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A semigroup S is called F-monoid if S has an identity and if there exists a
group congruence p on S such that each p-class of S admits a greatest element
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Abstract

A semigroup S is called F-monoid if S has an identity and if there
exists a group congruence p on S such that each p-class of S contains a
greatest element with respect to the natural partial order of S <g (see
[7]). Generalizing results given in [4] and specializing some of [3] five
characterizations of such monoids S are provided. Three unary operations
x, o and — on S defined by means of the greatest elements in the different
p-classes of S are studied. Using their properties a charaterization of F-
monoids S by their regular part S° = {a°|a € S} and the associates of
elements in S° is given. Under the hypothesis that S* = {a"|a € S} is a
subsemigroup it is shown that S is regular, whence of a known structure

Introduction and summary

with respect to the natural partial order <g on S (see [7]):

This concept generalizes that of an F-regular semigroup (see [4]; note that the
latter are necessarily monoids) and is a particular case of an F-semigroup (see

a <g b if and only if a = xb = by, xa = a for some x,y € S.
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[3]). All these notions are special instances of generalized F-semigroups (see
[2]). These are semigroups S, on which there exists a group congruence p such
that the identity p-class (only) admits a greatest element with respect to <g,
the pivot of S. It was noted in [2], that the congruence p is equal to the least
group congruence on S, whence is uniquely determined. Also, every generalized
F-semigroup S is E-inversive, that is, for any a € S there exists some z € S
such that az € Eg (see [9], [10]). If S has an identity then S is F-unitary, i.e.,
if e,ea € Eg or e,ae € Eg then a € Eg (see[2]). Therefore, we are dealing with
particular E-inversive, E-unitary monoids. The existence of an identity element
in a semigroup S has a strong impact on the structure of S. This observation is
again corroborated in the theory of F-monoids (compared with F-semigroups).

In Section 2, several examples of non-regular F-monoids are given. In par-
ticular, it is shown that adjoining an identity to an F-semigroup does not yield
an F-monoid, in general. A necessary and sufficient condition for this to hold is
given. In Section 3, the following characterizations of F-monoids are presented:
(i) by residuation of the identity, (ii) by the subsets T' (a) = {x € S : aza <g a},
a € S, (iii) by the maximal elements of (S,<g) and (iv) by means of an ad-
ditional unary operation satisfying certain axioms. Here a new description of
E-inversive semigroups proves useful. Three unary operations * and o (already
defined in [4]) and — are considered in Section 4. Several properties of them are
proved which are used in the following. In particular, it is shown that for an F-
monoid S, the set S° = {a® € S|a € S} forms an F-regular subsemigroup of S
(the structure of which was studied in [4]). In Section 5, by means of the regular
part S° of an F-monoid S a characterization of F-monoids is given observing
that S consists of the associates of elements in S°. Concerning the second un-
ary operation *, the set S* = {a* € S|a € S} does not form a subsemigroup,
in general (see [4]). If this is the case then S is called an F-*-monoid; this
class of monoids is considered in Section 6. It turns out that an F-+-monoid is
necessarily regular, whence by [4] of a known structure.

2 Examples

(1) Every regular F-semigroup is an F-monoid (by [2], Theorem 3.14). The
class of F-regular semigroups was studied in [4] where also a representation
theorem was proved. Hence in the following, only non-regular F-monoids will
be considered. On the other hand, there are F-semigroups without identity: let
S = {0,1,a} be the inflation (see [11]) of the semilattice Y : 0 <y 1, where
a?=a-1=1-a=1anda-0=0-a=0; then S is an F-semigroup without
identity and with pivot £ = a (by [2], Theorem 3.5). See also the semigroups
given in Remark (3) following Corollary 6.2 in [3].

(2) Let S = [Y; Sa, ¥a,g) be a strong semilattice of trivially ordered monoids
such that: (a) (Y,<y) is a finite chain, (b) each ¢, g is injective, (c) for every
a €8, ac 8, say, there exist 3 <y a and x € Sg with (ap.)r € Es,. Then
conditions (i) and (ii) in Corollary 6.6 of [3] are evidently satisfied; also (iii)
holds: let a,b € S be maximal in (5, <g), a € Sy, b € Sz say. If @ = 3 then



aPa,y 7 bpg,, for every v <y ae = F by (b). If a # (§ then a <y (3, say. Assume
that apa,, = byg, for some v <y a <y [.Then apa, = b(Pg,a© Pay) =
(bgs.a) Pa,y, whence by (b), a = bpg . Therefore a <g b (see [8], proof of
Theorem 3.8) and a € S is not maximal in (5, <g): contradiction.

It follows that S is an F-monoid with 1, € S, as the identity where w
denotes the greatest element of (Y, <y) - note that by the trivial order of S,
(v€Y), Es, = {1,} whence 1,9, o = 1o. If at least one S, (v € Y) is not a
group then S is not regular: assume that a € S, does not have a group-inverse
in S4, but @ = aza for some x € S, x € Sz say; then a = axa € S,3, whence
a = af, ie, a <y [. Therefore a = a(zpg,)a = aya for y = zpg o € Sa.
Since Eg, = {14} it follows that ay = ya = 1,: contradiction. Note that by
[8], Corollary 3.9, <g is compatible with multiplication.

Remarks. (i) Condition (c) is satisfied for example if S, is a group where
p denotes the least element of (Y, <y).

(ii) If condition (c) is replaced by: "each S, with o # w in (Y, <y) is E-
inversive” then each S, (o # w) is a group. In fact, Eg, = {1} then implies
that for any a € S, there exists x € S, such that ax = 1,. Thus choosing for S,
a trivially ordered monoid, which is not a group, we shall obtain a non-regular
F-monoid.

(iii) Examples of trivially ordered monoids are (N,-) or (Np,+), more ge-
nerally, all cancellative monoids. Constructions of trivially ordered monoids
were given in [6].

(iv) In (2), S can be replaced by a monoid, which is a strong semilattice
of trivially ordered semigroups satisfying (a), (b) and (c) - see Remark 3 to
Corollary 3.9 in [8].

As a particular case of (2) we mention

(3) Let S =[Y;S,, Su; Yu,u) where Y : p <y w, S, = G is a group, S, =T
is a subsemigroup of GG, which is not a subgroup and which contains the identity
lg € G, and with ¢, : S, — Sy, ap,,, = @, the inclusion mapping. Since
both S, and S, are trivially ordered it follows by (2), that S
is a non-regular F-monoid with identity 1¢ € 7. Note that S, = G has to
be infinite. If there exists an element a € G of infinite order one may take
S,=T= {IG, a,a?, } For example: S,, = (Z,+), the group of integers, and
S. = (N, +), the semigroup of natural numbers including 0.

Generalizing S,, = G to a Clifford semigroup we obtain

(4) Let So = [Y; Ga, a,3] be a Clifford semigroup which is an F-semigroup
(see [3], Corollary 6.7), and with Y finite. Let w € Y be the greatest element
of (Y,<y) and let S; = T be a subsemigroup of G, which is not a subgroup
and which contains 1, € G,. Then S = [Z;Ga, S1; a5, P1,a] With Z = Y1,
V1w : S1 — Gy, ap1, = @, the inclusion mapping, and @14 = Y16 © Puw.a
for any o € Y, is a strong semilattice of trivially ordered monoids S; and G,
(o €Y). Again conditions (i) and (ii) in Corollary 6.6 of [3] are satisfied; also
(iii) holds:

Let a,b € S be maximal in (S,<g). If a,b € Sy then a € G,, b € G say,
and agq .y # bpg, for any v <y a = §, by [3], Corollary 6.7. If a,b € S,
then ap; o, # b1, (since @1, is injective). Since by [2], Corollary 4.7, ¢, - is



injective for any v € Y, it follows that ap1 ., = (ap1.w) Pwy # (b91,w) Pwry =
bp1,. Finally, if a € S; and b € Sy then b € G, say (« € Y). Assume that
ap1y = bpa~ for some v <y a <y 1. Then (ap1,a)@Pa,y = bpa,, hence
ap1,o = b (since ¢4 4 is injective, see [3], Proposition 6.4). Therefore b <g a
(see [8], proof of Theorem 3.8), which contradicts the maximality of b € Sp.

It follows that S is a non-regular F-monoid whose identity is 1, € S7 (see
Example (2)).

If a semigroup S has no identity then adjoining one we obtain a monoid S*.
If S is an F-semigroup this procedure does not yield an F-monoid, in general,
as the following result shows.

Proposition 2.1 Let S be an F-semigroup. Then S is an F-monoid if and
only if the pivot of S is idempotent.

Proof. Necessity. Let p (resp. o) be the defining group congruence on S
(resp. on S'). By the uniqueness of p ([2], Theorem 3.6) the restriction of o
to S (being a group congruence) is equal to p. Since 1 is idempotent, 1 € S?
belongs to the identity o-class I, of the group S'/o; hence I, = I, U {1}. By
[2], Corollary 3.9, I, = Eg or I, = Eg U {a} with a ¢ Eg. Assume that the
pivot £ of S is not idempotent. Then the elements { =a € I, C I, and 1 € I,
are incomparable with respect to <gi: if £ <g1 1 then £ € Eg (by [8], Lemma
2.1), a contradiction; 1 <g: & is impossible by Lemma 3.1, below. Therefore,
the o-class I, of S' has no greatest element, a contradiction.

Sufficiency. Let p be the corresponding group congruence on S. By [2],
Corollary 3.9, the identity p-class I of S is either Eg or Es U {a} with a ¢ Fg,
the greatest element of I. By hypothesis, the pivot £ of S is idempotent, whence
I = Es. Let o be the equivalence relation on S! given by the partition p on
S but with 10 = I U {1}. Then o is a congruence on S'. Only the case eol,
x € S, e € Eg = I, has to be considered: in the group S/p, I = ep is the identity
element hence (ex) p = (ep) (xp) = zp and expx, thus also exox; similarly zeow.
Evidently, S'/o is a group, whose identity element 10 = Es U {1} = Eg: has
1 € S' as greatest element. All the other o-classes of S! are equal to the p-
classes of S, thus admit each a greatest element with respect to <g, whence
also with respect to <gi. Therefore, S is an F-monoid. m

This result allows the construction of further examples of F-monoids. Let

T be a semigroup; for every a € T let T, be any set with T, N T = {a} and

T,NTg =0 for all & # 3. Then S = UTTO‘ forms a semigroup with respect to
[e1S

the operation
a-b=afifaeT,, belg,

called an inflation of T' (see [11]). S is a proper inflation of T if T,, # {«a} for at
least one o € T. Note that a proper inflation S of T can not have an identity
since for a € T,, a # «, we would have alg € T, but a ¢ T. Also S is not



regular, since axa € T for any x € S- but a ¢ T. Finally, Eg = Er since 22 € T
for any x € S. Specializing T' we obtain
(5) Let T = G be a group and S = UGTg be a proper inflation of G, such
ge

that |Ty| < 2 for every g € G, g # 1@, and Th, = {1l¢}. Then by [3], Corollary
6.2, S is an F-semigroup with pivot £ = 1g € Eg (note that 1¢ is the unique
idempotent of S and that 1g is maximal in (5, <g) : see Lemma 3.1, below).
It follows by Proposition 2.1, that S! is an F-monoid (with pivot £ = 1). Note
that <g is compatible with multiplication since <g= id¢ is so (see [8]).

More generally we have

(6) Let T be an F-semigroup such that for every a € T there exist 8,7 € T
with a = fa = ary, and with pivot £ € Ep (the greatest idempotent of T'). Let
S = aLEJTTa be a proper inflation of 7' such that |T,| < 2 for every maximal

p €T and |T,| = |T¢| = 1 for every non-maximal a € T". Then by [3], Theorem
6.1, S is an F-semigroup with pivot £ € Ep. It follows by Proposition 2.1, that
St is an F-monoid (with pivot &€ = 1). Examples for T are: groups (see Example
(5)); bands with identity, more generally F-regular semigroups (see [4]) - in any
of these cases, £ = 17 € Ep. Note that <g is compatible with multiplication if
and only if <r is so (see [8]).

3 Characterizations

A general theory of F-semigroups was developed in [3]. Specializing to the case
that an identity exists, we obtain the following characterizations of F-monoids.
First we give a direct proof of a useful result on the pivot.

Lemma 3.1 If S is a monoid then 1s is a maximal element in (S,<g). In
particular, if S is a generalized F-monoid then the pivot & of S is 1g.

Proof. If 15 <g a for some a € S then 1g¢ = za = xlg = x for some x € 5,
hence 1g = a.

If S is a generalized F-monoid with pivot £ then the identity p-class I of S
is of the form I = (&]. Since 1g € Eg and p is a group congruence, it follows
that 1g € I, whence 1g <g & and 1g =&. m

We begin with the more general situation of generalized F-monoids (see [2],
Corollary 3.12).

Proposition 3.2 Let S be a monoid. Then S is a generalized F-semigroup if
and only if S is E-inversive and E-unitary.

The first characterization of F-monoids was given in [3], Theorem
4.5, describing them as particular E-inversive semigroups in terms of the natural
partial order:

Theorem 3.3 Let S be a monoid. Then S is an F-monoid if and only if for
every a € S there exists a greatest element x € S (with respect to <g) such that
ax € Eg.



Note that by [11], Exercise I1.7(14), a semigroup S such that for any a € S
there is a unique z € S with ax € Eg, is a group (hence an F-monoid - see [3]).
The second characterization is tightly connected with that of Theorem 3.3:

Theorem 3.4 Let S be a monoid. Then S is an F-monoid if and only if
the identity 1s € S is right (left ; equi) residuated, i.e., for every a € S,
max {z € Slar <g 1lg} = lg.’a ezists ( max{z € Slza <g 1lg} = 1g ".a exists;
both exist and are equal: 1g ".a =1g.’a).

Proof. Necessity. By Lemma 3.1, £ = 1g. Thus the statement follows from
[3], Theorem 3.5.

Sufficiency. Let a € S and let zg € S be the greatest element of all x € S
such that ax <g 1g. Since by [8], Lemma 2.1:

{.T € S‘CLI <g 15} = {x S S|0,QS S Es},

xg € S is the greatest element in S such that axg € Fg. It follows by Theorem
3.3, that S is an F-semigroup. m

The third characterization uses the sets T'(a) = {z € Slaza <g a}, a € S.
By means of these sets, first we provide a description of the p-classes of an
F-monoid, more generally of an F-semigroup with regular pivot.

Proposition 3.5 Let S be an F-semigroup with reqular pivot £&. Then for any
a€s, (ap)~t =T(a).

Proof. Let a € S. If x € T (a), then aza <g a. Applying the natural homo-
morphism of S onto G = S/p we obtain (axa) p = ap. Thus (ap) (zp) (ap) = ap
so that by cancellation in G, (ap) (zp) = 1g and zp = (ap) ", i.e., z € (ap)” .
Conversely, let z € (ap)~". Then zp = (ap)” " and (az)p = (ap) (zp) = 1l¢ =
(&, ie., ax <g £. Since £ € S is regular, £ € Eg by [2], Proposition 3.13. It
follows by [8], Lemma 2.1, that ax € Eg too. Hence aza = ax-a = a-za implies
that axa <g a, i.e., x € T(a). m

Remark. There are non-regular F-semigroups with regular pivot - see Ex-
ample (5) in Section 2.

Since by Lemma 3.1, for an F-monoid S the pivot £ = 1g is regular we
obtain

Corollary 3.6 Let S be an F-monoid. Then for any a € S, (ap)”" = T(a)
and maxT(a) exists in (S, <g).

We will show now that this last property of a monoid S is also sufficient for .S
to be an F-semigroup. By Theorem 3.3 in [4], a generalized F-semigroup S with
regular pivot is an F-semigroup if and only if max T'(a) exists for any a € S. In
order to apply Proposition 3.2, which describes generalized F-monoids, we first
give a new characterization of E-inversive semigroups.



Lemma 3.7 A semigroup S is E-inversive if and only if for any a € S there
erists x € S such that axa <g a (i.e., if and only if T(a) # 0).

Proof. If S is E-inversive then for any a € S there is some x € S such that
ax € Eg. Therefore, ara = ax - a = a - xa implies that axa <g a. Conversely,
let a € S, x € S be such that axa <g a. If axza = a then ax € Eg. If axa <g a
then arza =y -a=a- z, y-ara = azxa, for some y, z € S. Hence

az)® = aza - vax = ya - zax = yaza - ¥ = aza - ¥ = (azx)’
Y Y

and (az)* = (az)® € Eg. Thus a - zax € Eg, i.c., S is E-inversive. ®

Theorem 3.8 Let S be a monoid. Then S is an F-monoid if and only if for
any a € S, maxT(a) exists in (S,<g).

Proof. Necessity holds by Corollary 3.6.

Sufficiency. First, by Lemma 3.7, S is E-inversive. Next, we show that S is
FE-unitary. Let e,ex € Eg. Then exe = ex - e = e - ze implies that exe <g e,
ie, x € T(e). Since elge = e <g e, we have 1g € T'(e) and 1g <g maxT (e). It
follows by Lemma 3.1, that 1¢ = maxT'(e). Therefore, x <g 1g, so that by [§],
Lemma 2.1, z € Eg. Thus, by Proposition 3.2, S is a generalized F-monoid.
Hence, by Lemma 3.1, the pivot of S is £ = 1g, i.e., £ is regular. Therefore by
[4], Theorem 3.3, S is an F-semigroup. m

Remark. In the language of partially ordered semigroups, Theorem 3.8
says that a monoid S is principally ordered with respect to its natural partial
order <g (see [4]) if and only if S is an F-monoid. Notice that <g is not
compatible with multiplication, in general (see [8]) - but note Examples (2) -
(6) in Section 2.

The next characterization of F-monoids S is in terms of the maximal ele-
ments in (S, <g):

Theorem 3.9 Let S be a monoid. Then S is an F-monoid if and only if
(i) S is E-inversive;
(ii) for every a € S, there exists a unique mazimal m € S such that a <g m;

(iii) if a,b € S are included in the same mazimal element then so are ac,bc
resp. ca,ch, for any c € S.

Proof. Necessity holds by [3], Theorem 5.3.

Sufficiency. Let T' = {m;|i € I} be the set of all maximal elements of (S, <g).
By (ii), T # 0 and S is the disjoint union of the principal order ideals (m;] (¢ € I)
in (S, <g). Define

apb < a,b € (m;] for some i € I.



Using (ii) and (iii) it is easy to show that p is a congruence on S. Thus S/p
is a semigroup with 1gp as identity element. If e € FEg then e <g 1g and
e,1s € (1g]. Since by Lemma 3.1, 1g is a maximal element in (S, <g), it
follows that eplg. Let ap € S/p; then by (i), ax = f € Eg for some z € S.
Thus, (ap) (zp) = (ax) p = fp = 1gp; therefore S/p is a group. Furthermore, if
a € (m;] for i € I, say, then we have that ap = (m;]. Hence S is an F-semigroup.
]

By [3], Corollary 5.6, we have

Corollary 3.10 Let S be a monoid with compatible natural partial order. Then
S is an F-monoid if and only if S is E-inversive and for every a € S there exists
a unique mazximal m € S such that a <g m.

Remark. Examples of semigroups S with compatible natural partial order
are: commutative or centric (i.e., aS = Sa for every a € S) or inverse semigroups
(see [8]). Note that the latter are also E-inversive.

Following an idea of M. Petrich (see [3], Theorem 3.9, on F-semigroups) we
obtain an axiomatic description of F-monoids by means of an additional unary
operation with certain properties reflecting those of the greatest elements in the
different p-classes.

Theorem 3.11 Let S be a monoid. Then S is an F-monoid if and only if S
has a unary operation a — a’ satisfying

(F1) (ab)’ = (a’b)’ = (ab')" for all a,b € S;

(F2) for everya € S, a <gd';

(F3) for any a € S there exists b € S such that (ab)’ = 1g.

Proof. Necessity. Let p be the defining group congruence on S and for any
a € S, let o’ be the greatest element of the p-class ap € S/p. Then by [3],
Theorem 3.9, (F1) and (F2) hold. In particular, 1g <g 1%; hence 1g = 1% (by
Lemma 3.1). Let a € S; since S/p is a group there exists bp € S/p such that
(ap) (bp) = 1sp (the identity of S/p). Hence (ab) p = 1gp and (ab)’ = 1 = 1.

Sufficiency. Define a relation p on S by: apb < o/ = b'. Then by (F1), p is
a congruence on S. Evidently, 1gp is the identity of the semigroup S/p. Note
that by (F2), 1g <g 1, whence 1g = 1% (by Lemma 3.1). Let ap € S/p; then
by (F3) there exists b € S such that (ab)’ = 1g = 1%. It follows that abplg,
so that in S/p we have (ap) (bp) = 1gp. Therefore, S/p is a group. Let a € S;
then o’ € S is the greatest element of the p-class ap € S/p by definition of p
and (F2) (see [3], Theorem 3.9). It follows that S is an F-semigroup. ®

Corollary 3.12 Let S be a monoid. Then S is an F-monoid if and only if S
is E-inversive and has a unary operation a — a' satisfying

(F1) (ab)’ = (a’b)’ = (ab')" for all a,b € S;

(F2) for everya € S, a <gd;

(F4) for any e € Eg, ¢’ = 1g.



Proof. Necessity. First, by Proposition 3.2, S is E-inversive. Let p be the
defining group congruence on S and for any a € S, let @’ denote the greatest
element of ap € S/p. Then (F1) and (F2) hold by Theorem 3.11; in particular,
15 =1g (by Lemma 3.1). Let e € Eg; then eplg and € =1 = 1g.

Sufficiency. Let a € S; then ax € Eg for some x € S (since S is E-inversive).
It follows by (F4), that (az)’" = 1g. Consequently, S is an F-semigroup (by
Theorem 3.11). m

4 Three unary operations

Let S be an F-monoid and p the corresponding group congruence on S. Then
by Lemma 3.1, the pivot of S is £ = 1g and by Theorem 3.4, for any a € S5,
lg:a=max {z € Slaxr <g 1g} = max {z € S|za <g 1g} exists in (S, <g).

Since a(lg:a) <g lg and (1g:a)a <g lg, it follows by [8], Lemma 2.1,
that a (1s : a),(1s : a) a € Eg. Furthermore, by definition, each p-class ap of S
has a greatest element. Recall from [3], Corollary 3.3, that the greatest element
of (ap) " € S/pislg:ae S and that of ap € S/pis g : (1 : a).

As the first unary operation a — a* on S we define

a* =1g:afor any a € S (see [4]).

Hence, a* € S is the greatest element of (ap)”' € S/p, and (a*)* = a™ € S is
that of ap € S/p. Then in the notation in the proof of Theorem 3.11, a’ = a**.
With this observation in mind, Theorem 3.11 and Corollary 3.12 remain true if
the unary operation is given by a — a** and in conditions (F1), (F2), (F3) and
(F4) the symbol ’ is replaced by **.

Since aa*,a*a € FEg, ac*a = aa* - a = a - a*a implies that aa*a <g a.
Furthermore, by [4], Theorem 3.3 and its proof, a* € S is the greatest element
of all z € S such that aza <g a. Since aa*a-a* - aa*a = (aa*)3 a = aa*a, the
element aa*a € S is regular.

We define our second unary operation ¢ — @ on S by

a=aa"a for any a € S.

Lemma 4.1 Let S be an F-monoid. If R(S) denotes the set of all regular
elements of S then R(S) = {ala € S} and R(S) is a regular subsemigroup of
S.

Proof. By [4], Theorem 2.2, every regular element a € S satisfies a =
a(ls:a)a = aa*a = a. Thus R(S) C {ala € S}. The converse inclusion was
shown above. Also, by [2], Proposition 3.7, Eg forms a subsemigroup of S.
Hence the second assertion follows by [5] (see also [10], Lemma 5.2). =

In the following we collect several properties of the operations x and —.
Recall that A (a) = {x € S|laxa = a} is the set of associates of a € S.



Proposition 4.2 Let S be an F-monoid. Then for all a,b € S, e € FEg the
following hold:

k%

(1 a<ga"";
*

e = 13,‘

a<gb=a"=b"aa* <g bb*,a*a <g b*b;

(ea)” = a* = (ae);
If a € S is regular then a'pa* for all a’ € A(a);

*

)
)
)
)
(v) aa* <g a**a*,a*a <g a*a**;
)
)
) a* =a*;
)

Proof. (i), (ii), (iv), (v), (vi) and (vii) are proved as in [4], Proposition 4.1.

(iii) Let a <g b; then by the proof of [4], Proposition 4.1 (ii), a* = b*. Next,
a = a*aa* <g a <g b implies by [8] Lemma 2.1, that @ = eb = bf for some
e, f € Eg. Hence

aa* =aa*a-a* =a-a* =eb-a* =e-bb*,aa” = bfb*.

Now by [3], Lemma 3.7, and by (ii), 1g : fb* = (1g: f) : b* = 1g : b*. Thus
we obtain from [3], Corollary 3.4, that fb*pb*. Therefore fb* <g b*(= the
greatest element of its p-class). It follows that fbo* = b*x for some x € S. Thus
aa® = bfb* = bb*zr and aa™ <g bb*. Similarly, a*a <g b*b.

(viii) Since aa* € Eg we have by (vi), that a* = (aa*a)” = a*.

(ix) By Lemma 4.1, a* is regular. Hence by [4], Corollary 2.3 (with £ = 1g)

max A (a*) = (F)* = (a*a**a*)" = a™*,
where the last equality holds by (vi), since a*a*™* € Es. m
Our third unary operation a — a°® on S is defined by
a® = a*aa”, where a* = 1g : a (see [4]).
Since aa*,a*a € Eg, also aa®,a®a € Eg. Recall that V (a) = {z € S|a = aza,x = zax}.
Proposition 4.3 Let S be an F-monoid. Then we have for alla,b € S, e € Fg:
(i) a® €V (@) and a € A(a®);
(ii) aa® = aa* =aa® and a®a = a*a = a°a;

(iii) if o’ € V (@), @’ # a°, then a° is incomparable with a';

10



*kk

a*® <g a** and a°* = a**;
e’ =e;
aa* = a**a® and a*a = a°a**;

a®® =a and a®° <g a;

a<gb=a®<gb° aa® <g bb°,a°a <g b°b;

a® =a®° =a°.

* * * o

Proof. (i) a®@a® = a*aa* - aa*a - a*aa* = (a*a)' a* = a*aa* = a°,

@a°d = aa*a - a*aa* - aa*a = (aa*)' a = aa*a = @

aaa® = a*aa* - a - a*aa* = (a*a)® a* = a*aa* = a°.

(ii) aa® = a - a*aa* = aa*; @Ga° = aa*a - a*aa* = (aa*)® = aa*. Similarly we
prove the other equalities.

(iii) Let @’ € V (@) be such that a’ # a° (see (i)), and assume that o’ <g a°.
Then since o’ € S is regular we have by [8], Lemma 2.1, that o’ = ea® = a°f
for some e, f € Eg. Thus, by (i),

aad' =a-ea® =ae-a’aa’ =aad'a-a® =aa’,
ada=a°f-a=aaa’ - fa=a’- ad'a=a’a.

Hence, o/ = d'ad’ = a°a-a’ = a°®-aa® = a°® (by (i)): contradiction. The
proof for a® <g a’ is obtained by interchanging a°® and a’.

(iv) a®* = (a*aa*)" = a**, by Proposition 4.2 (vi) (since a*a € Es);
a*® = a**a*a* <g a** (since a**a*,a*a** € Fg).
(v) and (vi) are proved as in [4], Proposition 4.2.
(vii)
a®® =a*a®a’* (by (iv))
— a**aoa**
=a* -a°aa® - a*™ (by (i)
=aa*-a-a*a (by (vi))
=aa* -aa*a-a*a
=aa*a
=a <g a. (see the beginning of this Section)
(viii)
a®®° = (aoo)o
~ (@’ (by (vii))
= (aa*a)’
= (aa*a)" aa*a (aa*a)”
=a*-aa*a-a* (by Proposition 4.2 (vi))
=a*aa*
= ao

11



(ix) By (vii), (iv) and (vi), @ = a®° = a®*a®°a®* = a** - a®a™ = a** - a*a.
Similarly aa*a** = a.

(x) Let a <g b; then by Proposition 4.2 (iii), a* = b* and aa* <g bb*. It
follows by (ii), that aa® <g bb° and similarly a®°a <g b°b. Furthermore, since
aa*,bb* € Eg we have aa™ = bb* - aa™ = aa™ - bb*. Therefore

a® =a*-aa* =b" -bb*aa* =0b° - aa”,
a°=a"-aa* =a*-aa*bb* =a*a-b'bb* =a*a-b°,
ie., a® <g b°.
(xi) Since by (i) a® € R(S), it is obvious by [4], Theorem 2.2, that a® = a°.
Also by Proposition 4.2 (viii) and a*a € Eg we have @° = a*aa* = a*aa*aa* =
a*aa* =a®. m

Remark. The inequality in (iv) may be strict. Consider the non-regular
F-monoid in Example (3) of Section 2. The corresponding group congruence on
S has the classes: {—7}, oy, {n,7},,cy,- The greatest elements of these classes
are: —7 (n € N) and n (n € Ny) - note that @ = n,, , implies that 7 <g n.

Hence we have for every a € S: a** = -7 if a = -7, and a** = n if a € {n,7n}.
Thus for the non-regular element ¢ =n € N C S, we obtain that a™* = n; but
a*®=(a*)’=(-n)°’=-n+n+(-n)=-N+n—-n=-n,ie a*° #a**.

In fact we have the following general result:

Lemma 4.4 Let S be an F-monoid. Then for any a € S, a*° = a™* if and only
if S is regular.

Proof. Necessity. Let a € S; then ™ = a™ = a*a*a™ and a** € S is
regular. That is, the greatest element of the p-class ap € S/p is regular. From
a <g a** it follows by [8], Lemma 2.1, that a € S is regular, too.

Sufficiency. Let a € S; then since a** € S is regular, a** = a**a***a** by
[4], Corollary 2.4. By Proposition 4.2 (iv), a* = a**. Thus it follows that

a*° = a**a*a** = a**a* ettt = a**. m

The operation a — a® on an F-monoid S gives rise to the subsemigroup
S° ={a° € Sla e S}

of S. This semigroup will play an important role in the following section where
a further characterization of F-monoids will be given. As a first step we show

Proposition 4.5 Let S be an F'-monoid. Then S° = R (S) and S° is a regular
subsemigroup of S.

Proof. Let a®° € S°; then by Proposition 4.3 (i), a° is regular, hence S° C
R (S). Conversely, R(S) = {ala € S} by Lemma 4.1. But by Proposition 4.3
(vil), @ = a°° for any a € S. Therefore R (S) C S°, and equality prevails. The
second assertion holds by Lemma 4.1. =

Remark. Notice that Lemma 4.1 together with Proposition 4.5 give that
R(S)=S°={a:a€ S}

12



5 A characterization by the regular part

In this Section we give a description of F-monoids S by means of the regular
part R(S) = S° of S (see Proposition 4.5). It turns out that S° is an F-
regular semigroup, the structure of which was studied in [4]. Furthermore, the
non-regular elements of S are associates of elements in S° as we will show first.

Lemma 5.1 Let S be an F-monoid; then S = A(S°).

Proof. Let a € S; then by Proposition 4.3 (i), a € A (a°). Hence S C A (S°)
and equality prevails. m

Proposition 5.2 Let S be an F-monoid. Then S° is an F-reqular subsemig-
roup of S.

Proof. By Proposition 4.5, S° = R(S) is a regular, hence E-inversive
subsemigroup of S. We will define a unary operation a® — (a°)’ on S° satisfying
(F1), (F2) and (F4) of Corollary 3.12. Then it follows that S° is an F-regular
monoid (note that 15 € S°). Consider the operation a® — (a°)’ = (a®)™ on
Se.

Since a*a € Eg we first have by Proposition 4.2 (vi):

(@) = (a*aa*)*™® = a**°,
(F1) For any a°,b° € S°:
(a°b°) = (a°b°)"° = (a*aa* - b*bb*)*° = (a*a - a*b* - bb*)™ = (a*b*)™
by Proposition 4.2 (vi), since a*a, bb* € Eg; on the other hand
(a®) = (a*)° = a*™*a**a*™* = a*a**a* (by Proposition 4.2 (iv))
and thus
[(GO)/bo]’ = (a*a**a* - b*bb*)*o = (a*a™ - a*b* ~bb*)*° _ (a*b*)*o
by Proposition 4.2 (vi), since a*a**,bb* € Eg.
Similarly, [a° (bo)']/ = (a*b*)*°.

(F2) For any a € S by Proposition 4.2 (i), a <g a**; hence a° <g a**° =
(a®)" by Proposition 4.3 (x).

(F4) For any e € Eg C S° we have by Proposition 4.3 (v), e = e°; hence
e = (e°)" = (e°)™ = e*° = 1% = 15, by Proposition 4.2 (ii). m

Remark If p (resp. o) denotes the corresponding group congruence on S
(resp. S°) then o = p|go, i.e., o is the restriction of p to S° C S. In fact,
every p-class ap € S/p contains the regular element @ = aa*a (see Lemma 4.1):
since @ <g a and since by [3], Lemma 2.1, ap C S is a principal order ideal of
(S,<s), @ € ap. Furthermore, p|g- is a group congruence on S°, because for
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any ap = ap € G = S/p there exists bp = bp € G such that (ap) (bp) = 1¢,
ie., (ap) (Bp) = 1g. Since by Lemma 3.1, 1sp = 1¢ = (1g] = 1go it follows
by [1], Theorem 10.24, that p|se = Ry, = o, where R;, denotes the Dubreil
equivalence defined by the anticone 1¢ = (1g] - see [2].

By Theorem 3.4, in every F-monoid S the identity 1g € S is rightresiduated;
in particular, 1g.'t exists in (9, <g) for any ¢t € R (S). Therefore, we obtain from
Lemma 5.1 and Proposition 5.2:

Corollary 5.3 Let S be an F-monoid. Then (i) T = R(S) is an F-regular
monoid; (i) S = A(T), the set of associates of elements in T; (i) for any
teT, 1g.'t =max{x € Slte <g 1g} exists in (S, <g).

We will show the converse of Corollary 5.3. Recall that for any a € S,
(1g.a) = {x € Slax <g 1g} (see [3]).

Proposition 5.4 Let S be a monoid such that (i), (ii), (iii) in Corollary 5.3
are satisfied. Then S is an F-monoid.

Proof. We will prove that for any a € S, 1g."a = max (1g.’a) exists. Then
the statement follows by Theorem 3.4.

Let a € S; then by (ii), tat = t for some t € T. Therefore, at € Eg C R (S)
and ata € R(S) = T. Hence by (iii), 15.'at and 1g.ata exist in (S, <g). We
show that 1g."ata = 1g.'a.

By definition, ata (1g.'ata) <g 1g, i.e., at - a(lg.'ata) <g 1g and therefore
a(ls. ata) <g lg.'at = lg, by the proof of sufficiency of Lemma 4.4 in [3].
Thus, 1g. ata € (1g. a).

Let x € S be such that z € (1g.'a); then ax <g lg and ax € Eg (by
[8], Lemma 2.1). By the above, also at € Eg; therefore at - ax € Eg (by (i),
T = R(S) is a F-semigroup, hence by [2], Proposition 3.7, Es = Er is a
subsemigroup of T' C S). Hence, ata -z <g lg and x <g 1g.'ata. It follows that
1g.'ata = max (1g.'a) in (5, <g), that is, 1g.'a exists in (S, <g). =

Combining Corollary 5.3 and Proposition 5.4 we obtain the following cha-
racterization of F-monoids:

Theorem 5.5 Let S be a monoid. Then S is an F-monoid if and only if
(i) T = R(S) is an F-regular monoid,
(ii) S=A(T)={z € Sjtet =t for some t € T},
(iii) for everyt € R(S), 1g.'t (resp. 1g ".t) exists in (S, <g).

Example Let S be the F-monoid given in Example (3) of Section 2 with
S, = (Z,+) and S, = (No,+). Then the pivot of S is 0 and
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(i) T = R(S) = S, U{0} is an F-semigroup since the group S, is an F-
semigroup with idempotent pivot & = 0; hence adjoining a new identity 0,
R(S) is an F-semigroup (by Proposition 2.1);

(i) S=A(T): foreveryne S, =Ng,t = —ne€T =7Zsatisfiest+n+1t =
(—n)+n+(—n)=-n+n—n=-n=t;foreverya e S, =Z,t=—-a €T
satisfies t +a +t = t;

(iii) for any t € R(S) =5,U{0},0.t=nift=-m,and = —nif t =7.

6 F-x-monoids
Following [4] we call an F-monoid S F-x-monoid if S satisfies the identity
(ab)* =b*a* for all a,b € S,

with respect to the x-operation a* = 1lg : a (a € S) considered in Section 4.
Concerning such monoids we first have for S* = {a* € S|a € S} :

Lemma 6.1 Let S be an F-monoid. Then the following hold:
(1) S* = {x € S|z is the greatest element of a p-class}
= {m € S|m is mazimal in (S,<g)};
(2) (ab)™ =b*a* for all a,b € S if and only if S* is a subsemigroup of S;

(3) If S is an F-x-monoid then S* = Hy, the group of units of S. In particular,
(a*)"" = a** for any a* € S*.

Proof. The three statements are proved as in [4], Lemma 6.3. The only
two points to be observed are the following. In (3), H; C S* since for any
xr € Hy, x~! € H; is a regular element of S; hence by [4], Theorem 2.2, z~! =
et (lg:a ot = 27! (x_l)*x_l, ie, z = (m‘l)* € 5*. Also in (3), if
a* € S* = H; then a*a € Eg implies (a*a)” = 1g (by Proposition 4.2 (ii));

. . . -1
therefore since S is an F-x-monoid, a*a** = 1g and a** = (a*)" . =

Theorem 6.2 Let S be an F-x-monoid. Then S is regular.

Proof. Let a € S; then by Lemma 6.1 (3), (a*)”" = a**. Hence it follows
from Proposition 4.3 (ix), that

@ =aa"a* =aa* (a*) ' =a.
Since by Lemma 4.1, @ € S is regular soisa € 5. m

By the characterization of F-regular (F-inverse) x-semigroups given in [4],
Theorems 6.4 and 6.5, we obtain from Theorem 6.2
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Corollary 6.3 (1) Let S be a monoid. Then S is an F-x-semigroup if and only
if S is a semidirect product of a band with identity by a group.

(2) Let S be a monoid with commuting idempotents. Then S is an F-x-

-semigroup if and only if S is a semidirect product of a semilattice with identity
by a group.
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