GENERALIZED INVERSES OF A SUM IN RINGS

N. CASTRO-GONZÁLEZ, C. MENDES-ARAÚJO and PEDRO PATRICIO

Abstract
We study properties of the Drazin index of regular elements in a ring with a unity 1. We give expressions for generalized inverses of $1 - ba$ in terms of generalized inverses of $1 - ab$. In our development we prove that the Drazin index of $1 - ba$ is equal to the Drazin index of $1 - ab$.

Keywords and phrases: Regular element, reflexive inverse, Drazin index, Drazin inverse, EP elements.

1. Introduction
Let R be a ring with a unity 1. An element a is said to be regular if there is an element x such that $axa = a$. If it exists, then it is called an inner inverse of a (von Neumann inverse). We will denote by $a\{1\} = \{x \in R \mid axa = a\}$ the set of all inner inverses of a and we will write a^- to designate a member of $a\{1\}$. A reflexive inverse a^+ of a is an inner and outer inverse of a, that is, $a^+ \in a\{1\}$ and $a^+ aa^+ = a^+$.

An element a is said to be Drazin invertible provided there is a common solution for the equations
\[xax = x, \quad ax = xa, \quad a^k xa = a^k \] for some $k \geq 0$.

If a common solution exists, then it is unique and it will be denoted by a^D (see [2]). The smallest integer k for which the above equations hold is called the Drazin index of a, denoted by $\text{ind}(a)$.

First researcher was partially supported by Project MTM2007-67232, “Ministerio de Educación y Ciencia” of Spain.
Second and third researchers were supported by the Portuguese Foundation for Science and Technology-FCT through the research program POCTI.
The Drazin index can be characterized in terms of right and left ideals generated by a power of a as follows [7]: $\text{ind}(a) = k$ if and only if k is the smallest non-negative integer for which $a^k R = a^{k+1} R$ and $R a^k = R a^{k+1}$, or equivalently, $a^k \in a^{k+1} R \cap R a^{k+1}$.

If a is Drazin invertible with $\text{ind}(a) = 1$, then a is regular. In the former case the Drazin inverse of a is known as the group inverse of a, denoted by $a^\#$. It is well known that the smallest k for which $(a^k)^\#$ exists equals $\text{ind}(a) = k$, and $a D = (a^k)^\# a^{k-1} = a^{k-1} (a^k)^\#$.

If there exists an element $a^\pi \in R$ such that $aa^\pi = a^\pi a$, aa^π is nilpotent, and $a + a^\pi$ is nonsingular, then it is called a spectral idempotent of a; such element is unique (if it exists). We know that a is Drazin invertible if and only the spectral idempotent of a exists. In this case we have $a^D = (a + a^\pi)^{-1} (1 - a^\pi)$ and $a^\pi = 1 - aa^D$. Characterizations of ring elements with related spectral idempotents are given in [4], [5].

Let R be a ring with an involution $x \mapsto x^*$ such that $(x^*)^* = x$, $(x + y)^* = x^* + y^*$, $(xy)^* = y^* x^*$, for all $x, y \in R$. We say that a is Moore-Penrose invertible if the equations

$bab = b, \quad aba = a, \quad (ab)^* = ab, \quad (ba)^* = ba$

have a common solution; such solution is unique if it exists (see [2], [6]), and it will be denoted by a^\dagger.

We say that an element a is EP if a is Moore-Penrose invertible and $aa^\dagger = a^\dagger a$. An element a is generalized EP if there exists $k \in \mathbb{N}$ such that a^k is EP.

Barnes [1] proved that the ascents (descents) of $I - RS$ and $I - SR$ are equal for bounded operators on Banach spaces $R \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(Y, X)$. Consequently, the Drazin indices of $I - RS$ and $I - SR$ are equal. In this paper we deal with the Drazin index of $1 - ab$ and $1 - ba$ in rings, and therefore neither functional calculi and operator theory can be used. Moreover, we provide a formula for the reflexive inverse, the group inverse and the Drazin inverse of $1 - ba$ in terms of the corresponding generalized inverse of $1 - ab$.

In our development, we extend the following characterization of the Drazin index given by Puystjens and Hartwig [10]: Given a regular element $a \in R$, then $\text{ind}(a) \leq 1 \iff \text{ind}(a + 1 - aa^-) = 0$, for one and hence all choices of $a^- \in a(1)$.

2. Auxiliary results

In this section we give some auxiliary lemmas. We start with an elementary known result.
Lemma 2.1. Let $a, b \in \mathcal{R}$. Then $1 - ab$ is invertible if and only if $1 - ba$ is invertible.

Lemma 2.2. Let a be a regular element. Then, given a natural n,

$$(a + 1 - aa^-)^n = (a^2a^- + 1 - aa^-)^n + \sum_{i=1}^{n} a^i(1 - aa^-). \quad (2.1)$$

Proof. The proof is by induction on n. Denote $z = a + 1 - aa^-$ and $x = a^2a^- + 1 - aa^-$. It is clear that $z = x + a(1 - aa^-)$. Assuming (2.1) to hold for k, we will prove it for $k + 1$.

We note that $zx = x^2 + a(1 - aa^-)$ and $za = a^2$. Now, by the induction step

$$z^{k+1} = z\left(x^k + \sum_{i=1}^{k} a^i(1 - aa^-)\right)$$

$$= x^{k+1} + a(1 - aa^-) + \sum_{i=1}^{k} a^{i+1}(1 - aa^-)$$

$$= x^{k+1} + \sum_{i=1}^{k+1} a^i(1 - aa^-).$$

□

Lemma 2.3. Let $a, b \in \mathcal{R}$. Then, given a natural n,

$$(1 - ba)^n = 1 - bra \quad \text{and} \quad (1 - ab)^n = 1 - rab,$$

where $r = \sum_{j=0}^{n-1}(1 - ab)^j$.

Proof. It can be easily proved by induction on n. □

In [5] the authors give the following characterization of EP elements in a ring.

Lemma 2.4. Let \mathcal{R} be a ring with an involution $x \rightarrow x^*$. For $a \in \mathcal{R}$ the following conditions are equivalent:

(i) a is EP.

(ii) a is Drazin and Moore-Penrose invertible and $a^D = a^\dagger$.

(iii) a is group invertible and $a^\pi = (a^*)^\pi$.

3. Main results

The following theorem is an answer to a question raised by Patricio and Veloso in [8] about the equivalence between \(\text{ind}(a^2a^- + 1 - aa^-) = k\) and \(\text{ind}(a + 1 - aa^-) = k\), and provides a new characterization of the Drazin index.

Theorem 3.1. Let \(a\) be a regular non-invertible element. The following conditions are equivalent:

(i) \(\text{ind}(a) = k + 1\).

(ii) \(\text{ind}(a^2a^- + 1 - aa^-) = k\), for one and hence all choices of \(a^- \in a[1]\).

(iii) \(\text{ind}(a + 1 - aa^-) = k\), for one and hence all choices of \(a^- \in a[1]\).

Proof. The equivalence (i)\(\iff\) (ii) is proved in [8, Theorem 2.1]. We proceed to show that (ii)\(\implies\) (iii). Denote \(x = a^2a^- + 1 - aa^-\) and \(z = a + 1 - aa^-\). Assume \(\text{ind}(x) = k\), or equivalently, \(\text{ind}(a) = k + 1\). Then \(x^k = x^{k+1}R\) and \(a^{k+1} = a^{k+2}w\) for some \(w \in R\). By (2.1),

\[
\begin{align*}
 z^kR & = \left(1 + \sum_{i=1}^{k} a^i (1 - aa^-)\right) x^k R \\
 & = \left(1 + \sum_{i=1}^{k} a^i (1 - aa^-)\right) x^{k+1} R \\
 & = \left(z^{k+1} - \sum_{i=1}^{k+1} a^i (1 - aa^-) + \sum_{i=1}^{k} a^i (1 - aa^-)\right) R \\
 & = \left(z^{k+1} - a^{k+1}(1 - aa^-)\right) R = (z^{k+1} - a^{k+2}w(1 - aa^-)) R \\
 & = z^{k+1}(1 - aw(1 - aa^-)) R \subseteq z^{k+1}R.
\end{align*}
\]

This gives \(z^kR = z^{k+1}R\). On the other hand, since \(\text{ind}(x) = k\) we also have \(x^k = ux^{k+1}\) for some \(u \in R\). By (2.1),

\[
\begin{align*}
 Rz^k & = R \left(x^k + \sum_{i=1}^{k} a^i (1 - aa^-)\right) \\
 & = R \left(ux^{k+1} + \sum_{i=1}^{k} a^i (1 - aa^-)\right) \\
 & = R \left(u - u \sum_{i=1}^{k} a^i (1 - aa^-) + \sum_{i=1}^{k} a^i (1 - aa^-)\right) z^{k+1} \subseteq Rz^{k+1}.
\end{align*}
\]

From this we conclude that \(Rz^k = Rz^{k+1}\). Consequently, \(\text{ind}(z) \leq k\).
By symmetrical arguments, we can show that ind(z) = k implies that ind(x) $\leq k$. Further, suppose ind(z) < k, having ind(x) = k, then we would get that ind(x) $\leq k - 1$, and we would arrive to a contradiction. Therefore ind(z) = k. □

We can state the symmetrical of Theorem 3.1.

Corollary 3.2. Let a be a regular non-invertible element. The following conditions are equivalent:

(i) ind(a) = $k + 1$.
(ii) ind($a^2 + 1 - a^{-}a$) = k, for one and hence all choices of $a^{-} \in a[1]$.
(iii) ind($a + 1 - a^{-}a$) = k, for one and hence all choices of $a^{-} \in a[1]$.

The following corollary is an extension of the analogous result for the Drazin index of a complex partitioned matrix over \mathbb{C} [3, Theorem 7.7.5].

Corollary 3.3. Let R be any ring with unity. If $M = \begin{pmatrix} A & B \\ C & CA^{-1}B \end{pmatrix} \in R_{n \times n}$, where $A \in R_{r \times r}$ is invertible, then ind(M) = ind($A + BCA^{-1}$) + 1.

Proof. We have $M^{-} = \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$ is an inner inverse of M and

$$M + I - MM^{-} = \begin{pmatrix} A + BCA^{-1} & 0 \\ C - CA^{-1}(I - BCA^{-1}) & I \end{pmatrix}.$$

Using the following known result for block triangular matrices,

$$\max\{\text{ind}(I), \text{ind}(A + BCA^{-1})\} \leq \text{ind}(M + I - MM^{-}) \leq \text{ind}(A + BCA^{-1}) + \text{ind}(I),$$

we conclude that ind($M + I - MM^{-}$) = ind($A + BCA^{-1}$). Now, that ind(M) = ind($A + BCA^{-1}$) + 1 follows from Theorem 3.1. □

It is well known that $1 - ba$ is regular if and only if $1 - ab$ is regular. Moreover, if $(1 - ab)^{-}$ is an inner inverse of $1 - ab$ then $(1 - ba)^{-} = 1 + b(1 - ab)^{-}a$ is an inner inverse of $1 - ba$. In the sequel, we will extend the same reasoning to other generalized inverses, namely reflexive, group and Drazin inverse.
THEOREM 3.4. Let \(a, b \in \mathbb{R} \). If \((1 - ab)^+\) is a reflexive inverse of \(1 - ab \), then a reflexive inverse of \(1 - ba \) is given by

\[
(1 - ba)^+ = 1 + b ((1 - ab)^+ - pq) a,
\]

where \(p = 1 - (1 - ab)^+ (1 - ab) \) and \(q = 1 - (1 - ab)(1 - ab)^+ \).

PROOF. Let \(x = 1 + b ((1 - ab)^+ - pq) a \). Then

\[
(1 - ba)x = 1 - bqa.
\]

Further,

\[
(1 - ba)x(1 - ba) = 1 - ba - bqa(1 - ba)a = 1 - ba
\]

and

\[
x(1 - ba)x = x - xbqa
= x - bqa - b ((1 - ab)^+ - pq) abqa
= x,
\]

where we have simplified writing \(ab = 1 - (1 - ab) \) and using relations \((1 - ab)(1 - ab)^+ (1 - ab) = (1 - ab)\) and \((1 - ab)^+ (1 - ab)(1 - ab)^+ = (1 - ab)^+\). \(\square\)

THEOREM 3.5. Let \(a, b \in \mathbb{R} \). If \(1 - ab \) is group invertible, then \(1 - ba \) is group invertible and

\[
(1 - ba)^\# = 1 + b \left((1 - ab)^\# - (1 - ab)^\# a\right)
\]

where \((1 - ab)^\# = 1 - (1 - ab)^\# (1 - ab)\).

PROOF. Let \(x = 1 + b \left((1 - ab)^\# - (1 - ab)^\# a\right) a \). First, we note that \((1 - ab)^\#\) is a reflexive inverse that commutes with \(1 - ab \). In view of the preceding theorem we have that \(x \) is reflexive inverse of \(1 - ba \). Next, we will prove that \(x \) commutes with \(1 - ba \). We have

\[
x(1 - ba) = 1 - ba + b(1 - ab)^\# (1 - ab)a = 1 - b(1 - ab)^\# a
\]

and, similarly, \((1 - ba)x = 1 - b(1 - ab)^\# a\) which gives \(x(1 - ba) = (1 - ba)x \). Therefore \(x \) verifies the three equations involved in the definition of group inverse. \(\square\)
THEOREM 3.6. Let \(a, b \in \mathcal{R} \). If \(1 - ab \) is Drazin invertible with \(\text{ind}(1 - ab) = k \), then \(1 - ba \) is Drazin invertible with \(\text{ind}(1 - ba) = k \) and

\[
(1 - ba)^D = 1 + b \left((1 - ab)^D - (1 - ab)^\pi r \right) a,
\]

where \(r = \sum_{j=0}^{k-1} (1 - ab)^j \).

PROOF. Assume \(\text{ind}(1 - ab) = k \geq 2 \). Then \((1 - ab)^k \) is group invertible and Theorem 3.1 leads to \(\text{ind}(1 - (1 - (1 - ab)^k)(1 - ab)^\pi((1 - ab)^k)^\pi)) = 0 \). By Lemma 2.1 we have that

\[
1 - (1 - ab)^k = rab \quad \text{and} \quad 1 - (1 - ba)^k = bra,
\]

(3.1)

where \(r = \sum_{j=0}^{k-1} (1 - ab)^j \). According to the above relations, \(1 - rab(1 - ab)^\pi((1 - ab)^k)^\pi \) is invertible and by Lemma 2.1 we have that \(1 - b(1 - ab)(1 - ab)^D ra \) is invertible. Further,

\[
(1 - b(1 - ab)(1 - ab)^D ra)(1 - ba)^k = (1 - ba)^k - b(1 - ab)(1 - ab)^D ra(1 - ba)^k
\]

\[
= (1 - ba)^k - b(1 - ab)\pi ra
\]

\[
= (1 - bra)(1 - ba)^k = (1 - ba)^{2k}.
\]

From this it follows that \((1 - ba)^k = (1 - b(1 - ab)(1 - ab)^D ra)^{−1}(1 - ba)^{2k} \in \mathcal{R}(1 - ba)^k+1 \). On the other hand,

\[
(1 - ba)^k(1 - b(1 - ab)(1 - ab)^D ra) = (1 - ba)^k - (1 - ba)^k b(1 - ab)(1 - ab)^D ra
\]

\[
= (1 - ba)^k - b(1 - ab)\pi ra = (1 - ba)^{2k}
\]

and hence \((1 - ba)^k = (1 - ba)^{2k}(1 - b(1 - ab)(1 - ab)^D ra)^{−1} \in (1 - ba)^k+1 \mathcal{R} \).

Therefore \((1 - ba)^k \in \mathcal{R}(1 - ba)^k+1 \cap (1 - ba)^k+1 \mathcal{R} \), which implies \(\text{ind}(1 - ba) \leq k \).

Further, analysis similar to that of the last part of the proof of Theorem 3.1 shows that \(\text{ind}(1 - ab) = k \). Now, \((1 - ba)^D = ((1 - ba)^k)^\pi(1 - ba)^k−1 \). In view of (3.1) and applying Theorem 3, it follows

\[
((1 - ba)^k)^\pi = (1 - bra)^\pi = 1 + b \left((1 - rab)^\pi - (1 - rab)^\pi \right) ra
\]

\[
= 1 + b \left(((1 - ab)^k)^\pi - ((1 - ab)^k)^\pi \right) ra
\]

\[
= 1 + b \left(((1 - ab)^D)^k - (1 - ab)^\pi \right) ra.
\]
Hence,
\[
(1 - ba)^D = \left(1 + b\left((1 - ab)^D\right)^k - (1 - ab)^\pi\right)ra (1 - ba)^{k-1}
\]
\[
= (1 - ba)^{k-1} + b\left((1 - ab)^D\right)^k - (1 - ab)^\pi (1 - ab)^{k-1}ra
\]
\[
= 1 - br'a + b\left((1 - ab)^D r - (1 - ab)^\pi (1 - ab)^{k-1}\right) a
\]
\[
= 1 + b\left((1 - ab)^D - (1 - ab)^\pi r' - (1 - ab)^\pi (1 - ab)^{k-1}\right) a
\]
\[
= 1 + b\left((1 - ab)^D - (1 - ab)^\pi r\right) a,
\]
where \(r' = \sum_{j=0}^{k-2}(1 - ab)^j\), completing the proof. \(\square\)

Let \(\mathcal{R}_{n\times n}\) the ring of \(n \times n\) matrices over \(\mathcal{R}\). Any matrix \(A \in \mathcal{R}_{r\times n}\) \((B \in \mathcal{R}_{n\times r})\) with \(r < n\) may be enlarged to square \(n \times n\) matrix \(A'\) \((B')\) by adding zeros. Then we can compute a generalized inverse of \(I - BA = I - B'A'\) using preceding results in the ring \(\mathcal{R}_{n\times n}\). Finally, we can rewrite the corresponding expression for the generalized inverse of \(I - B'A'\) in terms of \(A\) and \(B\), getting that formulas similar to that in the preceding theorems hold for rectangular matrices \(A\) and \(B\).

Example 3.7. We consider the following matrices with entries in the univariate polynomial ring in \(x\) over \(\mathbb{Z}_8\), the ring of integers modulo 8:

\[
A = \begin{pmatrix} x & 2 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 7x \\ 2 \\ x^2 + 3 \end{pmatrix}.
\]

Then

\[
I - BA = \begin{pmatrix} x^2 + 1 & 2x & x \\ 6x & 5 & 6 \\ 7x^2 + 5x & 6x^2 + 2 & 7x^2 + 6 \end{pmatrix} \quad \text{and} \quad 1 - AB = 2.
\]

The zero degree polynomial equal to 2 is nilpotent of index 3 and, so, \(\text{ind}(1 - AB) = 3\) and \((1 - AB)^D = 0\). Applying Theorem 3 we get

\[
(I - BA)^D = I + \begin{pmatrix} 7x \\ 2 \\ x^2 + 3 \end{pmatrix} (0 - 1(1 + 2 + 2^2)) \begin{pmatrix} x & 2 & 1 \end{pmatrix}
\]

\[
= \begin{pmatrix} 7x^2 + 1 & 6x & 7x \\ 2x & 5 & 2 \\ x^3 + 3x & 2x^2 + 6 & x^2 + 4 \end{pmatrix}.
\]
We know that in general $1 - ab$ is EP may not imply that $1 - ba$ is EP. In the following result we give a necessary and sufficient condition for such implication to hold.

Corollary 3.8. Let R be a ring with an involution $x \rightarrow x^*$. If $1 - ab$ is EP, then $1 - ba$ is EP if and only if $a^*(1 - ab)^\natural b^* = b(1 - ab)^\natural a$. In this case,

$$(1 - ba)^\dagger = 1 + b\left((1 - ab)^\dagger - (1 - (1 - ab)(1 - ab)^\dagger)\right)a.$$

Proof. Since $1 - ab$ is EP, by Lemma 2.4 we have that $1 - ab$ is group invertible and Moore-Penrose invertible and $(1 - ab)^\# = (1 - ab)^\dagger$. Now, from Theorem 3 it follows that $1 - ba$ is also group invertible and $(1 - ba)^\# = 1 + b((1 - ab)^\# - (1 - ab)^\natural a)$, and consequently, $(1 - ba)^\natural = b(1 - ab)^\natural a$. Thus, by Lemma 2.4, $1 - ba$ is EP if and only if $((1 - ba)^*)^\natural = (1 - ba)^\natural$, that is,

$$(b(1 - ab)^\natural a)^* = b(1 - ab)^\natural a.$$

Hence, using that $((1 - ab)^*)^\natural = (1 - ab)^\natural$, the result follows. \square

Corollary 3.9. Let R be a ring with an involution $x \rightarrow x^*$. If $1 - ab$ is generalized EP, then $1 - ba$ is generalized EP if and only if $(ra)^*(1 - ab)^\natural b^* = b(1 - ab)^\natural ra$, where $r = \sum_{j=0}^{k-1}(1 - ab)^j$ and $k = \text{ind}(1 - ab)$.

Proof. Since $1 - ab$ is generalized EP then there exists the smallest integer $k \in \mathbb{N}$ such that $(1 - ab)^k$ is EP. From Lemma 2.4 we can deduce that $\text{ind}(1 - ab) = k$. Now, by Lemma 2.3 we have $(1 - ab)^k = 1 - rab$, where r is defined as in the statement of this corollary. By preceding corollary, $(1 - ba)^k = 1 - bra$ is EP if and only if $(b(1 - ab)^\natural ra)^* = b(1 - ab)^\natural ra$, completing the proof. \square

In this example we show that the existence of the Moore-Penrose of $1 - ab$ does not imply the existence of the Moore-Penrose of $1 - ba$.

Example 3.10. Consider the following matrices over the field \mathbb{C} of complex numbers, with the involution defined by $A^* = A^T$:

$$A = \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}.$$

Then

$$I - AB = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad I - BA = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix},$$

where I is the identity matrix.
and, further,

\[(I - AB)*(I - AB) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}, \quad (I - BA)*(I - BA) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.\]

Since rank \((I - AB) = 1\) and rank \((I - AB)^*(I - AB) = rank (I - AB)(I - AB)^* = 1\) we conclude, applying [9, Theorem 1], that \(I - AB\) is Moore-Penrose invertible. On the other hand, since rank \((I - BA) = 1\) and rank \((I - BA)^*(I - BA) = 0\) we conclude that \(I - BA\) is not Moore-Penrose invertible.

References

N. Castro-González, Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

e-mail: nieves@fi.upm.es

C. Mendes-Araújo, Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

e-mail: clmendes@math.uminho.pt

Pedro Patricio, Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal

e-mail: pedro@math.uminho.pt