NEUROCIENCIAS Y PSICoterapia: RETORNO A LO BÁSICO

Óscar F. Gonçalves, João Cerqueira, Cármen Guimarães, Jenniffer Belpalme, Líliana Amorim, Manuela Peixoto y Nuno Sousa
Universidad de Minho

Cognitive neuroscience research has been recently advanced as central for a scientific foundation of psychotherapeutic treatment. In fact, understanding how the maintenance, survival or neurological change is mediated psychological processes, is fundamental for advancing our knowledge about the mechanisms of psychotherapy treatment. This study is an attempt to bring psychotherapy closer to neurocognitive research in order to foster understanding on the neurobiological effects of therapeutic equivalent tasks in reverting the effects of chronic stress. More specifically, this study aims: (1) To compare spatial working memory and behavioral flexibility performances in groups of adult rats submitted to chronic unpredictable stress and age-matched controls; and (2) To test the modulatory effects of a cognitive treatment-equivalent task intended to counteract the effects of chronic unpredictable stress. The results confirm that stress impairs reference memory as well as spatial working memory and reversal learning tasks. More importantly, this study also demonstrates that the detrimental effects of stress on spatial working memory can be attenuated by a cognitive treatment equivalent task introduced in the late phase of the stress exposure, an effect that seems to be group (i.e., stressed animals) and task specific (i.e. spatial working memory).

Keywords: cognitive neuroscience, psychotherapy, stress, research, spatial working memory.

En los años que siguieron a la II Guerra Mundial, la medicina pasó de ser un arte práctico a ser una disciplina científica basada en la biología molecular. Durante el mismo período la psiquiatría paso de ser un disciplina médica a ser un arte de práctica terapéutica (Kandel, 1998, p. 457).

INTRODUCCIÓN

La psicoterapia se ha definido a menudo como un tratamiento que utiliza procesos psicológicos (por ejemplo, conductuales, cognitivos, afectivos o
interpersonales) a fin de remediar o rehabilitar síntomas o condiciones propias de diferentes trastornos psicológicos. La psicoterapia se introdujo inicialmente como un tratamiento psiquiátrico durante la última década del siglo XIX cuando los conocimientos sobre el funcionamiento psicológico y neurobiológico eran todavía incipientes. Por tanto, no sorprende que los primeros modelos psicoterapéuticos se basaran en suposiciones teóricas hipotéticas carentes de cualquier fundamento empírico o científico.

La ausencia de restricciones empíricas y científicas fue un terreno fértil para el auge y declive de cientos de modelos psicoterapéuticos, cada uno con sus premisas sobre los mecanismos psicopatológicos y del cambio y terapéutico. Durante la mayor parte del siglo XX nuestro ámbito ha sido testigo de una progresiva “balcanización” de la psicoterapia (Ilardi & Feldman, 2001). Ha sido una época de diferenciación caótica entre tratamientos que no ha ido acompañada de avances significativos en el conocimiento de los mecanismos de cambio terapéutico.

Un tema común al desarrollo de la gran mayoría de las psicoterapias fue el veredicto cartesiano que establecía una clara división entre los mecanismos psicológicos y los biológicos. La psicopatología y la psicoterapia eran concebidas como fenómenos exclusivamente psicosociales. Los procesos psicológicos se contemplaban como variable dependiente y simultáneamente independiente del proceso de tratamiento, relegando a la biología a un rol de variable parásita que debía ser o ignorada o controlada.

Nosotros creemos que este movimiento en contra de los fundamentos neurobiológicos fue la causa central de la “balcanización” de la psicoterapia. Tal como sucede a menudo en el caso de ciencias incipientes e inmaduras, la proliferación de modelos correlaciona con su falta de fundamentos operacionales (Kuhn, 1962).

Dada la falta de cualquier fundamento científico de los mecanismos del cambio, la credibilidad de la psicoterapia debía basarse en algún tipo de explicación de la eficacia de los tratamientos. Durante el final del siglo XX, los psicoterapeutas empezaron a constatar que el prolífico mundo de las psicoterapias tendría que ser regulado mediante la definición de “tratamientos con apoyo empírico” (cf., Hamilton & Dobson, 2001). Aún así, la validación empírica de los tratamientos mediante “estudios clínicos aleatorios”, si bien importante para el establecimiento de la eficacia del tratamiento, deja todavía sin resolver la clave para el establecimiento de la credibilidad científica de la psicoterapia: ¿cúales son los mecanismos de cambio terapéutico? (cf., Tyron, 2005).

Curiosamente, la psicoterapia parece estar siguiendo un camino similar al iniciado por la psicofarmacología hace más de 50 años. Recordemos que los efectos terapéuticos de los primeros fármacos psiquiátricos fueron descubiertos por accidente, mucho antes de comprender sus características farmacodinámicas. Casi todos los precursores de los actuales antipsicóticos, antidepresivos, estabilizadores del estado de ánimo y tranquilizantes (por ejemplo la clorpromacina, la iproniazida,
la imipramina, el lítio o el meprobamato) se introdujeron antes de conocer sus mecanismos bioquímicos (Valenstein, 1988). Tal como sucede en la psicoterapia, la credibilidad de los tratamientos psicofarmacológicos se estableció mediante la evaluación de su eficacia a través de pruebas clínicas. Sólo recientemente la psicofarmacología ha avanzado en la dirección del diseño de fármacos basado en una creciente comprensión científica de sus efectos sobre el sistema nervioso y sobre cómo estos efectos pueden mitigar los síntomas de los trastornos psicológicos.

Sin embargo, el diseño de tratamientos eficaces, tanto psicofarmacológicos como psicoterapéuticos, siempre se enfrenta a las limitaciones de nuestra comprensión actual sobre los mecanismos patogénicos de los diferentes trastornos psicológicos. Es decir, el desarrollo de tratamientos psicoterapéuticos y psicofarmacológicos dependerá del avance de nuestro conocimiento en dos campos: los mecanismos patogénicos de los trastornos psicológicos y los mecanismos terapéuticos del cambio psicológico.

Durante la última década, la investigación en busca de una mejor comprensión de los mecanismos patogénicos y psicoterapéuticos, ha hecho que la psicología y la biología se aproximen a un mismo campo—las neurociencias cognitivas. Las neurociencias cognitivas representan un esfuerzo transdisciplinar cuyo objetivo es proporcionar una comprensión más completa de la interdependencia de los mecanismos neurobiológicos y los procesos cognitivos. Es gracias a estos esfuerzos que ha mejorado nuestro conocimiento de la base neurobiológica de procesos psicológicos tales como la percepción, la atención, el aprendizaje, la memoria, el lenguaje y la emoción. Sin embargo, probablemente la contribución más fundamental en la ciencia neurocognitiva ha sido la demostración de que “lo genético” y “lo ambiental” están interrelacionados bidireccionalmente y que la activación de procesos psicológicos es una precondición para la ocurrencia de cambios funcionales y estructurales en el sistema nervioso. En otras palabras, los procesos psicológicos son los factores que sustentan la génesis, desarrollo, supervivencia y plasticidad neuronal (cf., Prickaert et al, 2004). En resumen, actualmente estamos en condiciones de comprender que los procesos psicológicos no sólo están interrelacionados con los sistemas neurobiológicos, sino que median en el mantenimiento, la supervivencia o el cambio neurológico.

La experimentación animal y los estudios de neuroimagen funcional han hecho avanzar considerablemente nuestra comprensión de los efectos neuronales de toda una serie de procesos psicológicos. Estas investigaciones han abierto el camino a una perspectiva de la psicoterapia radicalmente nueva. La psicoterapia puede contemplarse como la génesis de cambios neuronales mediante procesos psicológicos. Es decir, podríamos concebir la psicoterapia como un procedimiento de tratamiento neurocognitivo.

Una implicación directa de esta evolución es la progresiva aproximación de los tratamientos biológicos y psicológicos como dos caras de una misma moneda.
Mientras que la psicofarmacología es un proceso de intervención directa sobre mecanismos neurobiológicos para fomentar la promoción del cambio psicológico, la psicoterapia se basa fundamentalmente en el cambio directo de los procesos psicológicos como condición para un cambio neurobiológico duradero. En último término ambas son intervenciones simultáneamente neuronales y cognitivas. Probablemente uno de los mejores ejemplos de investigaciones iniciales que demostraron cómo la psicoterapia y la psicofarmacología operan a través de mecanismos neurocognitivos similares, fue el estudio de Schwartz (1998) que demostraba que los patrones disfuncionales específicos de activación neuronal propios del trastorno obsesivo-compulsivo (localizados en la corteza orbitofrontal, el giro del cíngulo y el núcleo caudado) podían modificarse mediante un tratamiento eficaz — fuese psicoterapia o fármacos inhibidores selectivos de la recaptación de la serotonina. Tal como remarcó Kandel (1998) la psicoterapia produce cambios estructurales, moleculares y genéticos en el cerebro. En este sentido, la agenda de la investigación en psicoterapia del futuro debería incluir el estudio de la relación entre los procesos de tratamiento psicológico específicos y sus efectos neurobiológicos.

El estudio que presentamos a continuación, basado en investigación animal llevada a cabo en nuestro laboratorio de neurociencias, consiste en un intento de aproximar la psicoterapia a la investigación básica para fomentar la comprensión de los procesos neurobiológicos de normalización de los efectos del estrés crónico de tareas análogas a las terapéuticas.

La exposición al estrés se ha identificado como un factor precipitante en la génesis de diversos trastornos neuropsiquiátricos, incluyendo la depresión y la esquizofrenia (Altamura et al., 1999; McEwen, 2000; Barden, 2004; Charney & Manji, 2004). Curiosamente, las disfunciones de la corteza prefrontal son también típicas de estas condiciones, y causan problemas en funciones ejecutivas tales como la flexibilidad conductual y la memoria de trabajo. Recientemente, algunos estudios han sugerido que la estructura y función de la corteza prefrontal pueden verse influidas por los corticoesteroideos y el estrés (Mizoguchi et al., 2000; Cerqueira et al., 2005). Varios autores postulan que intervenciones naturales, incluyendo tareas concomitantes, pueden atenuar los efectos del daño neuronal en estos casos. Con todo, no nos consta que haya habido ningún intento sistemático de comprobar esta hipótesis. El objetivo central de este estudio es evaluar los efectos de una tarea terapéutica análoga en la normalización de los daños producidos por el estrés crónico impredecible. Específicamente, el estudio pretende: (1) comparar la memoria de trabajo espacial y la flexibilidad conductual en la ejecución de tareas en un grupo de ratas adultas sometidas a estrés crónico impredecible y un grupo control de ratas de la misma edad; y (2) comprobar los efectos moduladores de una tarea análoga al tratamiento cognitivo que pretende contrarrestar los efectos del estrés crónico impredecible.
MÉTODO

Animales
Los experimentos se llevaron a cabo cumpliendo las normativas locales (Directiva 86/609/EEC de la Unión Europea) y las directrices del National Institute of Health referentes al cuidado y la experimentación animal. Las ratas utilizadas fueron Wistar macho (Laboratorios Charles River, Barcelona) que convivieron en grupos de 3 a 4 en condiciones de laboratorio estándar (luces entre las 8:00 y las 20:00; sala a 22°C de temperatura, acceso ad libitum a comida y bebida).

Tarea de estrés
El paradigma de estrés crónico impredecible se inició cuando los animales tenían 8 semanas de vida y continuó durante un período de cuatro semanas tras la cual se llevaron a cabo pruebas de conducta. Consistió en aplicar uno de diversos estresores (un estresor por día) en orden aleatorio. Los estresores fueron: inyección salina hipertónica (9% NaCl; 1.0 ml/100 g), hacinamiento (1 hora), restricción de movimiento (30 min) y ubicación en una plataforma vibrante/oscilante (1 hora). Tal como se había demostrado con anterioridad, este régimen tuvo como resultado niveles plasmáticos de corticosterona crónicamente elevados (Sousa et al., 1998).

Tarea análoga de tratamiento cognitivo
La tarea análoga de tratamiento cognitivo consistió en entrenar a los animales mediante el paradigma del tablero con hoyos. Esta tarea se introdujo durante la última semana de exposición al estrés. El tablero de hoyos se compone de un terreno cuadrado de PVC, que contiene diversos hoyos equidistantes (de 3.5 cm de diámetro y 3 cm de profundidad) en su base (Oades, 1981). Cada hoyo estaba provisto de virutas de queso y cubierto por un falso suelo perforado reemplazable que enmascaraba la posible entrada de olores procedentes de la recompensa de los hoyos con cebo. De esta forma las ratas no podían discriminar entre los hoyos con o sin cebo en el tablero de hoyos usando pistas olfativas como guía durante la fase de entrenamiento de la prueba. El tablero con hoyos se situó en una sala iluminada y tenue que contenía una serie de pistas visuales extra para fomentar la orientación espacial. Antes del entrenamiento se familiarizó a las ratas con las virutas de queso en sus jaulas. Puesto que todas las ratas se comían las virutas con presteza, no se las sometió a privación de comida antes del procedimiento del tablero con hoyos. Posteriormente las ratas fueron habituadas al tablero mediante dos entrenamientos de 3 minutos durante 5 días consecutivos. Durante este período de habituación todos los hoyos tenían como cebo una viruta de queso accesible. El entrenamiento se iniciaba colocando a la rata sobre el tablero. Entre cada uno de los dos ensayos se limpiaba el suelo de la caja y el tablero de hoyos. Después del período de habituación se exponía a los animales a dos entrenamientos diarios, uno por la
mañana y uno por la tarde (con un intervalo entre entrenamientos de 3h) en cinco
días consecutivos. Se consideraba completa una visita a un hoyo cuando la rata
introducía su hocico en él. Las visitas a los hoyos se registraban manualmente
usando un dispositivo de registro asistido por ordenador. El entrenamiento finalizaba
o bien cuando habían pasado 3 minutos sin que la rata se hubiera comido todas las
virutas, o bien cuando había localizado y consumido todas las virutas de los hoyos.

Condiciones de tratamiento

Siguiendo los procedimientos experimentales, las ratas fueron asignadas a uno
de cuatro grupos de tratamiento (n = 10): (i) controles (CONT); (ii) control + tarea
(CONT+TAREA); (iii) estrés crónico impredecible (ECI); y (iv) estrés crónico +
tarea (ECI+TAREA).

Pruebas conductuales

Usamos un tanque negro octogonal de 170 cm de diámetro lleno de agua hasta
una profundidad de 31 cm (a 22°C), situado en una sala iluminada tenuemente con
varias pistas extrínsecas. El tanque estaba dividido en cuadrantes imaginarios y
tenía una plataforma negra (de 12 cm diámetro y 30 cm de altura) situada en uno de
ellos. Los datos se grabaron utilizando una cámara de video fijada al techo y
conectada a un sistema de encuadre automático (Viewpoint, Francia).

Tarea de memoria de trabajo. Fue descrita por Kesner (2000) como una
prueba de la función de la corteza prefrontal: su objetivo es evaluar la habilidad de
las ratas para aprender la posición de la plataforma sumergida después de 4
entrenamientos consecutivos y saber localizarla. Las pruebas se llevaron a cabo
durante cuatro días y cada día se colocó la plataforma en una nueva posición en un
cuadrante diferente. Si un animal no conseguía alcanzar la plataforma en menos de
2 minutos, el experimentador lo guiaba hasta ella. En ese caso se dejaba descansar
al animal en la plataforma durante 30 segundos y luego se le llevaba directamente
da la siguiente posición de salida sin abandonar el tanque de agua. La longitud del
camino descrito nadando y el tiempo utilizado para llegar a la plataforma (latencia
de escape) se grababan en los entrenamientos consecutivos.

Tarea de inversión de aprendizaje. Después del procedimiento de memoria de
trabajo la plataforma se mantuvo en el mismo cuadrante durante 2 días más para
asegurarse de que las ratas habían aprendido la posición fija de la plataforma antes
de iniciar el aprendizaje invertido descrito por Bruin et al. (1994). La plataforma de
salvamento se colocó entonces en una nueva localización (en el cuadrante opuesto)
y las ratas fueron expuestas de nuevo a un entrenamiento de 4 sesiones, similares
todas las descritas previamente. Grabamos la distancia y el tiempo dedicado a nadar en
cada cuadrante.
Análisis estadístico

Los resultados se expresan como medias grupales ± error típico. El rendimiento de la tarea de memoria de trabajo se analizó utilizando un ANOVA de medidas repetidas de los resultados medios de cada entrenamiento (a lo largo de los 4 días). A los resultados del sexto día se les aplicó un ANOVA unidireccional para verificar si la condición de aprendizaje basal era similar antes del cambio conductual. Los resultados de la tarea de inversión de aprendizaje se analizaron mediante un ANOVA unidireccional. La prueba de Tukey de la diferencia honestamente significativa se aplicó post-hoc para verificar si las medias diferían significativamente entre sí. Las diferencias se consideraron significativas si p<0.05.

RESULTADOS

Tarea de memoria de trabajo espacial

El análisis de las curvas de aprendizaje de la tarea de memoria de trabajo espacial en cuanto a la distancia recorrida a nado (Figura 1) revela un efecto de tratamiento significativo (F(3,36)=7.331; p=0.01). Las ratas expuestas a estrés tenían perjudicada su capacidad de aprender y nadaban distancias más largas en el segundo, tercer y cuarto entrenamiento comparadas con el grupo control (p=0.001), control + tarea (p=0.002) y estrés + tarea (p=0.03). Entre estos tres grupos no había diferencias significativas.

Tarea de inversión de aprendizaje

El día antes de la tarea invertida (día 6) todas las ratas habían aprendido la posición de la plataforma y estaban ejecutando la tarea con el mismo éxito. El análisis del porcentaje de la distancia nadada en cada cuadrante en la prueba de aprendizaje invertido (Figura 1) no reveló diferencias entre grupos de tratamiento en ninguno de los cuadrantes neutrales (Oeste: F(3,36)=0.746; p=0.532 y Este: F(3,36)=0.866; p=0.468) ni en el cuadrante Sur (dónde había estado la plataforma durante los tres días anteriores (Sur: F(3,36)=1.895; p=0.148). Sin embargo, en el cuadrante Norte (la nueva localización de la plataforma), se observó un efecto de tratamiento significativo (Norte: F(3,36)=3.56; p<0.025). Los controles aprendieron rápidamente la localización de la nueva plataforma, comparados con los grupos con estrés (p<0.05) y con estrés + T (p<0.05). La introducción de la tarea del tratamiento análoga no influyó de forma significativa en el desarrollo de la tarea entre los grupos con estrés en el aprendizaje invertido.

CONCLUSIONES

La memoria de trabajo, definida como la habilidad de retener de forma transitoria la información que puede usarse para guiar las acciones subsecuentes (Goldman-Rakic, 1995), es una función característica de la corteza prefrontal. Este
Figura 1: Resultados de las pruebas conductuales.
A—Curva de aprendizaje de la tarea de memoria de trabajo. Nótese las distancias más largas recorridas por las ratas expuestas a estrés. C—Resultados de la tarea de inversión: distancia media recorrida en los 4 entrenamientos en cada cuadrante imaginario como porcentaje total de la distancia nadada. CON—controles; CON + TASK—controles + tarea; CUS—estrés crónico impredecible; CUS + TASK—animales estresados con tarea. *p<0.05 vs. cada uno de los otros grupos. Las barras representan el error típico de la media.
concepto desarrollado originalmente a partir de estudios con humanos y otros primates (Greenlee et al., 2000; Petrides, 2000; Rowe and Passingham, 2001), ha sido evaluado rigurosamente en ratas mediante varias tareas incluido el laberinto de brazo radial (Fritts et al., 1998), una tarea en un laberinto en forma de T (Dias and Aggleton, 2000), una tarea de respuesta aplazada (Mizoguchi et al., 2000) o la versión de memoria espacial de trabajo del laberinto de agua de Morris (Kesner, 2000). Todas estas tareas implican la manipulación de la información antes de que el sujeto sea evaluado en cuanto a su habilidad de dar una respuesta conductual apropiada y contrastan con tareas de memoria a corto plazo sencillas que requieren el reconocimiento y recuerdo y que no quedan afectadas por los daños en la corteza prefrontal (Lacroix et al., 2002). Es importante advertir que algunos autores mantienen que el laberinto de agua de Morris para evaluar la memoria de trabajo no es capaz de discriminar entre los problemas en la memoria de trabajo dependiente de la corteza prefrontal y los déficits de memoria a corto plazo independientes de ella (Lacroix et al., 2002). Esta posible limitación se puede superar si se aplican pruebas de flexibilidad de respuesta. En dichas pruebas, los sujetos con daños en la corteza prefrontal no perciben ni se adaptan a las nuevas pistas de información y utilizan de forma persistente estrategias conductuales basadas en viejas reglas que ya no son aplicables (Salazar et al., 2004).

La consideración combinada de los resultados obtenidos en las tareas de memoria espacial y de inversión de aprendizaje ofrece una interesante perspectiva sobre el papel de los corticosteroides en las funciones dependientes de la corteza prefrontal. Nuestros resultados confirman que el estrés daña la memoria de referencia (Sousa and Almeida, 2002) así como la memoria de trabajo espacial y las tareas de inversión de aprendizaje (Cerqueira et al., documento no publicado). Este estudio también demuestra que los efectos perjudiciales para la memoria de trabajo espacial pueden ser atenuados por una tarea de tratamiento cognitivo análoga introducida en la última fase de la exposición al estrés. Un resultado interesante es que la tarea de tratamiento análogo no mejoró el rendimiento de los animales control ni tampoco afectó a la tarea de inversión de aprendizaje de los animales estresados. Esto sugiere que el beneficio debido a la tarea sólo se observa en las pruebas que evaluán específicamente el mismo componente de memoria implicado en la tarea. En otras palabras, podemos especular que la introducción de una tarea concreta puede mejorar los efectos de daños previos pero sólo en los sistemas neuronales que son activados por la tarea.

Tomando en consideración que la activación de los sistemas neuronales o, en términos más simples, el aprendizaje, dispara diversos mecanismos celulares y moleculares que facilitan el flujo de información a través de estas redes neuronales, se puede proponer que contrarrestarán los efectos neurodegenerativos que afecten a dichos circuitos neuronales. Conforme a esto, los “efectos terapéuticos” resultados de la presentación de un reto cognitivo parecen estar limitados a aquellos circuitos
que se utilizan para llevar a cado la función de la que se trate. En conclusión, el enfoque experimental neurocientífico proporciona nuevos datos sobre la influencia de las intervenciones naturales que modulan los efectos del funcionamiento cerebral inducidos por el estrés, pudiendo en consecuencia resultar relevante para la patogenia y resolución de diversos trastornos neuropsiquiátricos.

La investigación en neurociencias cognitivas ha avanzado recientemente hasta alcanzar un lugar primordial en la búsqueda de un fundamento científico para el tratamiento psicoterápico. De hecho, la comprensión de cómo el mantenimiento, la supervivencia o el cambio neuroanalítico está mediado por procesos psicológicos es fundamental para avanzar nuestro conocimiento sobre los mecanismos de la psicoterapia. Este estudio es un intento de aproximarse a la psicoterapia a la investigación neurocognitiva y tiene como objetivo fomentar la comprensión de los procesos neurobiológicos de reversión de los efectos del estrés crónico mediante técnicas análogas a las terapéuticas. En concreto, sus objetivos son: (1) comparar la memoria de trabajo espacial y la flexibilidad conductual en la ejecución de tareas en un grupo de ratas adultas sometidas a estrés crónico impredecible y un grupo control de ratas de la misma edad; y (2) comprobar los efectos moduladores de una tarea análoga al tratamiento cognitivo que pretende contrarrestar los efectos del estrés crónico impredecible. Los resultados confirman que el estrés daña la memoria de referencia así como la memoria de trabajo espacial y las tareas de inversión de aprendizaje. Más aún, este estudio demuestra también que los efectos perjudiciales del estrés sobre la memoria de trabajo espacial pueden ser atenuados por una tarea análoga a un tratamiento cognitivo introducida en la última fase de la exposición al estrés, efecto que parece específico del grupo (animales estresados) y de la tarea (memoria de trabajo espacial).

Palabras clave: neurociencias cognitivas, psicoterapia, estrés, memoria de trabajo espacial.

Referencias bibliográficas

