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Abstract. We study some well-posedness issues of the initial value problem (IVP)
associated to the equation

ut + uxxx + ηLu + uux = 0, x ∈ R, t ≥ 0, (?)

where η > 0, L̂u(ξ) = −Φ(ξ)û(ξ) and Φ ∈ R is bounded above
Using the theory developed by Bourgain and Kenig Ponce and Vega, we prove

that the IVP associated to (?) is locally well-posed for given data in Sobolev spaces
Hs(R) with regularity below L2. Examples of the model (?) are the Ostrovsky-
Stepanyams-Tsimring equation for Φ(ξ) = |ξ| − |ξ|3, the derivative Korteweg-de
Vries-Kuramoto-Sivashinsky equation for Φ(ξ) = ξ2−ξ4 and the Korteweg-de Vries-
Burguers equation for Φ(ξ) = −ξ2.

1. Introduction

In this paper we consider the initial value problem (IVP){
ut + uxxx + ηLu+ uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1.1)

where η > 0 is a constant and the linear operator L is defined via the Fourier transform

by L̂u(ξ) = −Φ(ξ)û(ξ).

The Fourier symbol

Φ(ξ) =
n∑

j=0

2m∑
i=0

ci,jξ
i|ξ|j, ci,j ∈ R, c2m,n = −1. (1.2)

is a real valued function which is bounded above, i.e., there is a constant C such that

Φ(ξ) < C. Without loss of generality, we can suppose that Φ(ξ) < 1. For this, let us
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perform the following scale change

v(x, t) =
1

λ2
u
(x
λ
,
t

λ3

)
.

Then v satisfies the equation

λ3vt + λ3vxxx + ηTv + λ3vvx = 0, (1.3)

where

T̂ v(ξ) = Φ(λξ)v̂(ξ).

If we take λ3 = C, where C is as earlier, then the Fourier symbol of the new oper-

ator T in (1.3) is bounded above by 1. Finally, inverting the scale change, we obtain

well-posedness result for the original IVP (1.1) from that of (1.3). So, throughout

this work we consider the IVP (1.1) with Φ(ξ) in (1.2) satisfying Φ(ξ) < 1.

Our interest here is to obtain well-posedness results to the IVP (1.1) for given data

u0 in Sobolev spaces Hs(R) with regularity below L2. The L2-based Sobolev space

Hs(R) is defined by

Hs(R) := {f ∈ S′(R) : ‖f‖Hs <∞},

where

‖f‖2
Hs =

∫
R
(1 + |ξ|2)s|f̂(ξ)|2dξ,

and f̂(ξ) is the usual Fourier transform given by

f̂(ξ) ≡ F(f)(ξ) =
1√
2π

∫
R
e−ixξf(x) dx.

However, from here onwards, we will neglect the factor 2π in the definition of the

Fourier transform because it does not alter our analysis.

Also, we consider the homogeneous Sobolev space Ḣs(R) defined via the norm

‖f‖2
Ḣs =

∫
R
|ξ|2s|f̂(ξ)|2dξ.

Before stating the main results of this work, we give some examples that belong

to the class considered in (1.1).

The first example of this type of equations is the generalized Ostrovsky-Stepanyams-

Tsimring (OST) equation.{
ut + uxxx − η(Hux + Huxxx) + ukux = 0, x ∈ R, t ≥ 0, k ∈ Z+,

u(x, 0) = u0(x),
(1.4)
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where H denotes the Hilbert transform.

Hg(x) = P.V.
1

π

∫
g(x− ξ)

ξ
dξ,

u = u(x, t) is a real-valued function and η > 0 is a constant.

Equation (1.1) with k = 1 was derived by Ostrovsky et al. in [17] to describe the

radiational instability of long waves in a stratified shear flow. Recently, Carvajal and

Scialom in [6] considered the IVP (1.4) and proved the local well-posedness results

for given data in Hs, s ≥ 0 when k = 1, 2, 3. They also obtained the global well-

posedness result for data in L2 when k = 1. The earlier well-posedness results for the

IVP (1.4) with k = 1 can be found in [1], where for given data in Hs(R), local result

when s > 1/2 and global result when s ≥ 1 have been obtained.

Another model that fits in the class (1.1) is the derivative Korteweg-de Vries-

Kuramoto Sivashinsky equation{
ut + uxxx + η(uxx + uxxxx) + uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1.5)

where u = u(x, t) is a real-valued function and η > 0 is a constant.

This equation arises as a model for long waves in a viscous fluid flowing down an

inclined plane and also describes drift waves in a plasma (see [8, 18]). The equation

(1.5) is a particular case of Benney-Lin equation [2, 18], i.e.{
ut + uxxx + η(uxx + uxxxx) + βuxxxxx + uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1.6)

when β = 0.

The IVP associated to (1.5) was studied by Biagioni, Bona, Iorio and Scialom in

[3]. They also determined the limiting behavior of solutions as the dissipation tends

to zero. Biagioni and Linares proved global well-posedness for the IVP (1.6) for initial

data in L2 in [4].

Another example is the Korteweg-de Vries-Burguers equation{
ut + uxxx − ηuxx + uux = 0, x ∈ R, t ≥ 0, η > 0,

u(x, 0) = u0(x),
(1.7)

Recently, Molinet and Ribaud considered the IVP (1.7) in [15] and proved that it

is locally well-posed for given data in Hs, s > −1. The equation (1.7) is also known

as the parabolic regularization of the KdV equation with η > 0. Some years ago,
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when the interest was to obtain local results for given data in larger Sobolev spaces,

this regularization was used to obtain well-posedness results for η > 0 and then pass

the limit η ↓ 0. However, this limit is a delicate matter.

Now, we state the main results of this work. The first result deals with the local

well-posedness for given data in the Sobolev spaces of negative index.

Theorem 1.1. The IVP (1.1) with η > 0 and Φ(ξ) given by (1.2) is locally well-posed

for any data u0 ∈ Hs(R), s > −3/4.

To prove this theorem we follow the theory developed by Bourgain [5] and Kenig,

Ponce and Vega [11]. The main ingredients in the proof are estimates in the integral

equation associated to an extended IVP that is defined for all t ∈ R (see IVP (1.12)

below). The proof we presented here does not use the Bourgain type space associ-

ated to the linear part of the IVP (1.1); instead it uses the usual Bourgain space

associated to the KdV equation. To carry out this scheme, the Proposition 2.2 plays

a fundamental role which permits us to use a bilinear estimate for ∂x(u
2) (see [11]),

that is a central part of our arguments.

The result of the Theorem 1.1 improves the known local well-posedness results for

the IVP (1.4) and (1.5) described above. Note that, the value s > −3/4, in the case

of the Korteweg-de Vries (KdV) equation, is sharp in the sense that for s < −3/4,

the IVP associated to the KDV equation is ill-posed. We should mention that, the

lack of conserved quantities in the spaces with regularity below L2, prevents us to get

global solution using the usual technique.

The second result is concerned with the particular case of the IVP (1.1) for given

data in the homogeneous Sobolev space when the Fourier symbol is of the form

Φ(ξ) = |ξ|k − |ξ|k+2, k ∈ Z+.

Theorem 1.2. The IVP (1.1) with η > 0 and Φ(ξ) = |ξ|k − |ξ|k+2, k ∈ Z+, is locally

well-posed for any data u0 ∈ Ḣs(R), s > −1/2.

Although this theorem does not improve the result obtained in Theorem 1.1, it

is interesting on its own because the proof we present here uses different tools, that

are simpler than the ones used in the proof of Theorem 1.1. The main ingredients

in the proof are the refined local smoothing effect (see (3.4) in Corollary 3.2 below),

and a Strichartz type estimate (see Proposition 4.1 below). Using these estimates
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we are able to apply fixed point argument to obtain a local well-posedness result in

the homogeneous Sobolev spaces of negative order without the use of Bourgain type

spaces.

Now we introduce function spaces that will be used to prove the Theorem 1.1. We

consider the following IVP associated to the Linear KdV equation{
ut + uxxx = 0, x, t ∈ R,
u(0) = u0.

(1.8)

The solution to the IVP (1.8) is given by u(x, t) = U(t)u0(x), where the unitary group

U(t) is defined as

Û(t)u0(ξ) = eitξ3

û0(ξ). (1.9)

For s, b ∈ R, we define the space Xs,b as the completion of the Schwartz space S(R2)

with respect to the norm

‖u‖Xs,b
≡ ‖U(−t)u‖Hs,b

:=‖〈τ〉b〈ξ〉sÛ(−t)u(ξ, τ)‖L2
τ L2

ξ

=‖〈τ − ξ3〉b〈ξ〉sû(ξ, τ)‖L2
τ L2

ξ,
(1.10)

where û(ξ, τ) is the Fourier transform of u in both space and time variables. The

space Xs,b is the usual Bourgain space for the KdV equation (see [5]).

Note that, the IVP (1.1) is defined only for t ≥ 0. To use Bourgain’s type space,

we should be able to write the IVP (1.1) for all t ∈ R. For this, we define

η(t) ≡ η sgn(t) =

{
η if t ≥ 0,

−η if t < 0
(1.11)

and write the IVP (1.1) in the following form{
ut + uxxx + η(t)Lu+ uux = 0, x, t ∈ R,
u(0) = u0.

(1.12)

Now we consider the IVP associated to the linear part of (1.12){
ut + uxxx + η(t)Lu = 0, x, t ∈ R,
u(0) = u0.

(1.13)

The solution to (1.13) is given by u(x, t) = V (t)u0(x) where the semigroup V (t) is

defined as

V̂ (t)u0(ξ) = eitξ3+η|t|Φ(ξ)û0(ξ). (1.14)
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Observe that, defining Ũ(t) by
̂̃
U(t)u0(ξ) = eη|t|Φ(ξ)û0(ξ), the semigroup V (t) can

be written as V (t) = U(t)Ũ(t) where U(t) is the unitary group associated to the KdV

equation (see (1.9)).

This paper is organized as follows: In Section 2, we prove Theorem 1.1. In Section

3, we present a refined local smoothing effect when Φ(ξ) = |ξ|k − |ξ|k+2, k ∈ Z+, in

(1.2). In Section 4, we to obtain some Stricharz type estimates. In Section 5, we

prove Theorem 1.2.

2. Local Well-posedness in Hs for s > −3/4

This section is devoted to supply the proof of the Theorem 1.1. We start by proving

some preliminary results.

2.1. Preliminary estimates.

Proposition 2.1. Let s > −3
4
. There exist b′ ∈ (−1

2
, 0) and εs > 0 such that for any

b ∈ (1
2
, b′ + 1] with 1− b+ b′ ≤ εs, and u, v ∈ Xs,b

‖(uv)x‖Xs,b′
≤ c ‖u‖Xs,b

‖v‖Xs,b
.

Proof. See [11]. �

We consider a cut-off function ψ ∈ C∞(R), such that 0 ≤ ψ(t) ≤ 1,

ψ(t) =

{
1 if |t| ≤ 1,

0 if |t| ≥ 2.
(2.1)

Let us define ψT (t) ≡ ψ( t
T
) and ψ̃T (t) = sgn(t)ψT (t).

The following Proposition plays a central role in the proof of our first main result,

the Theorem 1.1. This Proposition allows us to work in the usualXs,b space associated

to the KdV equation instead of the Bourgain space associated to the IVP (1.12).

Proposition 2.2. Let −1/2 < b′ ≤ 0, T ∈ [0, 1]. Then for all ε ≥ 3(b− 1/2) we have

‖ψ(t)V (t)u0‖Xs−ε,b
≤ c‖u0‖s. (2.2)

If 1/2 < b ≤ b′/3 + 2/3, s ∈ R then

‖ψT (t)

∫ t

0

V (t− t′)(uux)(t
′)dt′‖Xs,b

≤ c T 1+b′/2−3b/2‖uux‖Xs,b′
, (2.3)

where c is a constant.
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Before providing proof of this Proposition, we record the following results.

Lemma 2.1. Let 1/2 < b < 1 and a < 1 then

‖ψT (t)‖Hb
t
≤ c(T 1/2 + T 1/2−b), (2.4)

‖ψT (t) ea|t|‖Hb
t
≤

c
(

T
|a|

)1/2〈
1
T

〉b

〈a〉b if a < 0,

T 1/2
〈
〈T 〉
T b

〉
if 0 ≤ a < 1.

(2.5)

|F(|t|ψT (t) ea|t|)(τ)| ≤ c T 2

1 + (τ 2 + a2)T 2
, (2.6)

|F(|t| ψ̃T (t) ea|t|)(τ)| ≤ c T 2

1 + (τ 2 + a2)T 2
, (2.7)

where c is a constant independent of T and a.

Proof. Using the definition of Hb space we have

‖ψT (t)‖Hb
t
≤ c ‖ψT‖L2 + c ‖Db

tψT‖L2 = cT 1/2‖ψ‖L2 + cT 1/2−b‖Db
tψ‖L2 ,

where we used that ĥ(t/T )(τ) = T ĥ(T τ).

If a < 0 and b > 1/2 we get

‖ψT (t) ea|t|‖Hb
t
≤ c ‖ψT (t)‖Hb

t
‖e−|at|‖Hb

t
≤ c (T 1/2 + T 1/2−b)(|a|−1/2 + |a|b−1/2),

and if 0 ≤ a < 1

‖ψT (t) ea|t|‖Hb
t
≤ c T 1/2‖ψ‖L2 + c‖Db

t (ψT (t) ea|t|)‖L2 ≤ c (T 1/2 + T 1/2−b‖Db
th‖L2),

where h(t) = ψ(t)eaT |t|, integrating by parts twice we get

|ĥ(τ)| ≤ c〈T 〉
〈τ〉2

.

This proves the inequality (2.5).

In order to prove the inequality (2.6) we have that

F(|t|ψT (t) ea|t|)(τ) = T 2p̂(Tτ) (2.8)

where p(t) = |t|ψ(t)eaT |t|.

Integrating by parts we obtain

|p̂(τ)| ≤ c

|τ − iaT |k
, k = 0, 1, 2.

Therefore,

|p̂(τ)| ≤ c

1 + τ 2 + a2T 2
. (2.9)
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Combining (2.8) and (2.9) yields the desired inequality (2.6). The proof of (2.7) is

similar. �

Remark. It’s not possible to obtain similar inequalities as (2.4) and (2.5) for ψ̃T (t)

because of the discontinuity.

In the following estimates, without loss of generality, we can suppose η = 1

Lemma 2.2. Let −1/2 < b′ ≤ 0, 1/2 < b ≤ b′/3 + 2/3, T ∈ (0, 1], a < 1. Then

‖ψT (t)

∫ t

0

e|t−t′|af(t′)dt′‖Hb
t
≤ c T 1+b′/2−3b/2‖f‖Hb′ , (2.10)

where c is a constant independent of a, f and T .

Proof. It is sufficient to prove the Lemma 2.2 when |a| ≤ 1. In fact, let us suppose

that Lemma 2.2 has been established in the case |a| ≤ 1. Then when a < −1, we use

the change of variable t′a ≡ t′, to obtain

ψT (t)Ia(t) := ψT (t)

∫ t

0

e|t−t′|af(t′)dt′ =
1

a
ψaT (at)

∫ at

0

e|at−t′|fa(t
′)dt′ =

1

a
J(at).

(2.11)

where fa(t
′) = f(t′/a) and J(t) = ψaT (t)

∫ t

0
e|t−t′|fa(t

′)dt′.

Note that for a < −1,

‖J(t)‖Hb ≤ c |aT |1+b′/2−3b/2‖fa‖Hb′ ≤ c|a|3/2−b′/2−3b/2T 1+b′/2−3b/2‖f‖Hb′ . (2.12)

Since b′ + b > 0 and |a| > 1, from (2.11) and (2.12) we obtain

‖ψT (t)Ia(t)‖Hb =
1

|a|
‖J(at)‖Hb ≤ c

〈a〉b

|a|3/2
‖J(t)‖Hb ≤ c

|a|(b′+b)/2
T 1+b′/2−3b/2‖f‖Hb′ .

Hence, we arrived at (2.10) in this case too.
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From here onwards, we consider |a| ≤ 1. Now let b > 1/2, then we have

Ia(t) :=

∫ t

0

e|t−t′|af(t′)dt′ =

∫ t

0

e(t−t′)sgn(t)af(t′)dt′

= ea|t|
∫ t

0

e−sgn(t)at′
∫

R
eit′τ f̂(τ)dτdt′

= ea|t|
∫

R
f̂(τ)

∫ t

0

e(iτ−sgn(t)a)t′dt′dτ

= ea|t|
∫

R
f̂(τ)

e(iτ−sgn(t)a)t − 1

iτ − sgn(t)a
dτ

=

∫
R
f̂(τ)

eiτt − ea|t|

iτ − sgn(t)a
dτ.

We have
1

sgn(t)a− iτ
= sgn(t)

a

a2 + τ 2
+ i

τ

a2 + τ 2
.

If we define

pa(t) =
a

a2 + t2
, qa(t) =

t

a2 + t2

and replace τ by t′ we get,

Ia(t) = sgn(t)

∫
R
pa(t

′)
[
ea|t| − eit′t

]
f̂(t′)dt′ + ic

∫
R
qa(t

′)
[
ea|t| − eit′t

]
f̂(t′)dt′

:= Ia,1(t) + Ia,2(t).
(2.13)

Estimate for Ia,1: We estimate it in two different cases.

Case 1: |t′| > 1/T . Let f̂(t′) ≡ f̂(t′)χ{|t′|>1/T}. From the definition of Ia,1 we have

ψT (t)Ia,1(t) =a sgn(t)ψT (t)

∫
R

f̂(t′)

a2 + t′2
[
ea|t| − eitt′

]
dt′

=ah
( t
T

)
,

(2.14)

where h(t) = sgn(t)ψ(t)
∫

R{f̂(t′)/(a2 + t′2)}
[
eaT |t| − eiT tt′

]
dt′.

We have,

ĥ(t)(τ) =

∫
R

f̂(t′)

a2 + t′2
K(a, T, τ, t′)dt′, (2.15)

where

K(a, T, τ, t′) =

∫
R

sgn(t)ψ(t)
[
eaT |t| − eiT tt′

]
e−itτdt.
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Integrating by parts we get

|K(a, T, τ, t′)| ≤ c
〈t′〉
〈τ〉

, and |K(a, T, τ, t′)| ≤ c
〈t′〉
〈τ〉2

+ c
〈t′〉2

〈τ〉2
≤ c

〈t′〉2

〈τ〉2
.

Hence

|K(a, T, τ, t′)| ≤ c
〈t′〉2b

〈τ〉2b
.

Therefore, from (2.15) we obtain

|ĥ(t)|(τ) ≤ c

〈τ〉2b

∫
|t′|>1/T

|f̂(t′)|
a2 + t′2

〈t′〉2bdt′ ≤ c
T 3/2+b′−2b

〈τ〉2b
‖f‖Hb′ .

Now, using (2.14) we have

‖ψT (t)Ia(t)‖Hb = |a| ‖h
( t
T

)
‖Hb ≤ |a|T 1/2−b‖h(t)‖Hb ≤ cT 3/2+b′−2bT 1/2−b‖f‖Hb′ .

Hence

‖ψT (t)Ia(t)‖Hb ≤ cT 2+b′−3b‖f‖Hb′ ≤ cT 1+b′/2−3b/2‖f‖Hb′ .

Case 2: |t′| ≤ 1/T . Let f̂(t′) ≡ f̂(t′)χ{|t′|≤1/T} and as earlier ψ̃T (t) = sgn(t)ψT (t).

We have

F(ψT (t)Ia,1(t))(τ) =

∫
R
e−itτ ψ̃T (t)

∫
R
pa(t

′)
[
ea|t| − eit′t

]
f̂(t′)dt′dt

=

∫
R
pa(t

′)f̂(t′)

∫
R
ψ̃T (t)e−itτ

[
ea|t| − eit′t

]
dtdt′

=

∫
R
pa(t

′)f̂(t′){F
(
ψ̃T (t) ea|t|)(τ)− F

(
ψ̃T (t)

)
(τ − t′)}dt′

=

∫
R
pa(t

′)f̂(t′){F
(
ψ̃T (t) ea|t|)(τ)− F

(
ψ̃T (t) ea|t|)(τ − t′)}dt′

+

∫
R
pa(t

′)f̂(t′){F
(
ψ̃T (t) ea|t|)(τ − t′)− F

(
ψ̃T (t)

)
(τ − t′)}dt′

:=Ia,11(τ) + Ia,12(τ).

Since |pa(t
′)| ≤ 1/|t′|, we can estimate the term Ia,11(τ) as in [9]. Therefore we will

estimate only the term Ia,12(τ).

Let us define h(t′, τ) := F
(
ψ̃T (t)[ea|t| − 1]

)
(τ − t′), then we have

h(t′, τ) =

∫ a

0

F
(
|t| ψ̃T (t) es|t|)(τ − t′)ds. (2.16)
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From (2.7) we have that

|F
(
|t| ψ̃T (t) es|t|)(τ − t′)| ≤ c T 2

(1 + (|τ − t′|+ |s|)T )2
, (2.17)

where c is independent of s, τ , t′ and T .

Observe that 0 ≤ s ≤ a if a ≥ 0 and a ≤ s ≤ 0 if a ≤ 0. Thus we obtain

|h(t′, τ)| ≤c T 2

∫ |a|

0

1

(1 + (|τ − t′|+ |s|)T )2
ds

=c T 2 |a|
(1 + |τ − t′|T )(1 + |τ − t′|T + |a|T )

.

As |Tt′| ≤ 1 we have

1

1 + |τ − t′|T
≤ 2

1 + |τ |T
.

Hence

|h(t′, τ)| ≤ c T 2 |a|
(1 + |τ |T )2

.

Using the Hölder’s inequality we get,

|Ia,12(τ)| = |
∫

R
pa(t

′)f̂(t′)h(t′, τ)dt′|

≤ ‖f‖Hb′

( ∫
|t′|≤1/T

〈t′〉−2b′|h(t′, τ)|2

(a2 + t′2)2
dt′

)1/2

≤ c T 2

(1 + |τ |T )2
‖f‖Hb′

( ∫
|t′|≤1/T

(1 + |t′|−2b′)dt′
)1/2

≤ c T 3/2+b′

(1 + |τ |T )2
‖f‖Hb′ .

(2.18)

Finally, we arrive at( ∫
R

(1 + |τ |)2b|Ia,12(τ)|2 dτ
)1/2

≤c T 3/2+b′ ‖f‖Hb′

( ∫
R

1 + |τ |2b

(1 + |τ |T )4
dτ

)1/2

≤c T 3/2+b′ ‖f‖Hb′

( 1

T 1/2
+

1

T b+1/2

)
≤c T 1−b+b′ ‖f‖Hb′ .

Therefore, in this case we have

‖ψT Ia,1‖Hb ≤ c T 1−b+b′ ‖f‖Hb′ .
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Estimate for Ia,2: The estimate for Ia,2 is similar to Ia,1 exchanging pa by qa and

ψ̃T (t) by ψT (t). So, we omit the calculation details. �

In the following remark we present improvement of the estimate obtained in the

Lemma 2.2 in some particular cases. Although, this improvement does not help to

improve our main result, it will be of interest on its own.

Remarks. 1) The proof in the case |t′| ≤ 1/T is valid for all a < 1.

2) We know that

Ĥg(η) = −i sgn(η) ĝ(η) and q̂a(t) = −i sgn(t) ea|t|.

Thus

Ia,2(t) =− ψ̃T (t)q̂a(t)

∫
R
qa(t

′)f̂(t′)dt′ +
√

2πψ̃T (t)F−1H(qaf̂ )(t)

=ψ̃T (t)F−1(qa)(t)

∫
R
qa(t

′)f̂(t′)dt′ +
√

2πψ̃T (t)F−1H(qaf̂ )(t),

where ψ̃T (t) = sgn(t)ψT (t). Consequently,

Îa,2(τ) =̂̃ψT ? qa(τ)

∫
R
qa(t

′)f̂(t′)dt′ +
√

2π̂̃ψT ?H(qaf̂ )(τ)

=̂̃ψT ? qa(τ)

∫
R
qa(t

′)f̂(t′)dt′ +
√

2πH(̂̃ψT ) ? (qaf̂ )(τ).

Similarly,

Îa,1(τ) =
1

i
ψ̂T ? qa(τ)

∫
R
qa(t

′)f̂(t′)dt′ +

√
2π

i
H(ψ̂T ) ? (qaf̂ )(τ).

3) If 1/2 < b < b′/3 + 2/3, then 1− b+ b′ > 3/4 + b′/2− b > 1 + b′/2− 3b/2 > 0.

4) If |a| > 1, then |qa(t′)| ≤ c/〈t′〉, hence∫
R
|qa(t′)f̂(t′)|dt′ ≤ c

∫
R

|f̂(t′)| 〈t′〉1−b

〈t′〉 〈t′〉1−b
dt′ ≤ c ‖f‖Hb−1

∥∥∥ 1

〈t′〉b
∥∥∥

L2
,

and therefore we obtain a more refined estimate than (2.19).

5) In the case |t′| > 1/T we can to obtain a better estimate for Ia,2 because ψT is

regular (using the inequalities (2.4) and (2.5)). In fact, let f̂(t′) ≡ f̂(t′)χ{|t′|>1/T}.

We have that

‖ψT (t)Ia,2(t)‖Hb
t
≤ ‖ψT (t)e|t|a‖Hb

t

∣∣∣ ∫
R
qa(t

′)f̂(t′)dt′
∣∣∣+‖ψT (t)‖Hb

t
‖F−1(qaf̂ )(t)‖Hb

t
.
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Since |t′| > 1/T implies |t′| ' 〈t′〉, using the Cauchy-Schwartz inequality we get∫
R
|qa(t′)f̂(t′)|dt′ ≤

∫
|t′|>1/T

|f̂(t′)|
|t′|

dt′ .
∫

|t′|>1/T

|f̂(t′)| | t′|−b′

| t′| | t′|−b′
dt′

≤‖f‖Hb′

( ∫
|t′|>1/T

dt′

|t′|2(1+b′)

)1/2

. T 1/2+b′ ‖f‖Hb′ .

(2.19)

Similarly, ∫
R
|qa(t′)f̂(t′)|dt′ ≤c ‖f‖Hb′

( ∫
|t′|>1/T

dt′

|t′|2b′(a2 + t′2)

)1/2

≤c 1

|a|1/2+b′

( ∫
R

dt′

|t′|2b′(1 + t′2)

)1/2

‖f‖Hb′

≤c 1

|a|1/2+b′
‖f‖Hb′ .

(2.20)

Hence from (2.19) and (2.20) we get∫
R
|qa(t′)f̂(t′)|dt′ ≤ c

( T
|a|

)1/4+b′/2

‖f‖Hb′ , (2.21)

and

‖F−1(qaf̂ )(t)‖2
Hb

t
.

∫
|t′|>1/T

|f̂(t′)|2

〈t′〉2(1−b)
dt′ .

∫
|t′|>1/T

|f̂(t′)|2

〈t′〉−2b′|t′|2(1−b+b′)
dt′

≤ T 2(1−b+b′)‖f‖2
Hb′ .

So from inequality (2.4) we have that

‖ψT (t)‖Hb
t
‖F−1(qaf̂ )(t)‖Hb

t
≤ c T 1/2−b T (1−b+b′)‖f‖Hb′ ≤ c T 3/2−2b+b′‖f‖Hb′ .

On the other hand, if a < −1 from inequalities (2.5) and (2.21) we get

‖ψT (t) ea|t|‖Hb
t

∫
R
|qa(t′)f̂(t′)|dt′ ≤c

( T
|a|

)1/2(
1 +

1

T b

)
(1 + |a|b)

( T
|a|

)1/4+b′/2

‖f‖Hb′

≤c
( T
|a|

)3/4+b′/2(
1 +

1

T b

)
(1 + |a|b)‖f‖Hb′

≤c T 3/4+b′/2−b
(
1 +

1

|a|3/4+b′/2−b

)
‖f‖Hb′

≤c T 3/4+b′/2−b‖f‖Hb′ .
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Now if |a| < 1 using the inequality (2.5) we obtain:

‖ψT (t) ea|t|‖Hb
t

∫
R
|qa(t′)f̂(t′)|dt′ ≤c T 1/2+b′‖f‖Hb′T 1/2

(
1 +

1

|T |b
)

≤c T 1/2+b′ T 1/2−b‖f‖Hb′

≤c T 1−b+b′‖f‖Hb′

≤c T 3/4+b′/2−b‖f‖Hb′ .

Therefore in this case

‖ψT (t)Ia(t)‖Hb
t
≤ c T 3/4+b′/2−b ‖f‖Hb′ ,

where c is a constant independent of a, f and T .

Now we prove Proposition 2.2 which plays a crucial role in the proof of the first

main result of this work.

Proof of Proposition 2.2. In order to prove (2.2), using (2.5) with T = 1 it is not

difficult to see that:

‖ψ(t) eηΦ(ξ)|t|‖2
Hb

t
≤ c(η)〈Φ(ξ)〉2b−1 ≤ c(η)〈ξ〉3(2b−1),

where c(η) is a constant. Therefore,

‖ψT (t)V (t)u0‖Xs−ε,b
≤ c(η)

( ∫
R
〈ξ〉2(s−ε)〈ξ〉3(2b−1)|û0(ξ)|2dξ

)1/2

≤ c(η)‖u0‖Hs.

Now, we move to prove (2.3). From definition (1.10) of the Xs,b norm, we have

‖ψT (t)

∫ t

0

V (t− t′)(uux)(t
′)dt′‖Xs,b

= ‖U(−t)ψT (t)

∫ t

0

V (t− t′)(uux)(t
′)dt′‖Hs,b

= ‖〈τ〉b〈ξ〉sFξτ

[
ψT (t)

∫ t

0

U(−t′)Ũ(t− t′)(uux)(t
′)dt′

]
‖L2

τ L2
ξ

= ‖〈ξ〉s‖ψT (t)

∫ t

0

e−it′ξ3

e|t−t′|Φ(ξ)ûux(t
′, ξ)dt′‖Hb

t
‖L2

ξ
.

(2.22)

If we fix the variable ξ and suppose fξ(t
′) = e−it′ξ3

ûux(t
′, ξ) the estimate (2.3)

follows from (2.22) using (2.10). �
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2.2. Proof of the Theorem 1.1.

Proof. As discussed in the introduction, we will use Bourgain’s space associated to the

KdV group to prove well-posedness for the IVP (1.1), therefore we need to consider

the IVP (1.12) that is defined for all t. Now consider the IVP (1.12) in its equivalent

integral form

u(t) = V (t)u0 −
∫ t

0

V (t− t′)(uux)(t
′)dt′, (2.23)

where V (t) is the semigroup associated with the linear part given by (1.14).

Note that, if for all t ∈ R, u(t) satisfies

u(t) = ψ(t)V (t)u0 − ψT (t)

∫ t

0

V (t− t′)(uux)(t
′)dt′,

then u(t) satisfies (2.23) in [−T, T ]. We define an application

Ψ(u)(t) =ψ(t)V (t)u0 − ψT (t)

∫ t

0

V (t− t′)(uux)(t
′)dt′.

Let s > −3/4, and u0 ∈ Hs. Let b and b′ be two numbers given by Proposition 2.1,

such that θ ≡ min{1 + b′/2 − 3b/2, 3/4 + s/3 − b} > 0. We will prove that Ψ is a

contraction in the following space

XM
s−ε,b = {u ∈ Xs−ε,b; ‖u‖Xs−ε,b

≤M},

where ε ∈ [3(b − 1/2), s + 3/4). First we will prove that Ψ : XM
s−ε,b → XM

s−ε,b. Let

u ∈ XM
s−ε,b. By using Propositions 2.1, 2.2 and the definition of XM

s−ε,b we get for all

ε such that 3(b− 1/2) ≤ ε < s+ 3/4

‖Ψ(u)‖Xs−ε,b
≤c‖u0‖s + c T θ‖(uux)‖Xs−ε,b′

≤M
4

+ cT θM2 ≤ M

2
,

where we took M = 4c‖u0‖Hs and cT θM = 1/4. Therefore, ‖Ψ(u)‖Xs−ε,b
≤ M . A

similar argument proves that Ψ is a contraction. Hence Ψ has a fixed point u which

is a solution of the IVP (1.1) such that u ∈ C([−T, T ], Hs−ε), with

‖u‖Xs−ε,b
≤M = 4c‖u0‖Hs.

As b can be chosen arbitrarily near to 1/2, ε can be chosen arbitrarily near to 0.

Hence by Fatou’s lemma we have

sup
t∈[−T,T ]

‖u(t)‖Hs ≤ c‖u0‖Hs. (2.24)
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Thus by (2.24) and Lebesgue’s dominated convergence theorem we get

u ∈ C([−T, T ], Hs).

The rest of the proof follows in an analogous way to [11], so we omit the details. �

3. A refined local smoothing effect

In this section we prove the following local smoothing effect for the semigroup Vk(t)

defined by (1.14) with Φ(ξ) = |ξ|k − |ξ|k+2. Similar results can also be obtained for

more general Φ as in (1.2). Our proof follows the ideas of [6].

Theorem 3.1. Let T > 0, u0 ∈ Lq, 0 ≤ s < (k + 3− p)/p+ 1/p1 and p ≥ 2, p1 ≥ 2,

then

‖Ds
xVk(t)u0‖Lp

T L
p1
x
≤ c(η)

(k + 3− p(s+ 1) + p/p1)1/p
(T 1/pe2ηT + T ε) ‖u0‖Lq , (3.1)

where ε = ε(p, k, s, p1) = (k+3− p(s+1))/(k+2)+ p/((k+1)p1) and 1/p+1/q = 1.

Corollary 3.1. Let u0 ∈ Lq, T > 0, 2 ≤ p < k + 3, and 0 ≤ s < (k + 3− p)/p, then

‖Ds
xVk(t)u0‖Lp

T L∞x
≤ c(η)

(k + 3− p(s+ 1))1/p
(T 1/pe2ηT + T ε0) ‖u0‖Lq , (3.2)

where ε0 = ε(p, k, s) = (k + 3− p(s+ 1))/(k + 2) and 1/p+ 1/q = 1.

In particular, the case when p = 2 is interesting, in fact we have

Corollary 3.2. 1) If u0 ∈ L2, p1 ≥ 2, 0 ≤ s < 1 + (k − 1)/2 + 1/p1, 0 < T < 1 and

γ = min{1/2, ε(2, k, s, p1)} then

‖Ds
xVk(t)u0‖L2

T L
p1
x
≤ c(η)T γ

(1 + (k − 1)/2 + 1/p1 − s)1/2
‖u0‖L2. (3.3)

2) If u0 ∈ Ḣs, −k/2 < s ≤ 0, 0 < T < 1 and γ = min{1/2, ε(2, k, 1− s, p1)} then

‖DxVk(t)u0‖L2
T L

p1
x
≤ c(η)T γ

((k − 1)/2 + 1/p1 + s)1/2
‖Dsu0‖L2, (3.4)

in the following cases:

i) when −(k − 1)/2 ≤ s ≤ 0 and 2 ≤ p1.

ii) when −k/2 < s < −(k − 1)/2 and 2 ≤ p1 ≤ (−s− (k − 1)/2)−1.

In the proof of Theorem 3.1 we will use the following result
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Proposition 3.1. Let p ≥ 2, and 1/p+ 1/q = 1, then

‖û‖Lp ≤ c‖u‖Lq , (3.5)

Proof. See Corollary 1.43 in [13]. �

Now, we give a proof of Theorem 3.1.

Proof of Theorem 3.1. We can suppose u0 ∈ S(R). We consider a cut-off function

ϕ ∈ C(R \ {0}), 0 ≤ ϕ ≤ 1 defined by

ϕ(t) =

{
1 if 0 ≤ t ≤ 1,
0 if t < 0 or t ≥ 2.

(3.6)

Let us define ϕT (t) ≡ ϕ( t
T
), then

‖Ds
xVk(t)u0(x)‖Lp

T L
p1
x
≤ ‖ϕT (t)Ds

xVk(t)u0(x)‖Lp
t L

p1
x .

Let 1/p1 + 1/q1 = 1, using duality it is enough to prove for u0 in Lq and g in Lq
tL

q1
x

J ≡
∣∣∣ ∫

R2

ϕT (t)Ds
xVk(t)u0(x)g(x, t)dx dt

∣∣∣ ≤ c‖u0‖Lq‖g‖Lq
t L

q1
x .

Using (1.14) we have

Ds
xVk(t)u0(x) = i

∫
R
|ξ|s eitξ3+ηtΦ(ξ)+ixξû0(ξ)dξ.

Therefore, by Fubini’s theorem, Proposition 3.1 and Hölder’s inequality we get

J ≤ c‖u0‖Lq‖Lg‖Lq ,

where Lg(ξ) is defined by

Lg(ξ) ≡ |ξ|s
∣∣∣ ∫

R2

ϕT (t)g(x, t)eitξ3+ηtΦ(ξ)+ixξdx dt
∣∣∣

and

|Lg(ξ)| ≤ |ξ|s
∫

R
ϕT (t)eηtΦ(ξ)|F−1(g(·, t))(ξ)|dt. (3.7)

We have

‖Lg(ξ)‖Lq(R) ≤ ‖Lg(ξ)‖Lq(|ξ|≤2) + ‖Lg(ξ)‖Lq(|ξ|>2) ≡ J1 + J2. (3.8)

In J1 by (3.7), Minkowski and Hölder’s inequalities and Proposition (3.1) we get

J1 ≤c
∫

R
ϕT (t)‖eηtΦ(ξ)‖Lr1 (|ξ|≤2)‖F−1(g(·, t))(ξ)‖Lp1 (|ξ|≤2)dt

≤c e2ηT‖ϕT‖Lp ‖g‖Lq
t L

q1
x
≤ c e2ηTT 1/p ‖g‖Lq

t L
q1
x , (3.9)
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where c is a constant, 1/q = 1/r1 + 1/p1 and 1/p1 + 1/q1 = 1.

Similarly in J2 we have

J2 ≤
∫

R
ϕT (t)‖ ξs eηtΦ(ξ)‖Lr1 (|ξ|>2)‖g(·, t)‖L

q1
x
dt,

and for t > 0 we have

‖ |ξ|se−ηt|ξ|k+2/2‖Lr1 (|ξ|>2) ≤
c(η)

ts/(k+2)+1/((k+2)r1)
.

Therefore, for 0 ≤ s < (k + 3− p)/p+ 1/p1 we get

J2 ≤ c(η)
∥∥∥ ϕT (t)

ts/(k+2)+1/((k+2)r1)

∥∥∥
Lp
‖g‖Lq

t L
q1
x
≤ c(η)T ε ‖g‖Lq

t L
q1
x
, (3.10)

where ε = (k + 3− p(s+ 1))/(k + 2) + p/((k + 1)p1).

From (3.8), (3.9) and (3.10) we obtain

‖Lg‖Lq ≤ c(η)

(k + 3− p(s+ 1) + p/p1)1/p
(T 1/pe2ηT + T ε) ‖g‖Lq

t L
q1
x
.

�

4. Some Strichartz type estimates

Proposition 4.1. Let 2 ≤ p, k ≥ 1, cp,k = p−2
2p(k+2)

, 0 < T < 1, s ≤ 0 and

1

r
+

s

(k + 2)
− cp,k > 0

then

‖Vk(t)u0‖Lr
T Lp

x
≤ c(η, sqr0)T

{
1
r
+ s

(k+2)
−cp,k

}
‖u0‖Hs,

where 1/q + 1/p = 1, r0 = 2/(2− q).

Proof. Let Φ(ξ) = |ξ|k − |ξ|k+2, by (3.5) we have

‖Vk(t)u0‖Lr
T Lp

x
≤ c ‖V̂k(t)u0‖Lr

T Lq
ξ
≤ c ‖eηtΦ(ξ)û0‖Lr

T Lq
ξ(|ξ|≤2)

+ c ‖eηtΦ(ξ)û0‖Lr
T Lq

ξ(|ξ|>2) ≡ J1 + J2.

In J1, using Hölder’s inequality we have

J1 ≤ c3−seηTT 1/r.
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To estimate J2, by Hölder’s inequality we obtain∫
|ξ|>2

eqηtΦ(ξ)|û0(ξ)|qdξ ≤
∫
|ξ|>2

e−qηt|ξ|k+2/2(1 + |ξ|)−sq(1 + |ξ|)sq|û0(ξ)|qdξ

≤‖e−qηt|ξ|(k+2)/2(1 + |ξ|)−sq‖Lr0 (|ξ|>2)‖u0‖q
Hs

≤ c(η)
[ 1

t1/((k+2)r0)
+

1

t1/((k+2)r0)−sq/(k+2)

( ∫
R
e−|y|

(k+2) |y|−sqr0dy
)1/r0

]
‖u0‖q

Hs,

where r0 = 2/(2− q).

Therefore

J2 ≤ c(η, sqr0)
∥∥∥ 1

t1/((k+2)r0q)−s/(k+2)

∥∥∥
Lr

T

‖u0‖Hs ≤ c(η, sqr0)T
1
r
+ s

(k+2)
−cp,k‖u0‖Hs,

where cp,k = p−2
2p(k+2)

. �

Corollary 4.1. Let 0 < T < 1, s ≤ 0, 1 < r < 2(k + 2)/(1− 2s), then

‖Vk(t)u0‖Lr
T L∞x ≤ c(η, s)T 1/r−(1−2s)/(2(k+2))‖u0‖Hs .

Proposition 4.2. Let u0 ∈ L2, then

‖Vk(t)u0‖L∞T L2
x
≤ eηT‖u0‖L2 .

Proof. Using Plancherel identity

‖Vk(t)u0‖L2
x

= ‖eηt(|ξ|k−|ξ|k+2)û0(ξ)‖L2
ξ
≤ eηT‖u0‖L2 ,

where we used the estimate eηt(|ξ|k−|ξ|k+2) ≤ eηT . �

In the following section we give an application of the above results.

5. Proof of Theorem 1.2.

This section is devoted to give proof of the local well-posedness result for given

data in homogeneous Sobolev space with regularity below L2. We consider the IVP{
∂tu+ ∂3

xu+ ηLk(u) + u∂xu = 0, x ∈ R, t ≥ 0,
u(x, 0) = u0(x),

(5.1)

which is a special case of the IVP (1.1) with Fourier symbol Φ(ξ) = |ξ|k − |ξ|k+2.

To prove Theorem 1.2, we need the following proposition

Proposition 5.1. Let 0 ≤ −s < 1/2. If u ∈ L2/(1−2s), then

‖Ds
x(u)‖L2 ≤ c‖u‖L2/(1−2s). (5.2)
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If u ∈ L1 ∩ L2, then

‖Ds
x(u)‖L2 ≤ c(‖u‖L1 + ‖u‖L2). (5.3)

Proof. The inequality (5.2) follows using the Hardy, Sobolev, Littlewood inequality

and
̂( 1

|ξ|1+s

)
(η) =

1

|η|−s
.

The inequality (5.3) follows from

‖Ds
x(u)‖2

L2 =

∫
|η|<1

|û(η)|2

|η|−2s
dη +

∫
|η|≥1

|û(η)|2

|η|−2s
dη.

�

Now we are in position to supply proof of our second main result.

Proof of Theorem 1.2. Now let u0 ∈ Ḣs, with 0 ≤ −s < 1/2. For 0 < T < 1, define

a ball

Za,T = {w ∈ C([0, T ], Ḣs); |||w|||T ≤ a},

where

|||w|||T = ‖w‖Ḣs + ‖wx‖L2
T L

p1
x

+ T

{
q1−2

2q1(k+2)
− 1

2
− s

k+2

}
‖w‖L2

T L
q1
x
,

−1/s ≤ p1 < ∞, q1 ≥ 2, 1/p1 + 1/q1 = (1 − 2s)/2 and p1 is chosen as in inequality

(3.4) of Corollary 3.2.

Using Corollary 3.2 and Proposition 4.1 we get

|||Vk(t)u0|||T ≤ c‖Ds
x(u0)‖L2 . (5.4)

Also, using the inequality (5.2) we obtain∫ T

0

‖Ds
x(vvx)‖L2

x
≤ c

∫ T

0

‖vvx‖L
2/(1−2s)
x

≤ c‖vx‖L2
T L

p1
x
‖v‖L2

T L
q1
x

≤ cT
{
− q1−2

2q1(k+2)
+ 1

2
+ s

k+2

}
a2. (5.5)

Now, define an application

Ψ(v)(t) = Vk(t)u0 −
∫ t

0

Vk(t− τ)vvx(τ)dτ,

where Vk(t) is the evolution operator defined in (1.14) with Φ(ξ) = |ξ|k − |ξ|k+2.
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With the help of the inequalities (5.4) and (5.5), it can be shown that the applica-

tion Ψ maps Za,T into Za,T and is a contraction considering a = 2c‖Ds
x(u0)‖L2 , and

cT

{
− q1−2

2q1(k+2)
+ 1

2
+ s

k+2

}
a < 1/2.

The rest of the proof follows from an standard argument. �

Remark. If we use the inequality (5.3) we can also take the following space in the

proof of the Theorem 1.2

Za,T = {w ∈ C([0, T ], Ḣs); |||w|||T ≤ a},

where

|||w|||T =‖w‖Ḣs + ‖wx‖L2
T L

p1
x

+ ‖wx‖L2
T L2

x
+ T

{
q1−2

2q1(k+2)
− 1

2
− s

k+2

}
‖w‖L2

T L
q1
x

+ T

{
− 1

2
− s

k+2

}
‖w‖L2

T L2
x,

−1/s < p1 < ∞, q1 ≥ 2, 1/p1 + 1/q1 = 1/2 and p1 is chosen as in Corollary 3.2

inequality (3.4). By Corollary 3.2 and Proposition 4.1 we get

|||Vk(t)u0|||T ≤ c‖Ds
x(u0)‖L2 .

And we have using the inequality (5.3)∫ T

0

‖Ds
x(vvx)‖L2

x
≤c

∫ T

0

(‖vvx‖L1
x

+ ‖vvx‖L2
x
)

≤ c‖vx‖L2
T L2

x
‖v‖L2

T L2
x

+ c‖vx‖L2
T L

p1
x
‖v‖L2

T L
q1
x

≤ c T
{

1
2
+ s

k+2

}
a2 + cT

{
− q1−2

2q1(k+2)
+ 1

2
+ s

k+2

}
a2

≤ cT
{
− q1−2

2q1(k+2)
+ 1

2
+ s

k+2

}
a2.
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