the CFRP. 

 

 

5.4 MODELING OF SHEAR-STRENGTHENED BEAMS 

The performance of the NSM technique as a means of increasing the shear strength of 

reinforced concrete beams was experimentally assessed by Barros and Dias (2003), being 

the beams composing the VA series selected for the numerical simulation described below. 
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Figure 5.14 to Figure 5.17 show the geometry, finite element mesh, loading 

configuration and support conditions adopted in this study. In order to simulate the 

concrete part of the specimen, 8-node Serendipity plane stress elements with 

3×3 Gauss-Legendre integration scheme are used. The longitudinal and transverse steel 

reinforcements, as well as the CFRP laminates, are simulated with 3-node quadratic 

embedded cable elements with two Gauss-Legendre integration points. The assumption of 

perfect bond between the reinforcement and concrete is adopted. 

 

The concrete properties adopted in the present analyses are included in Table 5.3. 

From the mean value of the experimentally obtained compressive strengths, cmf , all the 

other parameters were estimated according to the expressions indicated in Section 5.1. 

Since the longitudinal steel reinforcement ratio is high, the effect of the tension-stiffening 

is negligible (Massicotte et al. 1990). For this reason the post-cracking behavior of concrete 

is simulated with a tri-linear tension-softening diagram. Two distinct numerical analyses 

are performed for the beams VAE-30, VACI-30 and VACV-20, considering two values of 

the threshold angle, 30º or 60º. 

 

Table 5.4 includes the properties of the rebars and CFRP reinforcements. Preliminary 

finite element numerical simulations with the beam VAE-30 have questioned the values of 

properties indicated by Barros and Dias (2003) for the ∅10 rebars (yield stress of 

464 MPa). In fact, the numerical results have pointed out that the maximum load obtained 

experimentally can only be reached when the yield stress of the ∅10 rebars is 

approximately equal to 600 MPa. This value of the yield stress was confirmed by a layer 

model whose purpose is the determination of the moment-curvature relationship of a 

reinforced concrete cross section (Ribeiro et al. 2003). According to Barros and Dias, the 

cause of this discrepancy might have been the heterogeneity of the ∅10 rebars used in the 

tensile tests and in the beams. Consequently, in the present numerical simulations the 

properties of the ∅10 rebars are those indicated in Table 5.4. 

 

In all the numerical simulations the load is applied by direct displacement-control at 

the point located in the lower right corner of the mesh. 
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Figure 5.14 – Geometry, mesh, loading configuration and support conditions of the beam VA10. Note: all 
dimensions are in millimeters. 
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Figure 5.15 – Geometry, mesh, loading configuration and support conditions of the beam VAE-30. Note: all 
dimensions are in millimeters. 
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Figure 5.16 – Geometry, mesh, loading configuration and support conditions of the beam VACI-30. Note: all 
dimensions are in millimeters. 
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Figure 5.17 – Geometry, mesh, loading configuration and support conditions of the beam VACV-20. Note: all 
dimensions are in millimeters. 

 

Table 5.3 – Concrete properties used in the simulation of shear-strengthened beams. 

Poisson's ratio 0.15cν =  

Initial Young's modulus 236567 N/mmcE =  

Compressive strength 249.2 N/mmcf =  

Strain at peak compression stress 3
1 2.2 10ε −= ×c  

Parameter defining the initial yield surface 0 0.3α =  

Tri-linear tension-softening diagram 
23.0 N/mmctf = ; 0.09 N/mmfG =  

1 0.1ξ = ; 1 0.5α = ; 2 0.3ξ = ; 2 0.2α =  

Parameter defining the mode I fracture energy 
available to the new crack 1 0.5p =  

Shear retention factor Linear ( 2 1p = ) 

Crack band-width Square root of the area of the element 

Threshold angle 30ºthα =  or 60ºthα =  

 

Table 5.4 – Reinforcement properties used in the simulation of shear-strengthened beams. 

Reinforcement ( );sy syε σ  ( );sh shε σ  ( );su suε σ  p  

∅6 (Transverse 
reinforcement) ( )-32.70 10 ;540×  ( )1.0;540  ( )1.0;540  1.0  

∅6 (Longitudinal 
reinforcement) ( )-33.11 10 ;622×  ( )1.0;622  ( )1.0;622  1.0  

∅10 ( )-33.00 10 ;600×  ( )1.0;600  ( )1.0;600  1.0  

CFRP ( )-314.7 10 ;2200×  ( )-314.7 10 ;2200×  ( )-314.7 10 ;2200×  1.0  

Note: all stresses are in megapascal. 
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Figure 5.18 and Figure 5.19 show the relationship between the load and the 

deflection at mid-span, for both the experimental test and the numerical simulations. For 

the beams VAE-30, VACI-30 and VACV-20, the numerical simulations with values of the 

threshold angle equal to 30º and 60º are included in these figures. 
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Figure 5.18 – Load vs. deflection at mid-span obtained experimentally and numerically for the beams VA10 (a) 
and VAE-30 (b). 
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Figure 5.19 – Load vs. deflection at mid-span obtained experimentally and numerically for the beams 
VACV-20 (a) and VACI-30 (b). 
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In the beam VA10, a good agreement between the numerical and experimental results 

is obtained. The crack initiation, the ultimate load and the beam deformability are well 

predicted. The numerical analysis was terminated when the iterative Newton-Raphson 

procedure failed to converge. 

 

Figure 5.20 shows the numerical crack pattern at the last converged combination of 

the beam VA10. In this figure only the cracks with the opening and fully open statuses are 

represented. The experimental crack pattern at impending failure of the beam VA10 is 

depicted in Figure 5.21. It can be observed that the beam failed by shear due to the 

occurrence of large deformations in the main shear crack indicated in the figure. This crack 

is well predicted by the numerical model, since a well defined shear crack band is formed 

in a location that coincides with the observed experimental shear crack and has the same 

orientation. In this shear crack band several cracks have a fully open status. According to 

Barros (1995), the type of numerical crack pattern indicated in Figure 5.20 occurs when the 

shear failure is imminent. However, numerical convergence is too difficult to obtain at this 

stage, since several cracks are forming and, simultaneously, existent cracks are changing 

their status. 

 

When a 30º threshold angle is adopted, the numerical simulation of the beam 

VAE-30, which has transverse reinforcement (see Figure 1.7), did not converge for a load 

level close to the failure load of the beam VA10, which has no transverse reinforcement 

(see Figure 1.7). For the available numerical results, the relationship between the load and 

the deflection at mid-span accurately fits the experimental data as shown in Figure 5.18(b). 

At the last converged combination, the numerical model accurately reproduces the 

experimentally observed crack pattern (see Figure 5.22(a) and Figure 5.23). 

 

When a 30º threshold angle is considered, the Newton-Raphson algorithm does not 

converge in an intermediate combination that corresponds to the evolution of the shear 

crack band. This non-convergence is due to the formation of several cracks and to the 

simultaneous occurrence of a significant number of critical crack status changes in the 

existing cracks. 

 

 



166 Chapter 5 

 

F/2
OPENING FULLY OPEN

 

Figure 5.20 – Numerical crack pattern of the beam VA10 at the last converged combination. 
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Figure 5.21 – Experimental crack pattern of the beam VA10 at impending failure (Dias and Barros 2004). 

 

In the calculation of the internal equivalent nodal forces, the numerical model 

decomposes the incremental strain vector ε∆  in order to accurately simulate the crack 

status evolution (see Section 4.2.3.2). When the contribution of the shear stress to the stress 

vector is high, the principal stresses significantly change their orientation and the 

maximum principal stress can exceed the concrete tensile strength. In this case, if a new 

crack is formed at an integration point, in general, existent cracks tend to change their 

status, which causes the decomposition of the strain increment vector. This aspect also 

contributes to the numerical instabilities, since the calculation of the stiffness matrix 

depends on the crack statuses attributed at the end of the previous evaluation of the internal 

equivalent nodal forces, which can be considerably distinct from the crack statuses at the 

end of the previous combination. In order to avoid this type of numerical instability the 

number of critical crack status changes should be limited. This strategy was not 

investigated in the present work. 

F/2 F/2 F/2 
Shear crack 

Shear crack band 
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Figure 5.18(b) also includes the numerical analysis with a 60º threshold angle. In this 

analysis, a new crack can only be formed when the principal stress exceeds the concrete 

tensile strength and the angle between the direction of the existing cracks and the direction 

of the principal stress surpasses 60º. For this reason the response is stiffer than the one 

experimentally observed and stiffer than the numerical response with a 30º threshold angle. 

In the analysis with a 60º threshold angle, the stress in the longitudinal reinforcement 

reaches the yield stress, in agreement with the experiments. However, the numerical crack 

pattern does not accurately match the experimental crack pattern (see Figure 5.22(b)). In 

fact, in the numerical model, all cracks in fully open status are located in the pure bending 

zone and the shear crack band is formed closer to the support of beam. 

 

The results of the numerical simulations performed with the VACI-30 and VACV-20 

beams are similar to those described for the beam VAE-30. Similar numerical difficulties 

were encountered in the simulations performed with a 30º threshold angle. 
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Figure 5.22 – Numerical crack pattern of the beam VAE-30, at the last converged combination, obtained with a 
threshold angle equal to 30º (a) and equal to 60º (b). 
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Figure 5.23 – Experimental crack pattern of the beam VAE-30 at impending failure (Dias and Barros 2004). 
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5.5 SUMMARY AND CONCLUSIONS 

The numerical tools described in Chapter 4, whose purpose is the simulation of the 

behavior of reinforced concrete beams strengthened with NSM CFRP laminate strips, are 

applied to some examples, which were presented in this chapter. These examples include a 

pair of experimental programs, whose numerical simulation is used as a validation of the 

proposed tools. The first group comprises the analysis of reinforced concrete beams with 

flexural strengthening, whereas the second group deals with shear-strengthened reinforced 

concrete beams. 

 

In the numerical simulation of beams with flexural strengthening two distinct types 

of analyses were considered in terms of the characterization of the CFRP-concrete 

interface: the assumption of perfect bond and the possibility of the occurrence of slip at the 

CFRP-concrete interface. With the exception of the maximum load carrying capacity, both 

approaches predicted with high accuracy the main features observed in the experimental 

tests. In the numerical simulation of the strengthened beams, and due to numerical 

instabilities, convergence could not be obtained when the load level was about 90 % of the 

maximum load recorded in the experiments. Since modeling the CFRP-concrete interface 

has not improved the accuracy of the numerical simulation, it seems that sliding between 

CFRP and concrete has a negligible effect in the global response. 

 

In the numerical simulation of the reinforced concrete beams shear-strengthened with 

NSM CFRP laminate strips, perfect bond between CFRP and concrete was assumed. In the 

analysis of these types of beams, the influence of the value of the threshold angle was 

investigated. Using a 30º threshold angle, the crack pattern and the force-deflection 

relationship were predicted with higher accuracy than in the case of a 60º threshold angle. 

In the former analyses more cracks are formed, causing a significant decrease of the beam 

stiffness after its cracking load. However, the presence of three cracks in some integration 

points and the occurrence of more than one critical crack status change during the 

calculation of the internal equivalent nodal forces led to some numerical instabilities. 

These numerical instabilities caused the non-convergence of the Newton-Raphson iterative 

procedure at a load level close to the failure load of the reference beam. The analysis with a 

60º threshold angle predicted with high accuracy the maximum load registered in the 

experimental tests, but the numerical response was stiffer than the one registered 
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experimentally. The crack patterns numerically predicted did not exactly match the 

experimental results, since the most prominent shear crack was located closer to the beam 

support than the shear failure crack experimentally observed. 
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CHAPTER 6 

S U M M A R Y  A N D  C O N C L U S I O N S  

 

 

The near-surface mounted (NSM) strengthening technique has been used to increase the 

load carrying capacity of concrete structures. This technique consists in the insertion of 

CFRP laminate strips into pre-cut slits opened in the concrete cover of the elements to be 

strengthened. The laminates are bonded to concrete using an epoxy adhesive. The present 

work is a contribution to a better knowledge of the behavior of concrete structures 

strengthened with NSM CFRP laminate strips. The carried out study was composed of an 

experimental, an analytical and a numerical part. 

 

 

Experimental research 

In order to assess the bond performance between the CFRP and concrete using the NSM 

technique, pullout-bending tests under monotonic and cyclic loading were carried out. The 

influence of bond length, concrete strength, and load history was analyzed. 

 

The bond test setup used in the carried out experimental program is adequate for the 

evaluation of the bond performance between CFRP laminate strips and concrete. Strain 

gages on the CFRP were used in order to accurately measure its tensile stress. The 

measured slip includes the contribution of the CFRP-adhesive and adhesive-concrete 

interfaces, as well as the deformation of the epoxy adhesive layer. A physical interpretation 

of the evolution of the pullout force, slip at the free end and slip at the loaded end was 

given based on the presumed micro-mechanisms. 

 

Some parameters were determined to characterize the bond performance of the 

pullout-bending tests, such as the peak pullout force, the loaded end slip and the bond 

strength. According to the observations, these parameters were significantly influenced by 

the bond length, whereas the concrete strength had a negligible effect. In the case of the 

cyclic tests, the envelope of the pullout force versus slip relationships and the curve 

obtained in the homologous monotonic tests had similar shape. 
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Analytical modeling 

A numerical method, which uses the results obtained in the experimental program, was 

developed with the purpose of determining an analytical local bond stress-slip relationship 

( s−τ ) for the NSM technique. This method solves the differential equation that governs 

the slip evolution of the CFRP laminate strip in the context of the NSM strengthening 

technique. The method takes into account the distribution of the slip and the bond stress 

along the bond length. The developed numerical method was also used in the evaluation of 

the CFRP anchorage length required in both service and ultimate limit state analyses. In the 

numerical method the slip concept is the sliding between CFRP and concrete. 

 

The obtained s−τ  relationship depends on the bond length, since the slip measured 

in the pullout-bending tests includes the contribution of the CFRP-adhesive and 

adhesive-concrete interfaces, as well as the deformation of the epoxy adhesive layer. 

 

 

Numerical modeling 

In order to simulate the behavior of concrete structures strengthened with NSM CFRP 

laminate strips some numerical tools were developed. These tools were implemented in a 

computer code named FEMIX, which is a general purpose finite element software system. 

The simulation of the concrete behavior was based on a developed elasto-plastic 

multi-fixed smeared crack model. A line interface finite element and a constitutive model 

for the simulation of the nonlinear behavior of the interface between CFRP and concrete 

were developed. The ability of the numerical tools used in the simulation of the behavior of 

reinforced concrete beams strengthened with NSM CFRP laminate strips was assessed by 

means of experimental results obtained in beams with flexural strengthening and in 

shear-strengthened beams. 

 

In the numerical simulation of the beams with flexural strengthening two distinct 

approaches were considered for the modeling of the CFRP-concrete interface: perfect bond 

and possibility of occurrence of slip. In this type of strengthened beams, the modeling of 

the slip between CFRP and concrete did not significantly contribute to the accuracy of the 

numerical simulation. The numerical model predicted with high accuracy the main features 



 Summary and conclusions 173 

 

of the behavior registered in the experimental tests. However, the predicted maximum load 

carrying capacity was about 90 % of the corresponding experimental observation. 

 

In the numerical simulations of the beams shear-strengthened with NSM CFRP 

laminate strips, perfect bond between CFRP and concrete was assumed. In the analysis of 

this type of beams the influence of the value of the threshold angle was investigated. When 

a 30º threshold angle was adopted, the numerical model simulated the experimental results 

with high accuracy up to a load level close to the failure load of the reference beam. 

However, due to numerical instabilities, the simulations did not progress any further. When 

a 60º threshold angle was adopted the model predicted accurately the maximum load 

carrying capacity, but the response was stiffer than the corresponding experimental 

observation. 

 

 

Suggestions for future work 

In retrospect, the objectives pre-established for the present work were successfully attained. 

The carried out experimental research contributed to increase the knowledge of the bond 

behavior between CFRP and concrete, in the context of the NSM strengthening technique. 

The aim of the numerical strategy was the determination of an analytical local bond 

stress-slip relationship for the NSM technique. And, finally, finite element numerical tools 

were developed to simulate the behavior of reinforced concrete structures strengthened 

with the NSM technique. However, further research is still needed in all the investigated 

areas. 

 

A new test setup should be created with the aim of measuring the slip in the 

CFRP-adhesive and adhesive-concrete interfaces, as well as the deformation of the epoxy 

adhesive layer. With this new test, the influence of the thickness of the epoxy adhesive and 

of the bond length on the bond behavior should be clarified. 

 

Using the results obtained with this new test, a different s−τ  relationship would be 

determined. With this purpose, the numerical method described in Chapter 3 should be 

adjusted in order to take into account all the contributions to the slip. The exhaustive 

search used in the determination of the parameters that define the s−τ  relationship should 
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be replaced with an optimization procedure in order to increase the global efficiency of this 

task. 

 

The numerical instabilities observed in the constitutive model of the concrete should 

be investigated. The presence of three cracks in some integration points and the occurrence 

of more than one critical crack status change during the calculation of the internal 

equivalent nodal forces caused some numerical instabilities. In order to investigate the 

influence of this aspect the maximum number of critical crack status changes should be 

limited. These numerical instabilities might also be related with the simulation of the 

mode II fracture. In fact, in the developed model, when a crack is opening the incremental 

crack shear stress decreases, but the total crack shear stress increases, causing the 

formation of spurious cracks. In order to verify whether these instabilities are related to the 

shear inconsistency, a strain-softening relationship for the mode II fracture should be 

implemented. 

 

The extension of the multi-fixed smeared crack model from 2D to 3D is 

straightforward. The 3D model can be useful in the context of the NSM strengthening 

technique, since recent research has shown that the failure mode of shear-strengthened 

beams is not in agreement with the plane stress assumptions, requiring a treatment of the 

whole structure as a three-dimensional solid. 
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(b) 
Figure A.1 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm35_Lb40_M series. 
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(b) 
Figure A.2 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm35_Lb60_M series. 

0 1 2 3 4 5
0

6

12

18

24

30

 B1_fcm35_Lb80_M
 B2_fcm35_Lb80_M
 B3_fcm35_Lb80_M

P
ul

lo
ut

 fo
rc

e 
F

l  [
kN

]

Free end slip s
f
  [mm]  

(a) 

0 1 2 3 4 5
0

6

12

18

24

30

 B1_fcm35_Lb80_M
 B2_fcm35_Lb80_M
 B3_fcm35_Lb80_M

P
ul

lo
ut

 fo
rc

e 
F

l  [
kN

]

Loaded end slip s
l
  [mm]  

(b) 
Figure A.3 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm35_Lb80_M series. 
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(b) 
Figure A.4 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm45_Lb40_M series. 
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(b) 
Figure A.5 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm45_Lb60_M series. 
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(b) 
Figure A.6 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm45_Lb80_M series. 
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(b) 

Figure A.7 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm70_Lb40_M series. 
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(b) 

Figure A.8 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm70_Lb60_M series. 
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(b) 

Figure A.9 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm70_Lb80_M series. 



192 Appendix A 

 

0 1 2 3 4 5
0

6

12

18

24

30

 B1_fcm40_Lb60_M
 B2_fcm40_Lb60_M
 B3_fcm40_Lb60_M

P
ul

lo
ut

 fo
rc

e 
F

l  [
kN

]

Free end slip s
f
  [mm]  

(a) 

0 1 2 3 4 5
0

6

12

18

24

30

 B1_fcm40_Lb60_M
 B2_fcm40_Lb60_M
 B3_fcm40_Lb60_M

P
ul

lo
ut

 fo
rc

e 
F

l  [
kN

]

Loaded end slip s
l
  [mm]  

(b) 
Figure A.10 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb60_M series. 
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(b) 
Figure A.11 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb90_M series. 
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(b) 
Figure A.12 – Pullout force vs. free end slip (a) and vs. loaded end slip (b), of the fcm40_Lb120_M series. 



 

A P P E N D I X  B  

R U N G E - K U T T A - N Y S T R Ö M  M E T H O D  

 
The Runge-Kutta-Nyström (RKN) method 
(Kreyszig 1993) computes the solution of 

( ), ,y f x y y′′ ′=  using the initial values 

( )0 0y x y= , ( )0 0y x y′ ′=  at equidistant 

points 1 0x x h= + , 2 0 2x x h= + , …, 

0Nx x Nh= + , h  the step length and N  

the number of steps. Figure B.1 shows the 
corresponding algorithm. 

 

The following functions are used in 
the present study: 2 2y d s dx′′ = ; 

( ) ( ) ( ), , 2 f ff x y y t E sτ′ = . The first point 

of the effective bond length, efL , is 0 0x =  

and the last one is N efx L= . The effective 

bond length was divided in 100 segments 
of equal width ( 100N = ). 

 

The initial values are the free end 
slip, ( )0 fy x s= , and the laminate strain at 

the free end, ( ) ( )0 0
y x ds dx′ = =  

( )0 0f xε = = . According to the algorithm 

represented in Figure B.1, the loaded end 
slip, ( )N ly x s= , and the laminate strain at 

the loaded end, ( ) ( )N f Ny x xε′ = , are 

calculated. 

Initialize     and the following variables:

( )0 0y y x←

Calculate:

( )0 0y y x′ ′←

i=1, N

( )1 1 1 1

1
, ,

2 i i ik hf x y y− − −′←

1 1

1 1

2 2iK h y k−
 ′← + 
 

2 1 1 1 1

1 1
, ,

2 2i i ik hf x h y K y k− − −
 ′← + + + 
 

3 1 1 1 2

1 1
, ,

2 2i i ik hf x h y K y k− − −
 ′← + + + 
 

1 3

1

2iL h y k−
 ′← + 
 

( )4 1 1 1 3

1
, , 2

2 i i ik hf x h y L y k− − −′← + + +

Calculate the solution at    :ix

1i ix x h−← +

( )1 1 1 2 3

1

3i i iy y h y k k k− −
 ′← + + + + 
 

( )1 1 2 3 4

1
2 2

3i iy y k k k k−′ ′← + + + +

END

0x

 
Figure B.1 – Runge-Kutta-Nyström algorithm. 
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A P P E N D I X  C  

H A R D E N I N G / S O F T E N I N G  L A W  F O R  C O N C R E T E  

 
The expression that defines the hardening behavior is the following (see also Figure 4.21) 
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The first branch of the softening phase is defined by 
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and 
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The second branch of the softening phase is defined by 
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where 
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and 
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(C.7) 

 

Finally, 1cε  is the strain at the uniaxial peak compressive stress, cf , and cE  is the initial 

Young's modulus of concrete. 

 



 

A P P E N D I X  D  

C O N S I S T E N T  T A N G E N T  O P E R A T O R  

 
The derivation of the consistent tangent constitutive matrix requires the determination of 

the total differentials ndσ , p
ndε  and ndf  (Simo and Hughes 1988), obtained from the 

constitutive equation (4.72), the plastic flow (4.79) and the yield condition (4.73), 

respectively, resulting 
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Incorporating equation (D.2) into (D.1) yields 
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Including equation (D.4) in equation (D.3), results 
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and assuming the strain hardening hypotheses ( d dλ κ= ), leads to 
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Substituing this equation into (D.4) yields 
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or 
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where h  is the hardening modulus. Finally, the consistent tangent stiffness matrix, epD , is 

given by 
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 ∂ ∂
 ∂ ∂ = −

 ∂ ∂+  ∂ ∂ 

 (D.10) 

 


