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Abstract. By an associate inverse subsemigroup of a regular semigroup S we mean a

subsemigroup T of S containing a least associate of each x ∈ S, in relation to the natural

partial order ≤S . We describe the structure of a regular semigroup with an associate

inverse subsemigroup, satisfying two natural conditions. As a particular application,

we obtain the structure of regular semigroups with an associate subgroup with medial

identity element.

1. Introduction

In [3] the authors introduced the notion of an associate subgroup of an orthodox semi-
group S. This is a subsemigroup T of S with the property that |T ∩ A(x)| = 1, for all
x ∈ S, where A(x) = {y ∈ S : x = xyx} is the set of associates of x. Such a semigroup is
necessarily a group, specifically, the maximal subgroup Hα of S, where α is the identity
element of the group [[3], Theorem 3]. The main result of [3] is a complete description of
the structure of an orthodox semigroup S with an associate subgroup whose identity ele-
ment α is a middle unit (i.e., xαy = xy, for every x, y ∈ S). Taking into account that in an
orthodox semigroup with an associate subgroup the identity α of the group is medial (i.e.,
xαx = x, for all x ∈ 〈E(S)〉) [[3], Theorem 5], Blyth and Mendes Martins described in [4]
the structure of regular semigroups with an associate subgroup whose identity element is a
medial idempotent, thus obtaining a generalization of the work developed in [3]. We begin
this paper by introducing the concept of an associate inverse subsemigroup, extending
the notion of associate subgroup of a semigroup. An associate inverse subsemigroup of a
regular semigroup is a subsemigroup T of S containing a least associate of each x ∈ S, in
relation to the natural partial order ≤S in S. Such a subsemigroup T of S is necessarily
inverse. The motivation of this study lies in a very simple and interesting characteriza-
tion of inverse semigroups in terms of the natural partial order in an arbitrary semigroup.
Semigroups with inverse associate subsemigroups occur naturally in the context of inverse
transversals. These are inverse subsemigroups of a semigroup S that contain exactly a
single inverse of each s ∈ S. Inverse transversals have been extensively studied by many
mathematicians. A review of the theory can be found in [2]. While in some cases inverse
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transversals and inverse associate subsemigroups coincide, in many important classes of
semigroups these two concepts are not even related (see section 3 of this paper). This
reality provides further motivation for this study.

In section 2 we present an axiomatic characterization of semigroups with an associate
inverse subsemigroup and in section 3 the connection with inverse transversals is explored.
Finally, in section 4, we establish the structure of regular semigroups with an associate
inverse subsemigroup, satisfying two natural conditions, and deduce an application of the
theorem to obtain the structure of regular semigroups that have an associate subgroup
with medial identity element.

For standard notions and notation in semigroup theory we refer the reader to the text-
books of Howie [5] Lawson [6] and Petrich [8]. In particular, for a semigroup S, E(S)
denotes the subset of idempotents of S and 〈E(S)〉 represents the subsemigroup generated
by E(S). Moreover, if S is inverse, the natural partial order ≤ in S is defined by

x ≤ y ⇐⇒ x = ey,

for some e ∈ E(S). If S is regular ≤ is extended by

x ≤ y ⇐⇒ x = ye = fy,

for some e, f ∈ E(S). Throughout the paper, all order related concepts and comments are
considered with respect to the natural partial order.

2. Associate inverse subsemigroups

We begin with a characterization of inverse semigroups in terms of the natural partial
order in a semigroup. This proved to be of fundamental importance for the subsequent
results.

Theorem 2.1. Let S be a regular semigroup. The following are equivalent:

(i) S is inverse;
(ii) For all a ∈ S, A(a) contains a least element with respect to the natural partial

order.

Proof. (i) ⇒ (ii). Let a ∈ S. Since aa−1a = a, a−1 ∈ A(a) and so A(a) 6= ∅. We show
that a−1 is the least element of A(a). Let x ∈ A(a). Since a = axa and S is inverse,
a−1 = (axa)−1 = a−1(ax)−1 = a−1ax. Thus a−1 ≤ x.

(ii) ⇒ (i). Since the semigroup S is regular, the natural partial order in S is given by

a ≤ b ⇔ a = fb = be, for some idempotents e, f ∈ E(S).

Let a ∈ S and let
a∗ = min{x ∈ S : axa = a}.
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We show that a∗ is the unique inverse of a in S. On one hand, since a∗aa∗ ∈ V (a) ⊆ A(a),
a∗ ≤ a∗aa∗. On the other hand, since both a∗a and aa∗ are idempotents, we have that
a∗aa∗ ≤ a∗. Thus a∗aa∗ = a∗ ∈ V (a). Next let a′ be an inverse of a. By hypothesis, there
exist idempotents e, f ∈ S such that a∗ = a′e = fa′ = a∗e = fa∗ and so

a′aa∗ = a′aa′e = a′e = a∗

and
a∗aa′ = fa′aa′ = fa′ = a∗.

Hence,
a∗ = a′aa∗ = a′aa∗aa′ = a′aa′ = a′.

Thus a∗ is the unique inverse of a in S. ¤

Let S be a regular semigroup and T a subsemigroup of S such that, for each s ∈ S,
A(s) ∩ T has a least element with respect to the natural partial order. By Theorem 2.1,
the subsemigroup T of S is inverse. We call such a semigroup T an associate inverse
subsemigroup of S and denote it by S∗. For each s ∈ S, we denote the least element of
A(s)∩T by s∗. We also define x∗∗ = (x∗)∗ for every x ∈ S. Then (x∗)∗∗ = ((x∗)∗)∗ = (x∗∗)∗

and so we can write as x∗∗∗.

Proposition 2.2. Let S be a regular semigroup with an associate inverse subsemigroup
S∗. For each s, t ∈ S, the following hold

(i) s∗s∗∗t∗t∗∗ = t∗t∗∗s∗s∗∗;
(ii) s∗∗∗ = s∗;
(iii) (st)∗ ≤ t∗(s∗stt∗)∗s∗.

Proof. (i) For s, t ∈ S, s∗s∗∗ and t∗t∗∗ are idempotents of the associate inverse sub-
semigroup. Since this semigroup is inverse, they commute.

(ii) Since the associate subsemigroup is inverse, for s ∈ S, it follows from the proof of
Theorem 2.1 that s∗∗ = (s∗)−1 and so

s∗∗∗ =
[
(s∗)−1

]−1 = s∗.

(iii) For s, t ∈ S,

st · t∗(s∗stt∗)∗s∗ · st = ss∗stt∗(s∗stt∗)∗s∗stt∗t = ss∗stt∗t = st.

Then, t∗(s∗stt∗)∗s∗ ∈ S∗ ∩A(st) and so, by definition of (st)∗, we obtain

(st)∗ ≤ t∗(s∗stt∗)∗s∗.
¤

Proposition 2.3. Let S be a regular semigroup with an associate inverse subsemigroup
S∗. The assignment x 7→ x∗ is a unary operation on S that satisfies, for all s, t ∈ S,

(i) s = ss∗s;
(ii) s∗t∗ = (s∗t∗)∗∗;
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(iii) s = st∗s ⇒ s∗ ≤ t∗.

Proof. (i) Clear from the definition of s∗ ∈ S∗ ∩A(s).
(ii) Let s∗, t∗ ∈ S∗. Since the semigroup S∗ is inverse, s∗t∗ =

[
(s∗t∗)−1

]−1. Theorem
2.1 now gives s∗t∗ = [(s∗t∗)∗]∗ .

(iii) Clear from the definition of s∗. ¤

Proposition 2.4. Let S be a regular semigroup with a unary operation x 7→ x′ satisfying
(i), (ii) and (iii) of Proposition 2.3. Then S′ = {x′ : x ∈ S} is an associate inverse
subsemigroup of S.

Proof. Let x ∈ S. Then, by (i), x′ ∈ A(x) and so x′ ∈ A(x)∩S′. Moreover, if t′ ∈ A(s)∩S′

then x = xt′x and (iii) implies that x′ ≤ t′. So x′ is the least associate of x in S′. By
(ii) we have that S′ is a subsemigroup of S. It now follows from Theorem 2.1 that the
semigroup S′ is inverse. Thus, it is an associate inverse subsemigroup of S. ¤

An axiomatic characterization of a semigroup containing an associate inverse subsemi-
group is a consequence of Propositions 2.3 and 2.4.

Theorem 2.5. A regular semigroup S contains an associate inverse subsemigroup if and
only if it has a unary operation x 7→ x∗ satisfying, for all s, t ∈ S,

(i) s = ss∗s;
(ii) s∗t∗ = (s∗t∗)∗∗;
(iii) s = st∗s ⇒ s∗ ≤ t∗. 2

3. The inverse transversal connection

An inverse transversal of a regular semigroup S is an inverse subsemigroup S◦ of S such
that |S◦ ∩ V (s)| = 1, for all s ∈ S. We denote the only element of S◦ ∩ V (s) by s◦.

In any regular semigroup with inverse transversal S◦, for all a ∈ S, a◦ is a minimal
associate of a in S◦. In fact, if t∗ ∈ A(a) ∩ S◦ and t∗ ≤ a◦ then a◦e = t∗ = fa◦, for some
e, f ∈ E(S). Thus, t∗at∗ = fa◦aa◦e = fa◦e = t∗, whence t∗ ∈ V (a) ∩ S◦ and so t∗ = a◦.

In general, for a regular semigroup S having both an inverse transversal and an associate
inverse subsemigroup, these two inverse subsemigroups of S are not related. In some
classes of semigroups, special kinds of inverse transversals are, however, intimately related
to associate inverse subsemigroups. Weakly multiplicative inverse transversals are an
example.

An inverse transversal S◦ of a regular semigroup S is said to be

• weakly multiplicative if (e ∈ E(S) ⇒ e◦ ∈ E(S◦));
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• associate if it is an associate inverse subsemigroup of S.

Proposition 3.1. Any weakly multiplicative inverse transversal of a regular semigroup S

is associate.

Proof. Let S be a regular semigroup with weakly multiplicative inverse transversal S◦.
Let a ∈ S and b◦ ∈ A(a) ∩ S◦. Then a = ab◦a. We have, by [[2], Theorems 1.1 and 1.4],

a = ab◦a ⇒ a◦ = ((ab◦)◦ab◦a)◦(ab◦)◦ ⇒ a◦ = ((ab◦)◦a)◦b◦◦a◦

⇒ a◦ = (b◦◦a◦a)◦b◦◦a◦ ⇒ a◦ = a◦a◦◦b◦b◦◦a◦

⇒ a◦ = b◦b◦◦a◦a◦◦a◦ ⇒ a◦ = b◦b◦◦a◦

⇒ a◦ = b◦(ab◦)◦ ⇒ a◦ ∈ b◦E(S◦) ⇒ a◦ ≤ b◦.

¤

Corollary 3.2. Let S be a regular monoid. An inverse transversal S◦ of S is associate if
and only if it is weakly multiplicative.

Proof. Suppose that S◦ is associate and let e ∈ E(S). Then, from the observation at the
beginning of this section, e∗ = e◦. Since S has identity 1S and 1S ∈ A(e) ∩ S∗, it follows
that e∗ ≤ 1S , i.e., e◦ ≤ 1S and so e◦ ∈ E(S◦). Thus S◦ is weakly multiplicative.

The converse follows from the previous proposition. ¤

Proposition 3.3. Let S be a regular semigroup and T a subsemigroup of S satisfying

(1) tSt ⊆ T, for all t ∈ T.

Then T is an inverse transversal if and only if T is an associate inverse subsemigroup of
S.

Proof. Suppose that T is an inverse transversal of a regular semigroup S such that tSt ⊆ T ,
for all t ∈ T . Let s ∈ S and s◦ be the unique inverse of s in T . Clearly s◦ ∈ A(s) ∩ T .
Now let t ∈ A(s) ∩ T . Then tst ∈ V (s) ∩ T and so s◦ = tst, giving s◦ ≤ t.

Conversely, let T be an associate inverse subsemigroup of S satisfying tSt ⊆ T , for all
t ∈ T . Let s ∈ S and s∗ be the least associate of s in T . Since s∗ss∗ ∈ V (s) ∩ T and
s∗ss∗ ≤ s∗, we obtain s∗ = s∗ss∗, whence s∗ ∈ V (s). Now let t ∈ V (s) ∩ T . From s∗ ≤ t

we obtain s∗ = et = tf , for some idempotents e, f ∈ T . We have

tss∗ = tstf = tf = s∗

and
s∗st = etst = et = s∗.

So,
s∗ = tss∗ = tss∗st = tst = t.
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Thus s∗ is the unique inverse of s in T . ¤

In view of this proposition, it follows from [[1], Corollary 1] that in a regular semigroup
any two associate inverse subsemigroups of S satisfying (1) are isomorphic. By contrast
with inverse transversals, this cannot be generalized to any two associate inverse subsemi-
groups of S - see Examples 3.1, 3.2 and 3.3, 3.4. Moreover, Example 3.2 shows that an
associate inverse transversal does not necessarily satisfy condition (1) of Proposition 3.3.

The next proposition is a consequence of Theorem 2.1 and [[2], Theorem 1.12].

Proposition 3.4. Let S be a regular semigroup with a unary operation x 7→ x′ satisfying

(1) ss′s = s;
(2) s′s′′t′t′′ = t′t′′s′s′′;
(3) (st)′ = t′s′;
(4) s′′′ = s′.

If S′ ∩ V (x) 6= ∅, then S′ is an inverse transversal of S and S is orthodox.

Conversely, if S is an orthodox semigroup with an inverse transversal S◦, say, then the
assignment x 7→ x◦ is a unary operation that satisfies conditions (1), (2), (3) and (4).

Proof. Suppose first that S is a regular semigroup with a unary operation x 7→ x′ satisfying
the given conditions. Let S′ = {x′ : x ∈ S}. By (3), S′ is a semigroup and, by (1), for
each x ∈ S, x′ ∈ S′ ∩A(x). We show that x′ is the least element of A(x) ∩ S′. We have

t′ ∈ S′ ∩A(x) ⇒ x = xt′x

⇒ x′ = x′t′′x′ by (3)

⇒ x′ = x′t′′t′′′t′′x′ by (1)

⇒ x′ = x′t′′t′t′′x′ by (4)

⇒ x′x′′ = x′t′′t′t′′x′x′′

⇒ x′x′′ = x′t′′x′x′′t′t′′ by (1), (2)

⇒ x′x′′x′ = x′t′′x′x′′t′t′′x′

⇒ x′ = x′x′′t′t′′x′

⇒ x′ = t′t′′x′x′′x′. by (2)

⇒ x′ = t′t′′x′.

Dually, we have x′ = x′t′′t′. Since t′′x′ and x′t′′ are idempotents, x′ ≤ t′. By Theorem 2.1,
it follows that the semigroup S′ is inverse.

Let x ∈ S and suppose that V (x)∩S′ 6= ∅. We show that |V (x)∩S′| = 1. Let t′ ∈ V (x).
Since t′ ∈ A(x) we have x′ ≤ t′ and so x′ = et′ = t′f , for some idempotents e and f in S.
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Also,

t′xx′ = t′xt′f = t′f = x′

and

x′xt′ = et′xt′ = et′ = x′.

Hence,

x′ = t′xx′ = t′xx′xt′ = t′xt′ = t′.

Finally, by [[2], Theorem 1.12], S is orthodox.

Conversely, suppose that S is an orthodox semigroup with inverse transversal S◦ =
{x◦ : x ∈ S}, where {x◦} = V (x) ∩ S◦ for each x ∈ S. Consider the unary operation
x 7→ x◦ defined in S. Let s, t ∈ S. Clearly s = ss◦s. Also, since S◦ is inverse, x◦◦◦ =(
(x◦)−1

)−1 = x◦ and the idempotents of S◦ commute, whence (4) and (2) hold. Condition
(3) is an immediate consequence of [[2], Theorem 1.12]. ¤

Unlikely to the class of regular non-orthodox semigroups, inverse transversals and as-
sociate inverse semigroups are related for orthodox semigroups. In fact, as an immediate
consequence of Proposition 3.4 and its proof, we have

Proposition 3.5. Every inverse transversal of an orthodox semigroup is associate. 2

Example 3.1 below shows that the converse of Proposition 3.5 does not hold.

Example 3.1. Let S = {1, a, b, c, d} be the band with operation defined by

1 a b c d

1 1 a b c d

a a a b a a

b b a b b b

c c a b c d

d d a b c d

.

Let x∗ = 1, for all x ∈ S. Then S∗ is an associate inverse subsemigroup and is not an
inverse transversal of S.

Example 3.2. Let S be the band defined in Example 3.1. Define a unary operation ∗ in
S by

1∗ = 1, a∗ = b∗ = b, c∗ = d∗ = c.

Then S∗ = {1, b, c} is an associate inverse transversal of S. Moreover, since cac = a 6∈ S∗,
S∗ does not satisfy condition (1) of Proposition 3.3.

Example 3.3. Let A2 = 〈a, b | a2 = aba = a, bab = b, b2 = 0〉 = {a, b, ab, ba, 0} be the 5-
element non-orthodox 0-simple semigroup. Let A∗2 = {a}. Since, for all x ∈ A2, a ∈ A(x)
and | A(x) ∩A∗2 |= 1, A∗2 is an associate inverse subsemigroup of A2. Since a 6∈ V (0), A∗2
is not an inverse transversal of A2.
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Example 3.4. Let A2 be the non-orthodox semigroup referred to in Example 3.3. Let ∗
be the unary operation defined in A2 by

a∗ = (ba)∗ = (ab)∗ = b∗ = a, 0∗ = 0.

Then A∗2 = {a, 0} is an associate inverse transversal of A2.

Examples 3.1, 3.2 and 3.3, 3.4 show that two associate inverse subsemigroups of a
semigroup are not necessarily isomorphic.

Example 3.5. Let C1 be a non-orthodox completely simple semigroup with identity 1
adjoined. Since C is non-orthodox, there exist maximal subgroups G and H such that the
unique inverse of the identity element e of G in H is not equal to the identity of H, i.e.,
it is not an idempotent in H. Let (C1)o = H ∪ {1}. Then (C1)o is an inverse transversal
of C1 such that, for the idempotent e ∈ G, eo is not an idempotent. So, by Corollary 3.2,
the inverse transversal (C1)o is not associate.

Example 3.6. [[2], Example 3.3] Let S be the set of real singular 2× 2 matrices having a
non-zero element in (1, 1)-position. Let M consist of S with the 2×2 zero matrix adjoined.
Then M is a regular semigroup and, relative to the definitions

[
a b

c a−1bc

]◦
=

[
a−1 0
0 0

]
,

[
0 0
0 0

]◦
=

[
0 0
0 0

]
and I◦2 = I2,

the set (M1)◦ =

{[
x 0
0 0

]
: x 6= 0

}
∪

{[
0 0
0 0

]}
∪{I2} is an inverse transversal of M1.

Let X be the 2×2 matrix having 1
2 in each position. Then X ∈ E(M1) and X◦ =

[
2 0
0 0

]
.

Obviously X◦ 6∈ E(M1). Again, by Corollary 3.2, we conclude that the inverse transversal
(M1)◦ is not associate.

The next example shows that there are associate inverse subsemigroups of a semigroup
for which condition (3) of Proposition 3.4 is not satisfied.

Example 3.7. Let B be the following semilattice:

·

· ·

· · ·

·

ab

ae1 be1

a
e1

b

e2

@
@

@

¡
¡

¡

@
@

@¡
¡

¡

@
@

@

¡
¡

¡
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Then B has the two element chain {e1, e2}, with e1 < e2, as associate subsemilattice.
Since ae1a 6= a and be1b 6= b, we get a∗ = e2 = b∗. However

abe1ab = ab ⇒ (ab)∗ = e1 < e2 = b∗a∗.

4. The structure theorem

In this section we proceed with the description of a method of constructing regular
semigroups with an associate inverse subsemigroup. As seen in Proposition 2.3, such a
semigroup S satisfies condition x∗y∗ = (x∗y∗)∗∗, for all x, y ∈ S. However, condition
(xy)∗ = y∗x∗ is not necessarily satisfied for all x, y ∈ S (see Example 3.7). Moreover, the
latter condition together with ef∗e∗ = ef∗ and e∗f∗e = f∗e, ∀e, f ∈ E(C) allows S∗ to
act on C∗CC∗, where C denotes the subsemigroup generated by the idempotents of S,
by conjugation. This proved to be crucial for our construction and so our goal in this
section is to describe all regular semigroups S, with an associate inverse subsemigroup,
that satisfy

(I1) (st)∗ = t∗s∗, ∀s, t ∈ S;

(I2) ef∗e∗ = ef∗ and e∗f∗e = f∗e, ∀e, f ∈ E(S).

The construction we present is somehow semidirect product like because of the multi-
plication formula, where products are formed of an element and the result of the action
on another element. Obtaining Theorems 3 and 4, due to Blyth and Mendes Martins [3],
as an application of our construction, was a natural consequence.

Let C be an idempotent generated semigroup with associate inverse subsemigroup C∗

satisfying (I1) and (I2).

Notice that it follows from (I1) that C∗ is a semilattice since for e ∈ E(C) we get
e∗ = (e2)∗ = e∗e∗ whence, for arbitrary c = e1...en ∈ C, ei ∈ E(C), we have, by (I1),
c∗ = e∗n...e∗1 ∈ E(C). In particular, each c∗ is equal to c∗∗. Moreover, for every c, d ∈ C

we have
cd∗c∗ = cc∗cd∗(c∗c)∗ = cc∗cd∗ = cd∗

and dually c∗d∗c = d∗c. Further, each cd∗ ∈ CC∗ equals cd∗(cd∗)∗ since cd∗(cd∗)∗ =
cd∗d∗∗c∗ = cd∗. Similarly, we have d∗c = (d∗c)∗d∗c. Then every element y of CC∗

(respectively, C∗C) is such that y = yy∗ (respectively, y = y∗y). We can now prove the
following lemma:

Lemma 4.1. Every element x ∈ C∗CC∗ can be written as x = c∗cc∗ for some c ∈ C.

Proof. Let x = d∗ce∗ ∈ C∗CC∗. Then x ∈ C ∩ CC∗ ∩ C∗C and so,

x∗xx∗ = x∗(xx∗) = x∗x = x.

The result follows. ¤
9



Lemma 4.2. Let S be a regular semigroup with associate inverse subsemigroup S∗, satis-
fying (st)∗ = t∗s∗ for all s, t ∈ S. Then condition (I2) is equivalent to

(I2)’ a∗bc∗d∗ = d∗a∗bc∗ for all a, b, c, d ∈ 〈E(S)〉.

Proof. Note first that 〈E(S)〉 ∩ S∗ = E(S∗).

(I2)’ ⇒ (I2). For e, f ∈ E(S) we have

ef∗ = ee∗e∗ef∗ = ee∗ef∗e∗ = ef∗e∗

and dually f∗e = e∗f∗e.

(I2) ⇒ (I2)’. Let first e ∈ E(S), a, c, d ∈ 〈E(S)〉. Then

d∗a∗ec∗ = d∗a∗ec∗(d∗a∗e)∗ = d∗a∗ec∗(a∗e)∗d∗ = d∗a∗ec∗d∗

= d∗(ec∗)∗a∗ec∗d∗ = (ec∗d∗)∗a∗ec∗d∗ = a∗ec∗d∗.

Consider now b ∈ 〈E(S)〉. Note that b∗, bb∗, b∗b ∈ E(S). We get

a∗bc∗d∗ = a∗bb∗b∗b∗(b∗b)c∗d∗ = a∗bb∗b∗d∗b∗b∗bc∗ = d∗a∗bb∗b∗bc∗ = d∗a∗bc∗,

which completes our proof. ¤

Let now V be an inverse semigroup acting on C∗CC∗ by endomorphisms on the left
such that:

(A1) the action is compatible with the unary operation ∗, i.e., ( g(c∗cc∗))∗ = g(c∗), for
all g ∈ V, c ∈ C;

(A2) there is a surjective homomorphism π : C∗CC∗ → E(V ) such that, for all e ∈ E(V )
and c ∈ C,

e(c∗cc∗) = c∗cc∗ ⇐⇒ (c∗cc∗)π ≤ e

and π is injective on C∗. In particular, this means that C∗ ' E(V ).

Lemma 4.3. For all c ∈ C, (c∗cc∗)π = c∗π.

Proof. Let c ∈ C. Since (c∗cc∗)π(c∗cc∗) = c∗cc∗, we have

c∗ = (c∗cc∗)∗ =
(

(c∗cc∗)π(c∗cc∗)
)∗

= (c∗cc∗)π(c∗)

which yields

c∗π ≤ (c∗cc∗)π = c∗π(c∗cc∗)π ≤ c∗π,

whence c∗π = (c∗cc∗)π. ¤

Lemma 4.4. Let g ∈ V , n > 1 and c1, c2, ..., cn ∈ C∗CC∗ such that gg−1
ci = ci for some

i ∈ {1, 2, ..., n} . Then
gg−1

(c1c2 · · · cn) = c1c2 · · · cn.
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Proof. If gg−1
(ci) = ci we have ciπ ≤ gg−1 and so

gg−1ciπ = ciπ.

Thus
gg−1

(c1c2 · · · ci · · · cn) = gg−1 (
(c1···ci···cn)π(c1 · · · ci · · · cn)

)

= gg−1c1π···ciπ···cnπ(c1 · · · ci · · · cn)

= c1π···gg−1ciπ···cnπ(c1 · · · ci · · · cn) = c1π···ciπ···cnπ(c1 · · · ci · · · cn)

= (c1···ci···cn)π(c1 · · · ci · · · cn) = c1 · · · ci · · · cn

¤

Lemma 4.5. Let g ∈ V and c ∈ C∗CC∗ such that gg−1
c = c. Then,

g−1(cπ)g = (g−1
c)π.

Proof. First, we notice that, for every a ∈ E(V ), we have

(2) a(g−1
c) = g−1

c =⇒ g−1(cπ)g ≤ a

In fact,
a( g−1

c) = g−1
c =⇒ gag−1

c = gg−1
c

=⇒ gag−1
c = c

=⇒ cπ ≤ gag−1 by definition of π

=⇒ g−1(cπ)g ≤ g−1gag−1g

=⇒ g−1(cπ)g ≤ a.

Since ( g−1
c)π ∈ E(V ) and, by definition of π, ( g−1

c)π( g−1
c) = g−1

c, we have, by (2), that

(3) g−1(cπ)g ≤ ( g−1
c)π

Moreover, again by hypothesis and by definition of π, we have

g−1(cπ)g( g−1
c) = g−1(cπ)( gg−1

c) = g−1
((cπ)c) = g−1

c.

Thus, since g−1(cπ)g ∈ E(V ), we have

(4) (g
−1

c)π ≤ g−1(cπ)g.

By (3) and (4) equality follows. ¤

Using the action and the homomorphism defined in (A1) and (A2), we now consider
the following construction: Let

[C, V ] = {(aa∗, g, b∗b) : a, b ∈ C, g ∈ V, a∗π = gg−1, b∗π = g−1g, g(b∗bb∗) = a∗aa∗}.

Note that if a∗π = gg−1 and b∗π = g−1g,

g(b∗bb∗) = a∗aa∗ ⇐⇒ g−1
(a∗aa∗) = b∗bb∗.

11



In fact,

g(b∗bb∗) = a∗aa∗ ⇒ g−1g(b∗bb∗) = g−1
(a∗aa∗) ⇔ b∗bb∗ = g−1

(a∗aa∗).

By symmetry, we have equivalence.

Define a multiplication in [C, V ] by

(aa∗, g, b∗b)(cc∗, h, d∗d) = (aa∗ g(b∗bcc∗), gh, h−1
(b∗bcc∗)d∗d).

Proposition 4.6. [C, V ] is a regular semigroup with

E([C, V ]) = {(aa∗, gg−1, b∗b) ∈ [C, V ] : aa∗ ∈ V (b∗b)}.

Proof. We first show that the multiplication is uniquely defined. Let u = aa∗ g(b∗bcc∗).
Then u∗ = a∗ g(b∗c∗) by (i) and (a) and u = uu∗ by (ii). In order to show that u∗π =
ghh−1g−1 it suffices to verify that (g(b∗c∗))π = ghh−1g−1, since a∗π = gg−1. Since
b∗π = g−1g, by Lemma 4.4, we have g−1g(b∗c∗) = b∗c∗ and so, by Lemma 4.5, (g(b∗c∗))π =
g(b∗c∗)πg−1. Hence,

(g(b∗c∗))π = gg−1ghh−1g−1 = ghh−1g−1.

Let v = h−1
(b∗bcc∗)d∗d. By a similar argument we obtain v∗π = h−1g−1gh.

Next we observe that u∗uu∗ = a∗aa∗ g(b∗bcc∗) and v∗vv∗ = h−1
(b∗bcc∗)d∗dd∗ by the

remarks at the beginning of this section. We compute

gh(v∗vv∗) = gh
(

h−1
(b∗bcc∗)d∗dd∗

)
= ghh−1

(b∗bcc∗) gh(d∗dd∗)

= ghh−1
(b∗bcc∗) ghh−1

(c∗cc∗) = ghh−1
(b∗bcc∗)

= g( hh−1
(b∗bcc∗)) = g(b∗bcc∗) by Lemma 4.3

= g(b∗bb∗) g(b∗bcc∗) = a∗aa∗ g(b∗bcc∗) = u∗uu∗.

We continue showing that the multiplication is associative. Consider the products
((aa∗, g, b∗b)(cc∗, h, d∗d))(ee∗, k, f∗f) and (aa∗, g, b∗b)((cc∗, h, d∗d)(ee∗, k, f∗f)). The first
components of the products are

(aa∗ g(b∗bcc∗) gh( h−1
(b∗bcc∗)d∗dee∗) and aa∗ g(b∗bcc∗ h(d∗dee∗)),

which are in fact equal, since hh−1
(b∗bcc∗) = b∗bcc∗ by Lemma 4.4. By a similar argument

one shows that also the third components coincide. Here the equality h−1h(d∗dee∗) =
d∗dee∗ is used, which comes from h−1

(c∗cc∗) = d∗dd∗. The equality of the second compo-
nents is trivial.

Let (aa∗, g, b∗b) ∈ [C, V ]. Then, from g(b∗bb∗) = a∗aa∗ and g−1
(a∗aa∗) = b∗bb∗ we have

a∗ = (g(b∗bb∗))∗ = g(b∗) and b∗ = (g−1
(a∗aa∗))∗ = g−1

(a∗). Thus, since a∗π = gg−1 and
12



b∗π = g−1g, the element (b∗, g−1, a∗) is in [C, V ]. Moreover,

(aa∗, g, b∗b)(b∗, g−1, a∗)(aa∗, g, b∗b) = (aa∗ g(b∗bb∗), gg−1, g(b∗bb∗)a∗)(aa∗, g, b∗b)

= (aa∗, gg−1, a∗aa∗)(aa∗, g, b∗b)

= (aa∗ gg−1
(a∗aa∗), g, g−1

(a∗aa∗)b∗b)

= (aa∗a∗aa∗, g, b∗bb∗b∗b)

= (aa∗, g, b∗b).

Hence, [C, V ] is regular.

Finally, we prove that every idempotent of [C, V ] is of the form (aa∗, gg−1, b∗b) with
aa∗ ∈ V (b∗b). That the second component of an element belonging to E([C, V ]) must be
an idempotent in V is clear. Since, by Lemma 4.4, gg−1

(b∗baa∗) = b∗baa∗, we have

(aa∗, gg−1, b∗b)(aa∗, gg−1, b∗b) = (aa∗, gg−1, b∗b) ⇔
{

aa∗b∗baa∗ = aa∗

b∗baa∗b∗b = b∗b

⇔ aa∗ ∈ V (b∗b).

¤

Proposition 4.7. The set {(aa∗, v, b∗b) ∈ [C, V ] : v ∈ E(V )} is the semigroup generated
by the idempotents of [C, V ]. Moreover, 〈E([C, V ])〉 ' C.

Proof. On one hand, since V is an inverse semigroup, the second component of the product
of a finite number of idempotents of [C, V ] is always an idempotent.

On the other hand, for a, b ∈ C and g ∈ V such that (aa∗, gg−1, b∗b) ∈ [C, V ], the
elements (aa∗, a∗π, a∗aa∗) and (b∗bb∗, b∗π, b∗b) are idempotents of [C, V ] and

(aa∗, gg−1, b∗b) = (aa∗, gg−1, a∗aa∗)(b∗bb∗, gg−1, b∗b).

So, equality follows.

Next, we show that the mapping θ : c 7→ (cc∗, c∗π, c∗c) is an isomorphism from C onto
〈E([C, V ])〉. For any c, d ∈ C,

cθdθ = (cc∗, c∗π, c∗c) (dd∗, d∗π, d∗d)

= (cc∗ c∗π(c∗cdd∗), c∗πd∗π, d∗π(c∗cdd∗)d∗d)

= (cc∗c∗cdd∗, (d∗c∗)π, c∗cdd∗d∗d) by Lemma 4.2

= (cd(cd)∗, (cd)∗π, (cd)∗cd) = (cd)θ

and so θ is a homomorphism. Also, if cc∗ = dd∗ and c∗c = d∗d then

c = cc∗c∗c = dd∗d∗d = d.
13



Finally, given (aa∗, gg−1, b∗b) ∈ 〈E([C, V ])〉, we have

(aa∗, gg−1, b∗b) = (aa∗, a∗π, a∗aa∗) (b∗bb∗, b∗π, b∗b)

= (aa∗(aa∗)∗, a∗π, (aa∗)∗aa∗) ((b∗b)∗b∗b(b∗b)∗, b∗π, (b∗b)∗b∗b)

= (aa∗)θ(b∗b)θ

= (aa∗b∗b)θ.

Thus θ is a bijection. ¤

Proposition 4.8. The set {(a∗, g, b∗) | (bb∗, g−1, a∗a) ∈ [C, V ]} is an associate inverse
subsemigroup of [C, V ] which is isomorphic to V .

Proof. Let K = {(a∗, g, b∗) | (bb∗, g−1, a∗a) ∈ [C, V ]}. Obviously K is a subsemigroup
of [C, V ]. We show that the mapping ψ : K → V defined by (a∗, g, b∗) 7→ g is an
isomorphism: ψ is trivially uniquely defined and a homomorphism. The mapping ψ is
injective since (a∗, g, b∗), (c∗, g, d∗) ∈ [C, V ] implies a∗π = gg−1 = c∗π and b∗π = g−1g =
d∗π, whence a∗ = c∗, b∗ = d∗ follow by injectivity of π on C∗. It remains to show that
ψ is surjective. Let g ∈ V . Since π is surjective, there is c∗cc∗ ∈ C∗CC∗ such that
(c∗cc∗)π = g−1g. Consider (c∗cc∗, g−1, c∗cc∗). Since g−1g(c∗cc∗) = c∗cc∗, it follows by
Lemma 4.5 that (g(c∗cc∗))π = g(c∗cc∗)πg−1. We conclude that (g(c∗cc∗))π = gg−1 and
then (c∗cc∗, g−1, g(c∗cc∗)) ∈ [C, V ]. Therefore,

((g(c∗cc∗))∗, g, (c∗cc∗)∗) = (c∗cc∗, g−1, g(c∗cc∗))∗ ∈ K.

Hence ψ is surjective and it is clear that each element (aa∗, g, b∗b) of [C, V ] has a least
associate in K, namely (b∗, g−1, a∗). ¤

As a consequence of the proof of the previous proposition, for each (aa∗, g, b∗b) ∈ [C, V ],
(aa∗, g, b∗b)∗ = (b∗, g−1, a∗) and so, {(a∗, g, b∗) | (bb∗, g−1, a∗a) ∈ [C, V ]} = [C, V ]∗.

Note that the idempotents of [C, V ]∗ are of the form (a∗, gg−1, a∗). Further, if we
drop the assumption that π is injective on C∗ or surjective on C∗CC∗ then [C, V ] is still
a semigroup with associate inverse subsemigroup [C, V ]∗. However, [C, V ]∗ is then not
necessarily isomorphic to V .

Proposition 4.9. The semigroup [C, V ] satisfies conditions (I1) and (I2).

Proof. (I1) It follows trivially using the fact that (aa∗, g, b∗b)∗ = (b∗, g−1, a∗).
14



(I2) Let (aa∗, gg−1, b∗b) ∈ E([C, V ]) and (c∗, hh−1, c∗) ∈ E([C, V ]∗). Then
(aa∗, gg−1, b∗b)∗ = (a∗, gg−1, a∗). Using Lemma 4.4, we compute

(aa∗, gg−1, b∗b)(c∗, hh−1, c∗)(a∗, gg−1, a∗) = (aa∗, gg−1, b∗b)(a∗c∗, hh−1gg−1, c∗a∗)

= (aa∗b∗ba∗c∗, gg−1hh−1, b∗ba∗c∗)

= (aa∗b∗bc∗, gg−1hh−1, b∗bc∗) since a∗ = b∗,

which comes from aa∗ ∈ V (b∗b)

= (aa∗, gg−1, b∗b)(c∗, hh−1, c∗).

The rest of the proof follows by duality. ¤

We can now state the main result of this paper.

Theorem 4.10. Let C be an idempotent generated semigroup and V an inverse semigroup
satisfying conditions (I1) and (I2). Then the set

[C, V ] = {(aa∗, g, b∗b) : a, b ∈ C, g ∈ V, a∗π = gg−1, b∗π = g−1g, g(b∗bb∗) = a∗aa∗},

where the morphism π and the action are the ones defined in (A1) and (A2), with multi-
plication defined by

(aa∗, g, b∗b)(cc∗, h, d∗d) = (aa∗ g(b∗bcc∗), gh, h−1
(b∗bcc∗)d∗d),

is a regular semigroup with an associate inverse subsemigroup

[C, V ]∗ = {(a∗, g, b∗) ∈ [C, V ]}

that satisfies conditions (I1) and (I2).

Moreover, [C, V ]∗ ' V and 〈E([C, V ])〉 ' C.

Conversely, every regular semigroup S with associate inverse subsemigroup S∗ satisfying
(I1) and (I2) is isomorphic to a semigroup obtained by the preceding construction, where
C = 〈E(S)〉 and V = S∗.

Proof. The first part is an immediate consequence of Propositions 4.6, 4.7, 4.8 and 4.9.

The semigroup C is of the form as prescribed in the preceding construction. Further,
S∗ acts on C∗CC∗ on the left by conjugation, since

s∗∗c∗cc∗s∗s∗∗d∗dd∗s∗ = s∗∗c∗cc∗d∗dd∗s∗

and

t∗∗s∗∗c∗cc∗s∗t∗ = (ts)∗∗c∗cc∗(ts)∗.

Moreover this action is compatible with ∗, since

(s∗∗(c∗cc∗))∗ = (s∗∗c∗cc∗s∗)∗ = s∗∗c∗s∗ = s∗∗(c∗) = s∗∗((c∗cc∗)∗).
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Now define π : C∗CC∗ → E(S∗) by π : c∗cc∗ 7→ c∗. Then

s∗∗s∗(c∗cc∗) = c∗cc∗ ⇐⇒ s∗∗s∗c∗cc∗ = c∗cc∗ ⇐⇒ s∗∗s∗c∗ = c∗

⇐⇒ c∗ ≤ s∗∗s∗ ⇐⇒ (c∗cc∗)π ≤ s∗∗s∗,

and, since C satisfies (I1) and (I2), π is a homomorphism, which is clearly surjective and
injective on C∗. Hence we may form [C, V ].

Finally we show that the mapping φ : S → [C, V ], defined by s 7→ (ss∗, s∗∗, s∗s) is an
isomorphism. Since (ss∗)∗ = s∗∗s∗, (s∗s)∗ = s∗s∗∗ and

s∗∗((s∗s)∗s∗s(s∗s)∗) = s∗∗(s∗s∗∗s∗ss∗s∗∗) = s∗∗s∗ss∗s∗∗s∗ = (ss∗)∗ss∗(ss∗)∗,

φ is well defined.

We continue showing that φ is a homomorphism. Let s, t ∈ S. It follows that

sφtφ = (ss∗, s∗∗, s∗s)(tt∗, t∗∗, t∗t)

= (ss∗ s∗∗(s∗stt∗), s∗∗t∗∗, t∗(s∗stt∗)t∗t)

= (ss∗s∗∗s∗stt∗s∗, s∗∗t∗∗, t∗s∗stt∗t∗∗t∗t)

= (st(st)∗, (st)∗∗, (st)∗st) = (st)φ.

Moreover, φ is injective since ss∗ = tt∗, s∗∗ = t∗∗ and s∗s = t∗t implies

s = ss∗s∗∗s∗s = tt∗t∗∗t∗t = t.

It remains to show that φ is surjective. Consider the element (ss∗, t∗∗, u∗u) ∈ [C, V ], i.e.,
s∗∗s∗ = t∗∗t∗, u∗u∗∗ = t∗t∗∗, t∗∗u∗uu∗u∗∗t∗ = s∗∗s∗ss∗, being equivalent to t∗∗u∗ut∗ =
s∗∗s∗ss∗ and t∗s∗∗s∗ss∗t∗∗ = u∗uu∗u∗∗, being equivalent to t∗ss∗t∗∗ = u∗uu∗u∗∗. We
obtain

(ss∗t∗∗u∗u)φ = (ss∗, t∗∗, u∗u)

since

ss∗t∗∗u∗u(ss∗t∗∗u∗u)∗ = ss∗t∗∗u∗uu∗u∗∗t∗s∗∗s∗ = ss∗t∗∗u∗ut∗ = ss∗s∗∗s∗ss∗ = ss∗,

(ss∗t∗∗u∗u)∗∗ = s∗∗s∗t∗∗u∗u∗∗ = t∗∗t∗t∗∗t∗t∗∗ = t∗∗

and

(ss∗t∗∗u∗u)∗ss∗t∗∗u∗u = u∗u∗∗t∗s∗∗s∗ss∗t∗∗u∗u = t∗ss∗t∗∗u∗u = u∗uu∗u∗∗u∗u = u∗u.

Hence φ is surjective. ¤

Finally, we observe that, considering the particular case of S∗ being a quasi-ideal inverse
transversal of S (i.e. S∗SS∗ ⊆ S∗), we obtain, as a corollary of Theorem 4.10, the orthodox
version of Theorem 4.2 in [7], due to McAlister and McFadden.

Also, Theorem 3 and Theorem 4 in [4] are corollaries of Theorem 4.10. In fact, if S

is a regular semigroup with an associate subgroup, then 〈E(S)〉∗ is singleton. Its unique
16



element, say α, is therefore a medial idempotent of S and so conditions (i) and (ii) in
Theorem 4.10 hold (see [4]).
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