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Abstract. We prove convergence for the basic LR algorithm on a real unreduced tridiagonal matrix with a
one-point spectrum - the Jordan form is one big Jordan block. First we develop properties of eigenvector matrices.
We also show how to deal with the singular case.
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1. Introduction. This paper presents a rigorous proof that the LR algorithm, without shifts,
applied to an unreduced tridiagonal matrix with a one-point spectrum converges to an upper bidi-
agonal matrix. The rate of convergence is very slow, like 1/k after k steps, but what is remarkable is
that the algorithm actually converges. We hasten to say that this result is not exactly new. In the
middle of the 1960’s J.H. Wilkinson sketched out the underlying reason for this surprising result,
both for LR and QR, but he was not concerned with tridiagonal matrices and he needed assumptions
that the column and row eigenvector matrices were completely regular. Moreover, he did not show
that a certain universal matrix was also completely regular.

So the contribution of this paper is twofold. We show that in the unreduced tridiagonal case
the eigenvector matrices are completely regular and we show that the universal matrix mentioned
above is also completely regular, not just in the asymptotic regime. In contrast to most papers, the
focus is not on the result but on the proof.

The reason for considering the LR algorithm instead of the more popular QR is that it preserves
tridiagonal form. The fear of instability which undermined the adoption of the LR algorithm is not
justified. In the tridiagonal case the new iterate need not overwrite the old one; instead the new
one can be stored separately and, if element growth is unacceptable, then it is rejected, the shift
is modified (usually reduced) and the transform is reapplied. A reward for this approach is that
it encourages more aggressive and powerful shift strategies than were used in the past. However,
implementation details are not part of this paper.

For the sake of brevity this paper is addressed to readers who are already familiar with the
LR and QR algorithms including their convergence properties when the eigenvalues have distinct
moduli. See [1, 4, 12] for such material. Some readers may enjoy the detailed example of a 6 × 6
tridiagonal with a one-point spectrum and the choice of generalized eigenvectors.

In the absence of breakdown, the basic LR algorithm is given by

A1 = A
for i = 1, 2, . . .

Factor Ai = LiRi (Li unit lower triangular, Ui upper triangular)
Ai+1 = RiLi

end
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We recall two key facts: for i = 1, 2, . . . ,

Ai+1 = Li−1ALi with Li ≡ L1L2 . . . Li, (1.1)

and

Ai = LiUi with Ui ≡ RiRi−1 . . . R1. (1.2)

2. Eigenvector properties of a one-point spectrum tridiagonal. When λ is a multiple
eigenvalue the eigenvector matrix must be filled out with the so-called generalized eigenvectors with
the property that, for any such C,

(C − λI)jv = 0, (C − λI)j−1v 6= 0.

We say that v is an eigenvector of grade j and omit the word generalized in the rest of this paper.
In what follows we shall present some properties of eigenvector matrices that are

sufficient to guarantee convergence of the basic LR algorithm without invoking the extra hypotheses
needed by Rutishauser [11] and Wilkinson [13, 14, pp.487-492] for the general case. To the best of
our knowledge these results are new.

Following standard usage in Linear System Theory we say that X is completely (or strongly)
regular when X and all its leading principal submatrices are nonsingular. We shall use the terms
“completely regular” and “permits LU” interchangeably. To be precise, we note that a singular
matrix may permit triangular factorization but in our work all the matrices of interest will be
nonsingular.

Most of our results extend directly to complex unreduced tridiagonal matrices but we focus on
real matrices for simplicity and because it is the most frequent case in applications.

Consider a real tridiagonal matrix

C =


a1 c1
b1 a2 c2

. . . . . . . . .
bn−2 an−1 cn−1

bn−1 an

 ∈ Rn×n (2.1)

with bici 6= 0, i = 1, . . . , n− 1. With this constraint we say that C is unreduced.
Define monic polynomials p0, p1, . . . , pn by

p0(τ) = 1, pj(τ) := det(τIj − Cj), j = 1, . . . , n,

where Ij represents the j × j identity matrix and Cj the jth leading principal submatrix of C.
The celebrated three term recurrence (3TR) for C is

p1(τ) = (τ − a1) = (τ − a1)p0(τ),
pj+1(τ) = (τ − aj+1)pj(τ)− bjcjpj−1(τ), j = 1, 2, . . . , n− 1.

In this paper we suppose that C’s spectrum consists of a single nonzero point λ and that its
Jordan form is

J = λI +N
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where N is the nilpotent matrix

N =


0 1

0 1
. . . . . .

0 1
0

 .

Definition 2.1.

p(λ) :=
[
p0(λ) p1(λ) . . . pn−1(λ)

]T
, j = 1, . . . , n.

Definition 2.2. We will denote

Db := diag(1, b1, b1b2, b1b2b3, . . . , b1b2 · · · bn−1), (2.2)
Dc := diag(1, c1, c1c2, c1c2c3, . . . , c1c2 · · · cn−1). (2.3)

The 3TR is equivalent to the matrix equation(
DcCD

−1
c − τI

)
p(τ) = −enpn(τ).

Pre-multiplying both sides by D−1
c we get

(C − τI)D−1
c p(τ) = −en

pn(τ)
c1 . . . cn−1

. (2.4)

When τ = λ,

(C − λI)D−1
c p(λ) = 0

and we see that the only column eigenvector of C is D−1
c p(λ). Similarly, its single row eigenvector

is p(λ)TD−1
b .

One way to find eigenvectors of higher grade is to differentiate (2.4) as many times as is necessary.
Differentiate once to get

(C − τI)D−1
c p′(τ)−D−1

c p(τ) = −en
p′n(τ)

c1 . . . cn−1
.

After taking k derivatives we have

(C − τI)D−1
c p(k)(τ)− kD−1

c p(k−1)(τ) = −en
p
(k)
n (τ)

c1 . . . cn−1
. (2.5)

Dividing through by k! we obtain

(C − λI)D−1
c

p(k)(λ)
k!

= D−1
c

p(k−1)(λ)
(k − 1)!

, k = 0, 1, . . . , n− 1. (2.6)

This is valid for any unreduced tridiagonal C.
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The unit lower triangular matrix

P =
[
p(λ) p′(λ) 1

2!p
′′(λ) . . . 1

(n−1)!p
(n−1)(λ)

]
(2.7)

plays an important role in our analysis. P and PT are called polynomial Vandermonde matrices.
Now we have one possible eigenvector matrix,

CD−1
c P = D−1

c P (N + λI). (2.8)

A 6×6 example of P is given in the following section 2.1. A corresponding matrix of row eigenvectors
is not PTD−1

b .

To find the row eigenvectors for C introduce the notation

I� =


1

1p p p
1

1

 .
For CT (2.8) is

CTD−1
b P = D−1

b P (N + λI).

Transpose, replace NT by I�N I� and pre-multiply by I� to find(
I�PTD−1

b

)
C = (N + λI)

(
I�PTD−1

b

)
. (2.9)

So, I�PTD−1
b is the matrix of row eigenvectors of C.

Recall that D−1
c P is lower triangular and PTD−1

b is upper triangular. Nevertheless, it is not
true that the product

(
I�PTD−1

b

) (
D−1
c P

)
is diagonal. The reason is subtle: for a Jordan block,

the eigenvectors of grade higher than 1 are not uniquely defined. One may add to an eigenvector
of grade k any multiple of any eigenvector of lower grade. In matrix terms, we may post-multiply
D−1
c P by any unit upper triangular matrix U . However to preserve the 1’s in the Jordan form, U

has to be Toeplitz. All suitable matrices are of the form ϕ(N), ϕ a polynomial with degree < n,
which satisfy ϕ(O) = I. Thus, ϕ(N) commutes with λI +N and

CD−1
c Pϕ(N) = D−1

c P (λI +N)ϕ(N) = D−1
c Pϕ(N)(λI +N).

That is, D−1
c P is only unique up to post-multiplication by a nonsingular polynomial ϕ(N). The

preferred choice of ϕ(N) for us is given by

(
I�PTD−1

b

) (
D−1
c P

)
= ϕ(N). (2.10)

We have prooved

Theorem 2.3. If unreduced tridiagonal C has one-point spectrum λ and P , Db, Dc are as
defined in (2.7), (2.2) and (2.3) then

C = D−1
c Pϕ(N)−1(λI +N) I�PTD−1

b ,

for a certain polynomial ϕ with ϕ(O) = I, determined by (2.10).
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The following property of ϕ(N) will be needed later.

Lemma 2.4. The matrix ϕ(N)−1 I� admits triangular factorization:

ϕ(N)−1 I� =
(
P−1

)
(DcDb)

(
P−T

)
.

Proof. Invert (2.10).

We found the example that follows helpful in understanding the role of ϕ(N) in this theorem.

2.1. Example of a one-point spectrum tridiagonal. Recall that a square matrix A is
Toeplitz when the entries of A are constant down the diagonals parallel to the main diagonal and is
Hankel when the entries of A are constant along the diagonals perpendicular to the main diagonal.

In [6] Z. S. Liu devised an algorithm to obtain unreduced tridiagonal matrices with one-point
spectrum of arbitrary dimension n × n. These matrices, that we will call Liu matrices, have only
one eigenvalue, zero, with algebraic multiplicity n and geometric multiplicity 1. The Jordan form
consists of one big Jordan block. We will represent Liu matrices as

Liun = tridiag(1n,αn,γn)

where 1n always stands for a vector of 1’s of length n − 1. For n = 6, α6 =
[
0 0 −1 1 0 0

]
and γ6 =

[
−1 1 −1 1 −1

]
.

The transpose is more convenient,

LiuT6 =


0 1
−1 0 1

1 −1 1
−1 1 1

1 0 1
−1 0

 .

We have

p0(τ) = 1,
p1(τ) = τ,

p2(τ) = τ2 + 1,

p3(τ) = (τ + 1)p2(τ)− p1(τ) = τ3 + τ2 + 1,

p4(τ) = (τ − 1)p3(τ) + p2(τ) = τ4 + τ,

p5(τ) = τp4(τ)− p3(τ) = τ5 − τ3 − 1,

p6(τ) = τp5(τ) + p4(τ) = τ6.

Then

P =


1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
1 0 1 1 0 0
0 1 0 0 1 0
−1 0 0 −1 0 1

 , Db = diag(1,−1,−1, 1, 1,−1), Dc = I.
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Now we can define U by

PTD−1
b D−1

c P =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 −1

 = I�U .

Thus,

U = I�PTD−1
b D−1

c P =


1 0 0 1 0 −1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 and U−1 =


1 0 0 −1 0 1
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

We see that U is unit upper triangular and Toeplitz: U = I +N3 −N5 = ϕ(N), a polynomial in N
that commutes with λI+N (also U−1 = I−N3 +N5). Finally, the spectral decomposition of LiuT6 :

LiuT6 = D−1
c PU−1 (0I +N) I�PTD−1

b , I =
(

I�PTD−1
b

)
(D−1

c PU−1).

Note that PU−1 is in LU form and PTD−1
b is upper triangular.

3. Convergence of basic LR algorithm on a one-point spectrum tridiagonal. How
can the analysis of the distinct absolute value case (see Wilkinson [13] and [14, pp. 487-492]) be
rebuilt when an eigenvalue is multiple so that no shift will produce different moduli? We will deal
first with the case λ 6= 0.

3.1. The case λ 6= 0. The unit lower triangular L factor of a matrix M will be denoted by
L(M) and the upper triangular U factor by U(M), when M is completely regular. In this notation

Ck = L(Ck)U(Ck) and Ck+1 = L(Ck)−1CL(Ck) (3.1)

where Ck+1 is the LR transform after k steps.

Recall that the Vandermonde matrix P for the one-point spectrum case is unit lower triangular
and from (2.8) and theorem 2.3 see that

C = X(λI +N)X−1 (3.2)

with

X = D−1
c Pϕ(N)−1 and X−1 = I�PTD−1

b

where ϕ(N) is given in (2.10). Then

Ck = D−1
c Pϕ(N)−1(λI +N)k I�PTD−1

b . (3.3)

Note that PT is unit upper triangular.
Our method of proof is in the same spirit as sketches in Wilkinson’s book [14, pp. 517-519 and

521-522] for the general case. He was not concerned with tridiagonal matrices and had to assume
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explicitly that the column and row eigenvector matrices X and X−1 of C were completely regular.
These assumptions are no longer needed for an unreduced tridiagonal matrix. The following lemma
is the key for the algorithm not to fail.

Lemma 3.1. For all k ≥ n, (λI + N)k I� for λ 6= 0 is completely regular and thus admits
triangular factorization, say

(λI +N)k I� = LkDkλ
kLTk ,

and, as k →∞, Lk = I + Ek, Ek → O. The rate of convergence is low, O(1/k).
The proofs of this lemma and Theorem 3.3, from which the lemma follows, will be given in the

next section.

Theorem 3.2. Let C be a nonsingular unreduced tridiagonal matrix that permits triangular
factorization and has a one-point spectrum λ 6= 0. Given the notation above, the basic LR algorithm
applied to C produces a sequence of matrices Ck that converges (in exact arithmetic) to

D−1
c (λI +N)Dc

with Dc defined in (2.3).

Proof. The proof manipulates Ck into LU form. For k ≥ n, insert Lemma 3.1’s result into (3.3)
to get

Ck = D−1
c P

(
DcD

−1
c

)
ϕ(N)−1(I + Ek)Dkλ

kLTk P
TD−1

b

= D−1
c PDc(I + Fk)D−1

c ϕ(N)−1Dkλ
kLTk P

TD−1
b

with

Fk = (ϕ(N)Dc)
−1
Ek (ϕ(N)Dc)→ O as k →∞,

since

‖Fk‖ ≤ cond (ϕ(N)Dc) ‖Ek‖ → 0 as k →∞.

Thus,

L(Ck) = D−1
c PDcL(I + Fk)→ D−1

c PDc as k →∞,

since D−1
c ϕ(N)−1Dkλ

kLTk P
TD−1

b is upper triangular (ϕ(N)−1 is upper triangular and Toeplitz).
Finally, since P is unit lower triangular, the LU factorization of X = D−1

c Pϕ(N)−1 is

X =
(
D−1
c PDc

) (
D−1
c ϕ(N)−1

)
=: LXUX

and then

Ck+1 = L(Ck)−1CL(Ck)

= L(Ck)−1X(λI +N)X−1L(Ck) (by 3.2)

→
(
D−1
c PDc

)−1
X(λI +N)X−1

(
D−1
c PDc

)
= L−1

X LXUX(λI +N)U−1
X L−1

X LX

= UX(λI +N)U−1
X

= Dc(λI +N)D−1
c ,



8 C. Ferreira and B. Parlett

since ϕ(N) commutes with λI +N . Notice that Dc(λI +N)D−1
c is not Toeplitz unless Dc = I. It

is satisfying that ϕ(N) cancels and does not influence the limit.

Can the LR algorithm applied to our special matrices breakdown in the early stages? The
answer is yes, but only if |λ| is small. This feature depends on the property of ϕ(N) I� expressed in
Lemma 2.4. Consider, for low values of k,

Ck = D−1
c P (λI +N)kϕ(N)−1 I�PTD−1

b .

We want to know whether (λI + N)kϕ(N)−1 I� permits triangular factorization. Observe that
(λI+N)k is a polynomial in λ with leading term Iλk. Thus the leading term in (λI+N)kϕ(N)−1 I�
is ϕ(N)−1 I�λk for k = 1, 2, 3, . . .. For large enough |λ| this term dominates the rest and so, by
Lemma 2.4, (λI + N)kϕ(N)−1 I� permits triangular factorization and thus LR algorithm is well
defined. A few experiments suggest that LR does not breakdown (in our case) when |λ| > 1.

3.1.1. Proof of Lemma 3.1. Since N i = O for i ≥ n, (λI + N)k is a polynomial of degree
n− 1, for k ≥ n, with coefficients that depend on k. From [5, p.138]

(λI +N)k =
n−1∑
i=0

(
k

i

)
λk−iN i = λk∆λ

(
n−1∑
i=0

(
k

i

)
N i

)
∆−1
λ

where ∆λ is the matrix defined as

∆λ := diag(1, λ, λ2, . . . , λn−1).

So (λI +N)k I� is Hankel and upper anti-triangular. Define

Hk =

(
n−1∑
i=0

(
k

i

)
N i

)
I� =



(
k

n−1

) (
k

n−2

) (
k

n−3

)
. . .

(
k
2

)
k 1(

k
n−2

) (
k

n−3

)
. . .

(
k
2

)
k 1 0(

k
n−3

)
. . .

(
k
2

)
k 1 0 0

. . . . . . . . . . . . . . . . . . . . .(
k
2

)
k 1 0 0 . . . 0

k 1 0 0 . . . 0 0
1 0 0 . . . 0 0 0


so that

(λI +N)k I� = ∆λHk I�∆−1
λ I�λk.

By Theorem 3.3 and Corollary 3.5 below, Hk is completely regular and admits the factorization

Hk = L̃kD̃kL̃
T
k with L̃k = I + Ẽk, Ẽk → O as k →∞.

Thus, for each k ≥ n,

(λI +N)k I� = LkDkλ
kLTk with Lk = I + ∆λẼk∆−1

λ = I + Ek → I.

The diagonal matrix Dkλ
k is also a function of k but it may not converge to a finite matrix.

The formulae that follow are the outcome of a difficult determinantal evaluation and we have
not found them in the literature. Unfortunately, we were not able to show that Hk is completely
regular without exhibiting the actual formulae for each determinant.
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For 1 ≤ p ≤ n let Hn(k)p designate the leading principal p× p submatrix of n× n Hk. Also we
define the double factorial as follows:

m!! = m!(m− 1)!(m− 2)! · · · 2!1!, m ∈ N
0!! = 1.

Theorem 3.3. Let n ∈ N, 1 ≤ p ≤ n and l = min(p, n− p). Define

cn,l =



∏ 1
2 l−1
j=1

[
(n− 2j)(n− 2j − 1)

]j ·ml ·
∏l−1
j= 1

2 l+1

[
(n− 2j + 1)(n− 2j)

]l−j /(l − 1)!!

with ml = (n− l) 1
2 l, if l is even

∏ 1
2 (l−3)
j=1

[
(n− 2j)(n− 2j − 1)

]j ·ml ·
∏l−1
j= 1

2 (l+3)

[
(n− 2j + 1)(n− 2j)

]l−j /(l − 1)!!

with ml =
[
(n− l + 1)(n− l)(n− l − 1)

] 1
2 (l−1)

, if l is odd

Then

det
(
Hn(k)p

)
=

s

cn,l

l∏
i=1

(
k + p− i
n− 2i+ 1

)
, 1 ≤ p < n,

det
(
Hn(k)n

)
=s

where

s =
{

1 if p ≡ 0, 1(mod 4)
−1 if p ≡ 2, 3(mod 4) .

Once discovered, these formulae have been verified using Mathematica for various values of n.

As an example, if n = 8 the determinants det
(
Hn(k)p

)
for p = 1 : n− 1 are(

k

n− 1

)
, −1

6

(
k + 1
n− 1

)(
k

n− 3

)
, − 1

60

(
k + 2
n− 1

)(
k + 1
n− 3

)(
k

n− 5

)
,

1
240

(
k + 3
n− 1

)(
k + 2
n− 3

)(
k + 1
n− 5

)(
k

n− 7

)
,

1
60

(
k + 4
n− 1

)(
k + 3
n− 3

)(
k + 2
n− 5

)
, −1

6

(
k + 5
n− 1

)(
k + 4
n− 3

)
, −

(
k + 6
n− 1

)
We see that the cn,l are

1, 6, 60, 240, 60, 6, 1.

Remarks on the proof of Theorem 3.3. We sketch our method for evaluating the determinants of
Hn(k)p. The first step is the unobvious one; it destroys the Hankel form in a useful way. It employs
over and over again the basic identity(

a

b− 1

)
+
(
a

b

)
=
(
a+ 1
b

)
.

We treat the case p < n/2.
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Step 1. For j = 1, 2, . . . , p− 1 add column j + 1 to column j. The result is that all k’s in columns
1 : p− 1 became k + 1. Next, for j = 1, 2, . . . , p− 2 add column j + 1 to column j so that
each k+ 1 in columns 1 : p− 2 became k+ 2. Continue this process to obtain a new matrix
with the same determinant,

(
k+p−1
n−1

) (
k+p−2
n−2

)
. . .

(
k+1

n−p+1

) (
k

n−p
)

(
k+p−1
n−2

) (
k+p−2
n−3

)
. . .

(
k+1
n−p
) (

k
n−p−1

)
...

...
...

...
...(

k+p−1
n−p

) (
k+p−2
n−p−1

)
. . .

(
k+1

n−2p+2

) (
k

n−2p+1

)


.

Step 2. Expressing the binomial coefficients as factorials we can remove all factors involving k
from rows and columns. In addition, binomial coefficients can be recovered by factoring
1/(n− 2j + 1)! from each row. This yields the common factor

p∏
j=1

(
k + p− j
n− 2j + 1

)

and leaves a strange matrix K(n)
p whose (i, j) entry is (n − 2i + 1)!/(n − 2j + 1)!. It turns

out that

det
(
K(n)
p

)
= s/cn,l

where l = min(p, n− p).

Lemma 3.4. For 1 ≤ p ≤ n and k ≥ n, Hn(k)p is completely regular.

Proof. For k ≥ n, k+ p− i ≥ n− 2i+ 1 > 0 and so all the binomial coefficients are positive.

Corollary 3.5. Hk admits triangular factorization

Hk = L̃kD̃kL̃
T
k .

The subdiagonal entries of L̃k are given by

lj+1,j =
j(n− j)
k − n+ 2j

, j = 1, 2, . . . , n− 1,

and, as k →∞,

lj+m,j = O
(
k−m

)
, m = 2, 3, . . . , n− 1; j = 1, 2, . . . , n−m.

Proof. Cramer’s rule shows lj+m,j as a quotient of monic polynomials in k whose degrees differ by m.

As an example, for n = 6, the lj+1,j entries of L̃k are

5
k − 4

,
8

k − 2
,

9
k
,

8
2 + k

,
5

4 + k
.
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So, for m ≥ 1, the (j +m, j) entry of L̃k is O
(
k−m

)
and thus

L̃k → I + Ẽk, Ẽk → O as k →∞.

But the convergence is very slow, governed by O
(
k−1

)
.

3.2. The case λ = 0. The matrix C is nilpotent so that Ck vanishes for k ≥ n. Thus the
LR algorithm is neither well defined nor needed. Nevertheless, this is an important case and must
be examined. Only in 2008 did we realize that the algorithm below gives an ideal prologue to
a tridiagonal eigensolver because it wastes a small amount of effort on standard cases and deals
accurately and efficiently with difficult cases such as Liu matrices.

What happens if C does not permit triangular factorization and yet is singular? The solution
is surprisingly simple. The long abandoned Givens’ method for computing an eigenvector solves
Cx = 0 by assuming x1 = 1 and using row j to determine xj+1 for j = 1, 2, . . . , n − 1. The last
equation

cn,n−1xn−1 + cnnxn = 0

will be satisfied when and only when C is singular.
The next step is to set x(1) = x and try to solve Cx(2) = x(1) with starting value x(2)

1 = 0. Thus,
as before, use row j to determine x(2)

j+1 for j = 1, 2, . . . , n − 1. If λ = 0 has multiplicity ≥ 2, then
the last equation

cn,n−1x
(2)
n−1 + cnnx

(2)
n = x(1)

n

will be satisfied and the process continues:

for k = 3, 4, . . . do
set

x
(k)
1 = x

(k)
2 = · · · = x

(k)
k−1 = 0

solve
Cx(k) = x(k−1) by Givens’ method

until

cn,n−1x
(k)
n−1 + cnnx

(k)
n 6= x

(k−1)
n or k = n+ 1

Upon exit, the multiplicity of λ = 0 is revealed as k − 1 and

x(1), x(2), . . . , x(k−1)

form a Jordan chain for λ = 0.
This procedure suggests that if unreduced matrix C has a one-point spectrum then the eigenvalue

mean

λ = trace(C)/n

will be the spectral point and the adaptation of Givens’ method to C− λ̄I described above will yield
a Jordan basis without the need for the LR algorithm.

However the LR algorithm is useful for the general case and our analysis shows that even without
the optimal shift the algorithm converges for multiple eigenvalues.
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