Environmental impact of novel thermal and non-thermal technologies in food processing

R.N. Pereira *, A.A. Vicente

IBB – Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal

ARTICLE INFO

Article history:
Received 1 May 2009
Accepted 8 September 2009

Keywords:
Novel food processing technologies
Environmental impact
Energy efficiency
Water savings

ABSTRACT

During the last 25 years, consumer demands for more convenient and varied food products have grown exponentially, together with the need for faster production rates, improved quality and extension in shelf life. These requests together with the severity of the traditional food processing technologies were driving forces for improvements in existing technologies and for the development of new food preservation technologies. Therefore, many technological developments have been directed towards unit operations such as pasteurization, sterilization, cooking and drying, and currently the new technological approaches for food preservation are serious candidates to replace the traditional well-established preservation processes. The aim of this review is to discuss the environmental impact that some of the most promising novel food preservation technologies may represent in terms of energy efficiency, water savings and reduced emissions. The emergence of novel thermal and non-thermal technologies allows producing high quality products with improvements in terms of heating efficiency and, consequently, in energy savings. Most of these technologies are locally clean processes and therefore appear to be more environment-friendly, having less environmental impact than the traditional ones. Novel processing technologies are increasingly attracting the attention of food processors once they can provide food products with improved quality and a reduced environmental footprint, while reducing processing costs and improving the added-value of the products.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Food preservation whilst ensuring its safety and quality has been a prime goal of food processors. The use of heat through thermal processing operations, which among others includes pasteurization, sterilization, drying and evaporation, is still a common practice of the food industries in order to guarantee the microbiological safety of their products. These traditional heating methods rely essentially on the generation of heat outside the product to be heated, by combustion of fuels or by an electric resistive heater, and its transference into the product through conduction and convection mechanisms. However, these ways of processing are still limited due to considerable losses of heat on the surfaces of the equipment and installations, reduction of heat transfer efficiency and thermal damage by overheating, due to the time required to conduct sufficient heat into the thermal centre of foods. Some of these effects are being attenuated through developments on control and monitoring systems for food processing plants, intelligent design of equipments and installations, heat recycling and isolation measures, but this also represents high additional financial costs. Therefore the efforts of processors together with academic circles in attending consumer demands for high quality food and dealing with raising economic standards, and nowadays particularly with ecological concerns, has triggered the development of emergent technological approaches for food processing. Recently, electromagnetic technologies in food processing have gained increased industrial interest and have potential to replace, at least partially, the traditional well-established preservation processes (Vicente & Castro, 2007). Ohmic heating and dielectric heating, which includes radio frequency (RF) and microwave (MW) heating, are promising alternatives to conventional methods of heat processing. These novel thermal technologies are regarded as volumetric forms of heating in which thermal energy is generated directly inside the food. This common pattern of heat generation allows overcoming excessive cooking times and consequently may have direct implications in terms of both energetic and heating efficiency. In the last decade, non-thermal technologies for inactivating microorganisms have also been developed in response to the worldwide interest for more fresh and natural food products. Novel non-thermal technologies such as ultrasounds (US), high pressure processing (HPP) pulsed electric fields (PEF) and pulsed light treatment (PL), among others, have the ability to inactivate microorganisms at near-ambient temperatures, avoiding thermal degradation of the food components, and consequently preserving the sensory and nutritional quality of the fresh-like food products. Some of the effects of these
novel thermal and non-thermal technologies on the preservation of several food products have been reviewed and constitute valuable information for regulatory approval and as backup for investment decisions from food processors. In order to achieve their full potential for industrial implementation and commercial exploitation, issues related with the environmental impact, such as e.g. wastewater and gas emissions, the conservation of non-renewable resources and energy consumption are increasingly attracting the attention of the food processors since they can represent significant reductions of the processing costs. The purpose of this text is to provide a general perspective of the so-called novel thermal and non-thermal processing technologies currently available in connection with their actual and foreseeable environmental impact once implemented by the food industry.

2. Novel thermal processing technologies

2.1. Dielectric heating

2.1.1. Radio frequency (RF) and microwave (MW) heating

Dielectric heating implies the interaction between an electromagnetic alternating field and the dipoles and ionic charges contained within a food product that enables the volumetric heating of the product. RF and MW systems operate by the same principle, forcing polar molecules, such as water, and ionic species to constantly realign themselves by reversing an electric field around the food product. This molecular movement is extremely fast due to the high frequency of the field, which in RF can range from 1 to 300 MHz and in MW from 300 to 3000 MHz. The molecular friction produced by dipole rotation and by the migration of ionic species under the influence of the oscillating electromagnetic field, generates heat inside the food by energy dissipation. RF and MW are considered non-ionizing radiation because they have insufficient energy (<10 eV) to ionize atoms (Piyasena, Dussault, Koutchma, Ramsawamy, & Awual, 2003). However, since RF and MW are both within the radar range, the frequency bands that can be used for applications other than communications are limited by Electromagnetic Compatibility (EMC) regulations. There are a relatively small number of internationally agreed frequency bands known as Industrial and Scientific and Medical (ISM) bands that can be used for dielectric heating in food processing (see Table 1). The rate of heat generation per unit volume at a particular location within a food material during MW and RF heating (\(U\)) can be characterized by Eq. (1) (Buffler, 1993; Rowley, 2001):

\[
U = 2\pi \cdot f \cdot \varepsilon_0 \cdot \varepsilon' \cdot |\mathbf{V}|^2
\]

where \(|\mathbf{V}|^2\) is the strength of the electric field of the wave at that location, \(f\) is the microwave/RF frequency, \(\varepsilon_0\) is the permittivity of free space and \(\varepsilon'\) is the dielectric loss factor representing the food materials ability to absorb the wave. Despite that RF and MW are both capable of offering rapid, non-contact volumetric heating, they can be distinguished itself by the way that electric field is generated and depth of electromagnetic waves. Wavelength at the RF frequencies is up to 360 times greater than the wavelength corresponding to the two frequency values commonly used for MW (915 MHz and 2450 MHz), which allows RF energy to penetrate foods more deeply than MW (Wang, Wig, & Hallberg, 2003b). Since heating applications in food processing require a uniform temperature in the food being heated, achievement of this using MW can be a difficult task that makes this technology profitable only for small sized foods (Marra, Lyng, Romano, & McKenna, 2007). In RF heating, the electric field is generated in a directional manner between a pair of capacitor plates; the food material to be heated is placed between the two plates, where it plays the role of a dielectric. Microwaves are primarily a radiation phenomenon that usually takes place in an enclosed cavity, or in close vicinity to a waveguide applicator, where the electrical component of the microwave field approaches the food product from all directions (Leadley, 2008; Piyasena et al., 2003).

The promise of rapid and volumetric heating has called the attention of food industry for the potential use of dielectric systems. Industrial and experimental applications of MW for food preservation, among others include sterilization and pasteurization of ready to eat meals, continuous pasteurization of milk and pasta drying (Decareau, 1985; Leadley, 2008; Rosenberg & Bögl, 1987). RF systems could be particularly suitable for heat processing of cured whole meat products such as ham (Bengtsson & Green, 1970; McKenna, Lyng, Brunton, & Shirsat, 2006; Rynänen, 1995), while, RF drying of foods ingredients (e.g. herbs, spices, vegetables), snack foods (Mermelstein, 1998), potato products and pasta products are well established applications (Rowley, 2001). Radio frequency heating systems for the purpose of food pasteurization or sterilization are still being investigated due to the capability for rapid and uniform heating, and it is anticipated that RF will be capable of producing shelf-stable food with higher quality for civilian and military use (Wang, Wig, & Hallberg, 2003a). However, before fully commercial implementation of RF technology for pasteurization and sterilization of packaged foods, potential problems such as dielectric arcing and thermal runaway heating need to be addressed (Zhao, 2006). The knowledge of dielectric properties of foods to be heated is a key factor for an effective RF and MW heating. Much in the same way, the factors that influence dielectric properties of the foods during heating, such as mass, shape, water content, chemical composition, temperature and frequency of treatment, must be fully understood for further development and industrial setup of dielectric heating systems in food processing (Zhao, 2006).

2.2. Ohmic heating

Ohmic heating (OH), also called joule heating, electrical resistance heating or electroconductive heating, is based on the principle that most food products have the ability to resist to the passage of an electrical current. Heating occurs when an alternating electrical current is passed through a food resulting in the internal generation of heat, due to the electrical resistance of the food (de Alwis & Fryer, 1990). Once OH relies on direct ohmic conduction losses in a medium it requires the direct contact between the electrodes and the food product to be heated. The energy generation rate of food under ohmic heating can be calculated by Eq. 2 (Sastry & Palaniappan, 1992):

\[
\dot{U} = |\mathbf{V}|^2 \sigma
\]

where energy generation \(\dot{U}\) for heating is achieved through the application of a voltage distribution \(|\mathbf{V}|\) to a food with a given electrical conductivity \(\sigma\), which is the critical property affecting energy generation and shows a remarkable dependence on temperature.
(Vicente & Castro, 2007). For most of the solid foods σ increases sharply with temperature and the relationship between σ and temperature becomes linear with increasing field strength values (Sastry & Palaniappan, 1992). For liquid foods, σ always displays a linear relationship with temperature if non-conductive constituents are absent (Vicente & Castro, 2007). Depending on the value of σ in some products, the particulates could heat preferentially to the carrier fluid, if needed, however, the ionic content of products to be heated can be altered (e.g. addition of electrolytes, such as NaCl) to improve the effectiveness of heating. If the values of σ are similar for all the components of the product then it heats uniformly. In addition to σ other parameters such as particle orientation, geometry, size and concentration affect the OH rate: when more than one phase is present these parameters can exert their influence via the effective conductivity of the mixture (σ_{eff}), which is the case of particle size and concentration, or they can directly influence the heating rate of the different constituents, which is the case of particle orientation and geometry (Vicente, Teixeira, & Castro, 2006). In short, OH technology is distinguished from other electrical heating methods by the presence of electrodes contacting the foods (in microwave and inductive heating electrodes are absent), the frequency applied (unrestricted, except for the specially assigned radio or microwave frequency range), and the waveform (also unrestricted, although typically sinusoidal) (Vicente & Castro, 2007). The major benefits claimed for ohmic heating technology are as follows:

- Temperature required for HTST processes can be achieved very quickly.
- Suitable for continuous processing without heat transfer surfaces.
- Uniform heating of liquids with faster heating rates.
- Reduced problems of surface fouling or over heating of the product compared to conventional heating.
- Fresher-tasting, higher quality products than with alternate heat preservation techniques.
- No residual heat transfer after the current is shut off, and very low heat losses.
- Useful in pre-heating products before canning.
- Low maintenance costs (no moving parts) and high energy conversion efficiencies.
- Environmentally-friendly system.

Potential industrial applications of OH are very wide and include blanching, drying, evaporation, dehydration, fermentation (Cho, Yousef, & Sastry, 1996). Due to its extremely rapid heating rates, ohmic heating technology enables higher pasteurization temperatures to be applied, with the consequent increase in refrigerated shelf life, without inducing coagulation or excessive denaturation of the constituent proteins (Parrott, 1992). For all these reasons the focus of OH is being currently addressed to thermal processing operations for food preservation once this technology can be accomplished in a continuous in-line heater for cooking and sterilization. OH is particularly suitable for the processing of viscous, liquid foods (Icier & Ilicali, 2005b) and foods containing particles. Several research works were already developed in order to contribute to the validation of ohmic heating technology for use in applications such as the processing of a low-acid particulate product in a can (Ramaswamy, Balasubramaniam & Sastry, 2005), meat cooking (de Halleux, Piette, Buteau, & Dostie, 2005) stabilization of baby foods (Icier & Ilicali, 2005a), and pasteurization of milk (Pereira, Martins, & Vicente, 2008). Commercial ohmic heating systems are now available from a number of suppliers including Invesys APV (Crawley, UK), Raztek Corp. (Sunnyvale, CA, USA) and Emmepiemme SRL (Piacenza, Italy) (Leadley, 2008). As an example, a list of industrial ohmic heating plants installed by Emmepiemme SRL is shown in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Country</th>
<th>Year (installation)</th>
<th>Product</th>
<th>Heat power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>1994</td>
<td>Tomato sauces and pastes*</td>
<td>50</td>
</tr>
<tr>
<td>Greece</td>
<td>1998</td>
<td>Peach and apricot slice and dice*</td>
<td>150</td>
</tr>
<tr>
<td>Italy</td>
<td>2000</td>
<td>Diced pears and apples*</td>
<td>150</td>
</tr>
<tr>
<td>Italy</td>
<td>2001</td>
<td>Low-acid vegetables purées*</td>
<td>100</td>
</tr>
<tr>
<td>Mexico</td>
<td>2002</td>
<td>Strawberries</td>
<td>250</td>
</tr>
<tr>
<td>France</td>
<td>2002</td>
<td>Fruit preparation</td>
<td>100</td>
</tr>
<tr>
<td>France</td>
<td>2003</td>
<td>Processing line for meat recipes</td>
<td>50</td>
</tr>
<tr>
<td>Italy</td>
<td>2004</td>
<td>Plum peeled tomato and tomato dices*</td>
<td>480</td>
</tr>
<tr>
<td>Italy</td>
<td>2005</td>
<td>Vegetables sauces</td>
<td>60</td>
</tr>
</tbody>
</table>

Adapted from Leadley (2008).
* Aseptic process and filling.

3. Novel non-thermal processing technologies

The term ‘non-thermal processing’ is often used to designate technologies that are effective at ambient or sublethal temperatures. High hydrostatic pressure, pulsed electric fields, high-intensity ultrasound, ultraviolet light, pulsed light, ionizing radiation and oscillating magnetic fields have the ability to inactivate microorganisms to varying degrees (Butz & Tauscher, 2002). Some of these treatments may involve heat due to the generation of internal energy (e.g. adiabatic heating and resistive heating during HHP and PEF, respectively), however, they are classified as non-thermal once, contrarily to thermal processing technologies, they can eliminate the use of high temperatures to kill the microorganisms, avoiding the deleterious effects of heat on flavor, color and nutritive value of foods.

These novel technologies are still struggling with impairments to their full industrial application. For example, irradiation has a high potential and is probably one of the most versatile among the food preservation technologies. However, its development and commercialization has been hampered in the past by unfavourable public perceptions (Resurreccion, Galvez, Fletcher, & Mira, 1995). Ultraviolet (UV) radiation is an established disinfection alternative used to produce drinking water. More than 500 UV plants supplying drinking water operate in North America, and in Europe more than 2000 plants use this technology as a common disinfection technique for drinking water supplies. The benefits of UV treatment in comparison to other methods of disinfection are very clear: no chemicals are used; it is a non-heat-related process; lesser changes in color, flavor, odor, or pH; and no residuals are left in the fluid stream. However, a potential problem of using short-wave UV light is that it can damage human eyes, and prolonged exposure can cause burns and skin cancer in humans (Bintsis, Litopoulos-Tzanetaki, & Robinson, 2000; Shama, 1999), which is a concern especially among industry workers. Pulsed Light is also considered an emerging, non-thermal technology capable of reducing the microbial population on the surface of foods and food contact materials by using short and intense pulses of light in the Ultraviolet Near Infrared (UV–NIR) range. PL systems have relatively low operation costs and do not significantly contribute negatively to the environmental impact of the processes where it is included because it has the potential to eliminate microorganisms without the need for chemicals. Further, it does not produce volatile organic compounds (VOC) and generates only reduced amounts of solids wastes. However, the poor penetrating power of light (requires transparency and surface smoothness of the product to be treated) and high investment costs (€ 300,000–800,000) are currently limiting PL applications. The most
interesting application of PL systems could be in sterilizing films of packaging material as an alternative to hydrogen peroxide (Palmieri and Cacace, 2005).

Extensive research is being conducted on the effects that other technologies such as ultrasound and magnetic fields may have on biological systems. Data on these subjects are still scarce and, therefore, further research should be carried out to extend the present knowledge.

The most extensively researched and promising non-thermal processes for preservation of foods appear to be pulsed electric fields (PEF) and high hydrostatic pressure (HHP) (Ross, Griffiths, Mittal, & Deeth, 2003), which are being commercially applied mostly for the processing of juices and other fruit-derived products (Jia, Zhang, & Min, 1999; Leistner & Gould, 2002; Meremelstein, Qiu, Sharma, Tuhela, Jia, & Zhang, 1998).

3.1. Pulsed electric fields (PEF)

PEF offers the ability to inactivate microorganisms with minimal effects on the nutritional, flavor and functional characteristics of food products due to the absence of heat. PEF technology is based on the application of pulses of high voltage (typically 20–80 kV/cm) delivered to the product placed between a set pair of electrodes that confine the treatment gap of the PEF chamber. The large field intensities are achieved through storing a large amount of energy in a capacitor bank (a series of capacitors) from a direct current power supply, which is then discharged in the form of high voltage pulses (Zhang, Barbosa-Cánovas, & Swanson, 1995). The pulse caused by the discharge of electrical energy from the capacitor is allowed to flow through the food material for an extremely short period of time (1–100 μs) and can be conducted at moderate temperatures for less than 1 s (Deeth, Datta, Ross, & Dam, 2007). When food is subjected to the electrical high-intensity pulses several events, such as resistance heating (Sastry & Barach, 1995), electrolysis (Hulsheger & Niemann, 1980) and disruption of cell membranes (Sitzmann, 1995), can occur contributing to the inactivation of microorganisms. In fact, several theories exist for the destruction of bacterial cells by PEF, but they commonly describe damage on the cell membrane (electroporation) which affects its functioning and may lead to cell death (Deeth et al., 2007; Sale & Hamilton, 1968). PEF technology is mainly intended for preservation of pumpable fluid or semi-fluid foods (Qin, Potha-tekumy, Barbosa-Cánovas, & Swanson, 1996). In particular it could be used to improve the shelf-life of milk (Craven et al., 2008; Sampedro, Rodrigo, Martinez, Rodrigo, & Barbosa-Cánovas, 2005), green pea soups (Vega-Mercado, Martin-Belloso, Chang, Barbosa-Cánovas, & Swanson, 1996), liquid whole eggs (Barbosa-Cánovas, 2001; Ma, Chang, & Barbosa-Cánovas, 1997) and fruit juices (Heinz, Toepfl, & Knorr, 2002; Hodgins, Mittal, & Griffiths, 2002). In fact, the adoption of PEF for commercial non-thermal pasteurization of fruit juices has been first implemented by Genesis Juices, Oregon, USA (Clark, 2006). A combination of mild heat and PEF might also be helpful to achieve sufficient enzyme inactivation to avoid the necessity of refrigerated storage. When operating at high treatment temperatures and making use of synergetic heat effects, PEF energy input might be reduced close to the amount required for conventional thermal pasteurization, assuming 95% of heat recovery (Toepfl, Mathys, Heinz, & Knorr, 2006). Although the study of PEF technology has been focused on its ability to inactivate microorganisms in liquid food products at low temperatures, some other applications in the food industry have been explored as well, such as the enhancement of drying efficiency and decontamination of liquid waste (Barbosa-Cánovas & Sepúlveda, 2005).

The lack of understanding of the factors that can affect the efficacy of PEF-treatment, such as proper processing conditions and design of equipment, type of microbial growth, suitability and properties of the treated food (Deeth et al., 2007), are currently limiting the validation of this technology for commercial application.

3.2. High hydrostatic pressure (HHP)

The application of HHP on foodstuffs is currently a subject of major interest for both food preservation and food preparation (López-Fandiño, Carrascosa, & Olano, 1996) once it inactivates vegetative microorganisms by using pressure rather than heat to achieve pasteurization. Food processing by high hydrostatic pressure has been reviewed by several authors, giving particular attention to microbiological, (bio)chemical, technological, environmental and energetic aspects (Barbosa-Cánovas, Palou, & Swanson, 1997; Butz, Funtenberger, Haberditzl, & Tauscher, 1996; Cheftel, 1995; Cheftel & Culioli, 1997; Galazka & Ledward, 1995; Hendrickx, Ludikhuyze, Van den Broeck, & Weemaes, 1998; Heremans, 1995; Ludikhuyze, Van Loey, Indrawati, & Hendrickx, 2003; Messens, Van Camp, & Huygebaert, 1997; Meyer, Cooper, Knorr, & Lievelied, 2000; Mozhaev, Heremans, Frank, Masson, & Balny, 1994; Patterson, 2005; San Martin, Barbosa-Cánovas, & Swanson, 2002; Toepfl et al., 2006). The high pressure treatment of foods involves subjecting food materials to pressures that generally can range from 100 to 1000 MPa. In agreement with the isostatic principle, during HHP pressure is applied uniformly and instantaneously through a food material (with or without packaging), independently of its mass, shape and composition. Under pressure, biomolecules obey the Le Chatelier–Braun principle and reactions that result in reduced volume will be promoted. Such reactions affect the structure of large molecules (whose tertiary structure is important for functionality), such as proteins. HPP causes a partial unfolding of proteins that can promote covalent and non-covalent interactions during and upon release of pressure, thus triggering their denaturation. This results in the inactivation of microorganisms and enzymes (Hendrickx et al., 1998) and can also promote changes in the rheological properties of the food products (Ahmed, Ramasamy, Ali, & Ngadi, 2003). On the other hand, small molecules that have little secondary, tertiary and quaternary structures, such as amino acids, vitamins and flavor and aroma components contributing to the sensory and nutritional quality of food, remain unaffected (Balcı & Wilbey, 1999; Cheftel, 1991). Process temperature during HHP can be specified from below 0 °C (to minimize any effects of adiabatic heat) to above 100 °C and exposure times can range from a millisecond pulse to a treatment time of over 20 min. In contrast to thermal processing, economic requirements for throughput may limit exposure times of treatment to less than 20 min (Food & Nutrition, 2000). Overall, this technology offers several advantages for food preservation: (1) homogeneity of treatment due to the fact that pressure is uniformly applied around and throughout the food product; (2) minimal heat impact; (3) shelf-lives similar to thermal pasteurization, while maintaining the natural food quality parameters (nutrients and sensorial preservation); (4) small amount of energy needed to compress a solid or liquid to 500 MPa as compared to heating to 100 °C, (Tewari, 2007). HPP cold pasteurization technology is gathering applicability throughout the world in the processing of a variety of product categories. HPP has already become a commercially implemented technology, spreading from its origins in Japan, followed by USA and now in Europe, with worldwide take-up increasing almost exponentially since 2000. In 2005 it was estimated that there were around 82 commercial-scale high pressure food processing systems in use worldwide. Examples of HHP processed products established in the industrial sector include cooked meats, seafood and fish, vegetables and fruit juices (Norton & Sun, 2008). Apart from consumer benefits and reduction of energy costs, a key advantage of high pressure processing is its applicability to packaged foods, making obsolete the efforts to prevent recontamination.
or the use of aseptic filling processes (Toepfl et al., 2006). Currently, foods with a high acid content are particularly good candidates for HPP technology, contrary to low acid, shelf-stable products which are not commercially available yet because of the limitations in killing spores (Ramaswamy, Balasubramaniam & Kaleton, 2005). Bacterial spores are very resistant to commercially achievable pressures and, as a result, products that are currently on the market are chilled, and many are high acid or contain additional preservation hurdles such as the presence of antimicrobial compounds (Garriga, Aymerich, Costa, Monfort & Hugas, 2002). In addition, there is a need for further research to determine the effects of high pressure on the physicochemical and mechanical properties of packaging films (Leadley, 2008).

4. Environmental impact

The energy consumption and energy savings in the food industry have been in focus for the last 30 years. This is due in part to comprehensive automation of production processes and particularly by the increasing demand for food safety. The higher levels of hygiene consecutively established as goals subsequently lead to a larger consumption of cold and hot water as well as an increased number of cleaning cycles in production (Dalsgaard & Abbots, 2003). This has dramatically increased the environmental footprint of the food industry. Thermal preservation operations in the food industry, such as cooking, pasteurization, sterilization and drying involve the consumption of a cocktail of energy types. Generally, the principal type of energy used for traditional thermal processing is fossil fuel, whereas electricity is mainly used for refrigeration and generation of mechanical power for pumps (Dalsgaard & Abbots, 2003). A common approach to the pasteurization of beverages (such as milk, beer and fruit juices), is the use of heat exchangers (plate, tubular, shell and spiral heat exchangers), which are capable of handling two or more fluid streams in a single unit. In the basic process, liquids flow continuously through a heat exchanger, where they are heated for the required residence time to kill pathogens. During thermal treatment, the food product and the heating medium are separated by heat-conducting barriers and heat is transferred to the product by conduction and convection. Direct heating methods such as steam injection and steam infusion are also used for thermal processing, particularly highly viscous fluids. These methods offer high heating rates, however, the resulting dilution may not be a desirable effect. The distribution of energy in the food and beverage industries in Denmark in 2002 (Table 3) clearly shows that the majority of the energy input in food processing is used for thermal purposes, such as heating, drying, evaporation and frying. This trend is still valid until the present moment. The novel thermal and non-thermal technologies for food processing already mentioned (RF, MW and OH heating, PEF and HHP) are being developed and evaluated continuously, many of which can provide not only energy savings, but also water savings, increased reliability, reduced emissions, higher product quality, improved productivity (Masanet, Worrell, Graus, & Galitsky, 2008), and consequently, less impact on the environment. However, for many of the emerging technologies, that kind of information is still scarce or nonexistent in the published literature. Actual technology performance will depend on the facility, the application of the technology, and the existing production equipment with which the new technology is integrated (Masanet et al., 2008).

4.1. Energy savings

A recent study (Lung, Masanet, & McKane, 2006) provided estimated information on the potential energy savings of PEF and dielectric drying systems compared to existing technologies. Orange juice and cookies manufacturing were chosen as the representative target industrial sectors for the analysis of PEF pasteurization and RF drying, respectively. Concerning PEF pasteurization, the natural gas savings were estimated at 100%, since thermal processing is eliminated. The electricity savings of PEF can be up to 18%, based on the assumed electricity consumption range of the base technology. Concerning RF drying of cookies the estimated natural gas savings ranged from 73.8 to 147.7 TJ per year, however, these savings were masked by the increase in electricity consumption, necessary to power the RF drying unit. Depending on the natural gas consumption of the base tunnel oven, the primary energy savings of RF drying can range from 0 to 73.8 TJ per year.

On the other hand, in accordance with Toepfl (2006), the preservation of liquid media by PEF was shown to cause operation costs in the range of 1–2 €-cents per liter, about 10-fold higher than those needed for conventional thermal processing. However, the impact of pulse energy dissipation and the simultaneous resistive heating of the suspending medium have to be taken into account, since the medium temperature will increase and energy efficient PEF processing requires taking advantage of synergistic effects of mild heat (Toepfl et al., 2006). The combined synergistic effects of mild treatment temperatures and PEF can provide a shorter treatment time with energy recovery and an energy requirement of less than 40 kJ/kg for a reduction of 6 log cycles of Escherichia coli. In this example, an energy input of 40 kJ/kg will result in a temperature increase of 11 °C in the case of orange juice, showing that with a maximum temperature of 66 °C the preservation process is still operating at lower maximum temperature and shorter residence times than during conventional heat preservation. Therefore a reduction of the energy requirements from the original 100 kJ/kg to 40 kJ/kg has been achieved, thus rendering PEF energy efficient and able to be easily integrated in existing food processing operations (Heinz et al., 2002). If a PEF-treatment must be performed strictly at ambient temperature, even the modest heat input will have to be removed by an active cooling system, thus causing additional energy costs. Although possible, cooling systems should be avoided once if cooling is necessary, it means that energy dissipation is too high due to high conductivity, indicating that the product may not be suitable for the PEF process. Despite of the increase of the delivered electrical power, PEF pasteurization seems to be less energy-intensive than traditional pasteurization methods, once it leads to annual savings of 791.2–1055 TJ per year of fossil fuel-equivalents, while also contributing to the reduction of CO2 emissions (Lelieveld, 2005).

HHP processing (100–1000 MPa) is one of the most promising technologies for food treatment and preservation at room temperature (Chetelat, 1992). A popular technique during HHP processing is to combine compression heating with conventional heating for food sterilization (Furukawa, Shimoda, & Hayakawa, 2003; Koutchma, Guo, Pataczka, & Parisi, 2005). Instantaneous adiabatic compression during pressurization provokes a quick increase in the temperature of the food products, which is reversed when the pressure is released, providing rapid heating and cooling conditions and hence short processing times (Shao, Zhu, Ramaswamy & Marcotte, 2008). This results in a new approach to food

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>Heating</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Adapted from Dalsgaard and Abbots (2003).
sterilization with a significant improvement in the food quality. The combined application of high pressure and heat can be utilized to achieve an inactivation of spores of Clostridium spp. similar to that of conventional sterilization. However, the specific energy input required for sterilization of cans can be reduced from 300 to 270 kJ/kg when applying the HHP treatment. In case of HHP processing, a compression energy recovery rate of 50% can be estimated when a two-vessel system or pressure storage is used. This means that, by making use of energy recovery, a specific energy input of 242 kJ/kg will be required for sterilization, corresponding to a reduction of 20% in the total energy requirements (Toepfl et al., 2006).

Concerning OH, studies conducted at the Agri-Food Canada’s Food Research and Development Centre (FRDC) with meat products, where traditional smokehouse cooking was replaced by an ohmic process, indicated that energy savings of at least 70% could be achieved (Vicente et al., 2006). In tests at the Louisiana State University Agricultural Center, sweet potato samples were processed using OH prior to freeze-drying. OH increased the rate of freeze-drying up to 25%, which led to significant savings in both processing time and energy use (Lima, Zhong, & Lakkakula, 2002; Masanet et al., 2008). Fouling of heat exchangers is an issue for traditional thermal processing systems because it reduces heat transfer efficiency and increases pressure drop affecting the economy of a processing plant (Toyoda, Schreier, & Fryer, 1994). Fouling-related costs are additional energy, lost productivity, additional equipment, manpower, chemicals, and environmental impact (Gillham, Fryer, Hastings, & Wilson, 2000). Once surface temperatures are lower in ohmic heating because heat is generated in the bulk fluid, less fouling should take place (Bansal & Chen, 2006). Despite the lack of information, these novel technologies are also considered locally clean processes (Sun, 2006; Tewari, 2007).

4.2. Reduced gas and effluent emissions and water savings

The main types of gas emissions into the air from food processing operations are related with heat and power production and can be summarized as follows:

- Particulate matter and gases, such as carbon dioxide, sulphur dioxide and nitrogen oxides from combustion processes;
- Particulate matter from process operations such as size reduction, cooking and heating processes;
- Volatile organic compounds (VOCs) and other chemicals’ emissions from processes involving the heating or cooking of food;
- Halogenated VOCs and other chemicals’ emissions leaking from refrigeration systems.

Overall, the traditional preservation by heat is still dependent on temperature–time protocols, and at industrial scale this usually requires large amounts of fossil fuels and water. In fact, it is estimated that in the food industry ca. 57% of the fossil fuel consumption is used to generate steam (Einstein, Worrell, & Khurshch, 2001). For example, in 1998, the US food industry accounted for 4.4% of the energy consumption of the US industry, being the fifth biggest consumer (out of 20 sectors) after petroleum and coal products, chemicals, paper and primary metals (Muller, Marechal, Wolewinski, & Roux, 2007). At that time, 33% of the total energy inputs used in food processing corresponded to steam production (see Table 4). Much in the same way, in 2002, the US food industry accounted for 5.4% of the total purchased energy by the manufacturing sector, and 9% of the electricity, 9.7% of the natural gas and 10% of the coal were used in the food sector (Administration MCES, 2002).

The steam is used for cooking, concentrating liquid foods, drying, and sterilizing, in some food processing facilities. The typical steam generation method used in food processing facilities implies the use of boilers, where treated cold feed water is fed and receives heat from fuel combustion. Although the feed water is treated, some impurities still remain in it and build up in the boiler. Therefore, a great amount of water is periodically drained from the bottom of the boiler in a process called as blowdown, in order to remove dissolved solids in the boiler system. The blowdown rate for some boilers used in food processing facilities can be as high as 15% of the steam output, instead of the recommended rate of 1–3% (Wang, 2009). Insufficient blowdown may lead to the accumulation of dirt and act as an insulator, thus reducing the heat transfer rate and wasting energy. In fact, poor maintenance of boilers can reduce the boiler efficiency up to 20–30%. Boiler efficiency is also affected by heat losses (up to 2%) from the boiler surface via radiation and convection. The use of excess of air to burn the fuel is a common practice once it improves safety and reduces NOx emission. However, poorly maintained boilers can have up to 140% excess air, when 10–15% excess air is enough. This leads to increased losses of energy and high emissions of CO2. In addition, heat loss through a steam distribution system, which is responsible for carrying the steam from the boiler, is inevitable and if steam lines have leaks, large amounts of steam are lost, which can be a major waste of energy. According to Wang (2009), the energy losses of a steam generation system or boiler could include:

- Flue gas including the sensible heat in the dry flue gas, water vapor formed by the combustion of hydrogen in fuels, and the moisture in fuels and combustion air;
- Boiler blowdown water;
- Incomplete combustion;
- Fouling of heat transfer surfaces;
- Heat convection and radiation losses from the hot boiler surface.

Many efforts have been dedicated to develop a sustainable industry. Reduction of the use of non-renewable energy resources, lower emission of air pollutants such as CO2, and increase of the energy efficiency of devices and processes utilizing renewable energy, is now a major concern for all processors. As shown previously in this text, most of the energy used in the food industry is indirect, and activities such as steam raising account for the biggest share of the combustion process emissions. The combustion processes release a range of pollutants (smoke, carbon dioxide, organic compounds), being these emissions largely dependent on the type of fuel used (Tooogood & Key, 2000). Therefore, food processing systems powered only by electricity may present an environmental advantage when compared with traditional processing technologies. In general, the novel technologies mentioned in Sections 2 and 3 are considered environmental friendly, once they may eliminate completely, or at least reduce significantly the local use of boilers or steam generation systems and consequently, diminish wastewater, increasing water and energy savings. Moreover, if the electricity is generated by an environmentally clean, renewable energy source (e.g. hydroelectric power), then these processes will effectively contribute to reduce the pollution load, helping to preserve the environment. In addition, the novel non-thermal technologies, such as PEF and HHP, may reduce partially the use of cooling
systems, which often represents approximately 50% of the total electricity consumption (Dalsgaard & Abbotts, 2003), and are therefore also responsible for pollutant emissions.

Several applications of the so-called novel technologies are still being developed in order to reduce the environmental impact of conventional processes such as peeling, blanching and drying. Conventionally, peeling of fruits and vegetables is performed both by immersion in hot caustic soda solution (lye) or by using steam, which requires high water use and provides less quality. Ohmic peeling reduces environmental problems associated with lye peeling (e.g. treatment of wastewater) because it does not use lye in the process, rather only a very low concentration of NaCl while yielding a comparable quality of peeled tomatoes (Wongsa-Ngasri, 2004). Mizrahi (1996) reported that blanching by ohmic heating considerably reduced the extent of solid leaching as compared to a hot water process and a short blanching time could be used, regardless of the shape and size of the product. E.g. blanching of mushrooms using ohmic heating was recently reported (Sensoy & Sastry, 2007), being OH able to maintain a high solids content during the process when compared to conventional blanching, while avoiding the use of excessive amounts of water. It seems clear that OH blanching offers advantages in terms of water savings without compromising the quality of the processed food. OH, PEF, IF and RF can significantly accelerate drying processes when compared to untreated and conventionally heat pre-treated samples (Lima et al., 2002; Nowak & Lewicki, 2004; Wang, 1995), allowing a precise control of the process temperature and leading to lower energy costs, reduced gas consumption and less combustion-related emissions.

Also the pressure-assisted sterilization processes are the focus of numerous ongoing research projects, once HHP application is fore also responsible for pollutant emissions. Also the pressure-assisted sterilization processes are the focus of numerous ongoing research projects, once HHP application is

5. Conclusions

The application of emerging thermal and non-thermal technologies holds potential for producing high-quality and safe food products. Current limitations, related with high investment costs, full control of variables associated with the process operation and lack of regulatory approval have been delaying a wider implementation of these technologies at the industrial scale. It is likely that some of these technologies, according to their specificities, will find niche applications in the food industry (some of them already did), replacing or complementing conventional preservation technologies, through synergistic interactions (e.g. hurdle concept). No matter their state of implementation, it seems clear that emerging thermal and non-thermal technologies have clear environmental benefits, be it by improving the overall energy efficiency of the process or by reducing the use of non-renewable resources.

Acknowledgement

Author is thankful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for its doctoral grant.

References

Barbosa-Cánovas, G. V. (2001). Developments in pulsed electric fields – USA research and consortium activities. In Proceedings of electric field processing the potential to make a difference. Chipping Campden: Campden and Chilworth Food Research Association.

Heinz, V., Toepfl, S., & Knorr, D. (2002). Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric field treatment. Innovative Food Science and Emerging Technologies, 4, 167–175.

San Martín, M. F., Barbosa-Cánovas, G., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 42, 627–645.

Vega-Mercado, H., Martin-Belloso, O., Chang, F.-J., Barbosa-Cánovas, G., & Swanson, B. (1996). Inactivation of Escherichia coli and Bacillus subtilis suspended in pea soup using pulsed electric fields. Journal of Food Processing and Preservation, 20(6), 501510.

