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Abstract

In this PhD thesis, several concepts of distinct areas of Mathematics, such as

Dynamical Systems, Game Theory and Statistics are applied to Economical

and Biomedical Sciences. The Patent Licensing is studied in a Cournot

competition framework, the General Equilibrium Theory is approached in

terms of Edgeworthian economies and the subject of Immunology is covered

through models with Regulatory T cells.

Cournot competition Models: We consider a Cournot competition

model with a cost reducing R&D investment program. A new R&D cost re-

duction investment function inspired by the logistic equation is introduced.

We compare the results obtained using our cost reduction investment fun-

ction with the ones obtained using d’Aspremont and A. Jacquemin’s cost

reduction investment function. We study the underlying model and find

the existence of different Nash investment regions: a competitive Nash in-

vestment region, a single Nash investment region and a nil Nash investment

region. Moreover, we find regions with multiple Nash investment equilibria.

We present an exhaustive characterization of the boundaries of the diffe-

rent economical regions that are found. For low production costs, that can

correspond to the production of old technologies, the long term economi-
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cal effects are not very sensitive to small changes in the efficiency of the

R&D programs neither to small changes in the market structure. However,

for high production costs, that can correspond to the production of new

technologies, the long term economical effects are very sensitive to small

changes in the efficiency of the R&D programs and also to small changes in

the market structure.

Edgeworthian economies Models: General equilibrium theory as-

sumes an interaction between the participants that is both global and anony-

mous. The studied models, random matching games, introduce mechanisms

of direct exchange in an Edgeworth exchange economy where two goods are

traded in a market place. We prove, under the appropriate assumptions,

that the expected value of the logarithm of the limiting bilateral Walras

equilibrium price is equal to the logarithm of the global Walras equilibrium

price. We also consider a modification to this model in which participants

have different bargaining skills meaning that participants do not necessa-

rily trade according to their bilateral Walras equilibrium price. The trade

occurs such that the more skilled bargainer takes advantage of his edge

when exchanging with a less skilled bargainer. When the market has a

group of low skilled bargainers and a group of high skilled bargainers, the

smaller of these two groups shows a higher median increase on the value

of the utilities of the participants. Finally, we let the bargaining skills of

the participants be a continuous variable that evolves along the iterations

according to one of the following rules: a) the bargaining skills of the pair of

participants decrease if they were able to trade and increases otherwise; b)

the bargaining skills of the pair of participants increases if they were able to
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trade and decreases otherwise. We observe that for rule a) the bargaining

skills of each participant converge to one of two possible extreme values,

and that for rule b) the bargaining skills of all participants converge to a

single intermediate bargaining skill value.

Immune response Models: The consequences of regulatory T cell

(Treg) inhibition of interleukine 2 secretion are examined by mathematical

modeling. We determine the analytic formula that describes the fine ba-

lance between Regulatory T cells and T cells at controlled and immune res-

ponse equilibrium states. We demonstrate that cytokine dependent growth

exhibits a quorum T cell population threshold that determines if immune

responses develop on activation. We also determine the analytic formulas

of T cell proliferation thresholds that allow the study of the sensibility of

the quorum growth thresholds controlling immune responses. We introduce

an asymmetry reflecting that the difference between the growth and death

rates can be higher for the active T cells and Tregs than for the inactive.

This asymmetry can be due to the existence of memory T cells and explains

why slow increases of the antigenic stimuli do not lead to an immune res-

ponse, but fast increases provoke an immune response. Finally, we study the

bystander proliferation in the immune response model with the asymmetry.

An exposure to a pathogen results in an increased proliferation rate of the

bystander T cells. If the population of the bystander T cells becomes large

enough, autoimmunity can arise, eventually after a long transient period.





Resumo

Nesta Tese de Doutoramento diversos conceitos de áreas distintas da Matemática

tais como Sistemas Dinâmicos, Teoria de Jogos e Estat́ıstica são aplicados

a Ciências Económicas e Biomédicas. O Licenciamento de Patentes é estu-

dado através de modelos de competição de Cournot, a Teoria do Equiĺıbrio

Geral é abordada através de modelos de economias de Edgeworth e na

Imunologia são estudados modelos de células T reguladoras.

Modelos de Competição de Cournot Consideramos um modelo de

competição de Cournot com programas de investigação e desenvolvimento

(ID) na redução de custo. É introduzida uma nova função de redução de

custo inspirada na função loǵıstica. Comparamos os resultados obtidos

usando a nossa função de investimento na redução de custo com a função de

investimento na redução de custo de d’Aspremont e Jacquemin. Estudamos

o modelo correspondente e encontramos a existência de diferentes regiões de

investimento: uma região de investimento competitiva, uma região de in-

vestimento singular e uma região de investimento nulo. Encontramos ainda

uma região com múltiplos equilibrios de Nash no investimento. Para custos

de produção baixos, que podem corresponder a tecnologias antigas, os efeitos

económicos a longo prazo não são muito senśıveis a pequenas alterações na
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eficiência do programa de investigação e desenvolvimento. Contudo, para

custos de produção altos, que podem corresponder a tecnologias mais re-

centes, os efeitos económicos a longo prazo são muito senśıveis a pequenas

alterações na eficiência do programa de investigação e desenvolvimento.

Modelos de economias Edgeworthianas A Teoria do Equiĺıbrio

Geral assume uma interacção entre os participantes que é global e anónima.

Os modelos estudados, modelos de encontros de trocas aleatórias, intro-

duzem mecanismos de troca directa numa economia de Egdeworth onde

dois bens são trocados num mercado. Provamos que, sob as hipóteses apro-

priadas, o valor esperado do logaritmo do preço de equiĺıbrio de Walras li-

mite é igual ao logaritmo do preço de equiĺıbrio de Walras global. Também

consideramos uma modificação deste modelo no qual os participantes têm

diferentes capacidades de negociação (aptidão) significando que eles nem

sempre negoceiam de acordo com o equiĺıbrio de Walras bilateral. As tro-

cas ocorrem de modo a que o jogador mais apto tenha vantagem quando a

negociar com um jogador menos apto. Quando o mercado tem um grupo

de participantes pouco aptos e outro grupo de participantes mais aptos, o

mais pequeno dos dois grupos, evidencia um maior aumento na mediana

para o valor das utilidades dos participantes. Finalmente, assumimos que

a capacidade de negociação dos participantes é uma variável cont́ınua que

evolui ao longo das iterações de acordo com uma das seguintes regras: a)

as capacidades de negociação do par de participantes decrescem se esse par

conseguiu negociar e crescem caso contrário; b) as capacidades de nego-

ciação do par de participantes aumentam se esse par conseguiu trocar e

decrescem caso contrário. No caso da regra a) as capacidade de negociação
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dos dois participantes convergem para um de dois valores posśıveis enquanto

que no caso da regra b) as capacidade de negociação dos dois participantes

convergem para um único valor intermédio.

Modelos de resposta imunitária As consequências da inibição da

secreção da interleucina 2 pelas células T reguladoras (Treg) são exami-

nadas por modelação matemática. Determinamos a fórmula que descreve

o balanço fino entre as células T reguladoras e as células T em equiĺıbrios

correspondentes a estados controlados e de resposta imunitária. Demonstra-

mos que a proliferação dependente de citocinas exibe um quórum limiar da

população de células T que determina se após activação será desenvolvida

uma resposta imunitária. Também determinamos as fórmulas anaĺıticas dos

limiares de proliferação de células T que permitem estudar a sensibilidade

dos quóruns limiares de crescimento que controlam as respostas imunitárias.

Introduzimos uma assimetria para reflectir que a diferença entre a taxa de

crescimento e de mortalidade pode ser maior para as células T e Tregs acti-

vas do que para as inactivas. Esta assimetria pode dever-se à existência

de células T de memória e explica a razão pela qual aumentos lentos dos

est́ımulos antigénicos não levam a uma resposta imunitária, mas aumen-

tos rápidos provocam uma resposta imunitária. Finalmente, estudamos a

proliferação de células espectadoras no modelo de resposta imunitária com

assimetria. A exposição a um patogénio resulta num aumento da taxa de

proliferação das células T espectadoras. Se a população destas células T

espectadoras se tornar suficientemente grande, pode surgir autoimunidade

eventualmente após um longo peŕıodo transiente.
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Chapter 1

Introduction

This PhD Thesis is the result of three different research projects I have been

involved in. Different areas of knowledge in Mathematics were applied to

Economical and Biomedical Sciences.

In Chapter 2, together with B. Oliveira and A.A. Pinto, we study a

Counot competition model with R&D investments on the reduction of the

production costs. This chapter is mostly based on the research articles [29]

and [30], in the conference proceedings [21], [22], [23], [54], [55], [57] and

[58] and in the book chapters [31] and [59]. In Chapter 3, jointly with B.F.

Finkenstädt, B. Oliveira, A.A. Pinto and A.N. Yannacopoulos, we study

random matching Edgeworthian economies. This chapter is mostly based

on the research article [27], in the conference proceedings [24], [25], [26],

[33] and [56] and in the book chapter [28]. In Chapter 4, a problem in

Immunology is studied. This Chapter is joint work with N.J. Burroughs,

B. Oliveira and A.A. Pinto. This Chapter is mostly based on the work

developed in three research articles, namely [13], [14] and [15] and in the
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book chapter [32].

In Chapter 2 we consider a Cournot competition model where two Firms

invest in R&D projects to reduce their production costs. This competition is

modeled, as usual, by a two-stage game (see d’Aspremont and A. Jacquemin

[4]). In the first subgame, two Firms choose, simultaneously, their R&D in-

vestment strategy to reduce their initial production costs. In the second

subgame, the two Firms are involved in a Cournot competition with produ-

ction costs equal to the reduced cost determined by the R&D cost reduction

investment program. We introduce a new R&D cost reduction investment

function inspired by the logistic equation (see Equation (2.2)) whose proper-

ties are different from the ones exhibited by the usual R&D cost reduction

investment function (see Equation (2.3)). The main differences between our

cost reduction investment function and the standard d’Aspremont and A.

Jacquemin’s cost reduction investment function are: (i) the cost reduction

obtained by the Firms using d’Aspremont and A. Jacquemin’s R&D cost

reduction investment function tends to infinity with the investment whereas

the cost reduction obtained by the Firms using our R&D cost reduction in-

vestment function tends to a capacity that is proportional to the difference

between the current production cost of Firm Fi and the minimum attainable

production cost cL; (ii) the derivative at zero investment using d’Aspremont

and A. Jacquemin’s R&D cost reduction investment function [4] is infinity

whereas using the cost reduction investment function that we propose is

a finite value. Thus, two different cost reduction investment functions are

considered: the standard R&D cost reduction investment function, aA
i , in-

troduced in the literature by d’Aspremont and A. Jacquemin [4]; and an
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R&D cost reduction investment function, inspired by the logistic equation,

ai, that was introduced by Ferreira et al [29]. We compare both cost redu-

ction investment functions and analyze, in terms of equilibria outcome, both

cases. We will refer to the model where d’Aspremont and A. Jacquemin’s

cost reduction investment function is used as AJ-Model and to the model

where our cost reduction investment function is used as the FOP-Model. We

find the Perfect Nash equilibra of the Cournot competition model with R&D

cost reduction investment programs two stage-game and study the econo-

mical effects of these distinct Perfect Nash equilibria. The second subgame,

consisting of a Cournot competition, has a unique perfect Nash equilibrium.

For the first subgame, consisting of an R&D cost reduction investment pro-

gram, we find, for the FOP-Model, four different regions of Nash investment

equilibria that we characterize as follows: a competitive Nash investment

region C where both Firms invest, a single Nash investment region S1 for

Firm F1, where only Firm F1 invests, a single Nash investment region S2 for

Firm F2, where only Firm F2 invests, and a nil Nash investment region N ,

where neither of the Firms invest. In the AJ-Model, for the first subgame,

we only find three different Nash investment equilibria regions: the com-

petitive Nash investment region C and the single Nash investment regions

S1 and S2. This difference in behavior is due to the shape of the R&D cost

reduction investment function considered for this model bringing an higher

incentive to invest reflected in the disappearance of the nil Nash investment

region found for the FOP-Model.

For the FOP-Model, the nil Nash investment region N consists of four

nil Nash investment subregions, NLL, NLH , NHL and NHH where neither of
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the Firms invest and so have constant production costs. In the nil Nash in-

vestment region NLL both Firms have low production costs; in the nil Nash

investment region NLH Firm F1 has low production cost and Firm F2 has

high production cost; in the nil Nash investment region NHL Firm F2 has

low production cost and Firm F1 has high production cost; and in the nil

Nash investment region NHH both Firms have high production costs. The

economical reasons for both Firms to choose not to invest in the nil Nash

investment regions NLL, NHL, NLH and NHH are quite different. In the

region NLL, neither of the Firms invest because the Firms already have so

low costs that the investment is not recovered by the increase in the profit

associated to the decrease of their production costs. In the region NLH

(respectively NHL), neither of the Firms invest because Firm F1 (respecti-

vely F2) has so low production costs and Firm F2 (respectively F1) has so

high production costs that if one Firm invests and decreases its production

costs, then it is not able to recover its investment with the corresponding

increase in the profit associated to the new production costs. In the region

NHH neither of the Firms invest because the Firms already have so high

production costs that the investment is not recovered by the increase in the

profit associated to the decrease of their production costs. The single Nash

investment region Si can be decomposed into two disjoint regions: a single

favorable Nash investment region SF
i where the production costs, after in-

vestment, are favorable to Firm Fi; and a single recovery Nash investment

region SR
i where the production costs, after investment are, still, favorable

to Firm Fj but Firm Fi recovers, slightly, from its initial disadvantage. The

economical reasons for Firm Fj deciding not to invest in the single favora-
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ble Nash investment region SF
i and in the single recovery Nash investment

region SR
i are opposite. In the single favorable Nash investment region SF

i ,

the production costs of Firm Fj are too high for the Firm Fj to recover its

investment by increasing its profit due to decreasing its production costs.

In the single recovery Nash investment region SR
i , the production costs of

Firm Fj are too low for the Firm Fj to be willing to invest to decrease, even

more, its production costs and, so, Firm Fi is able to decrease its production

costs by investing. The single favorable Nash investment region SF
i can also

be decomposed into three regions: the single duopoly region SD
i , the single

monopoly region SM
i and the single monopoly boundary region SB

i . The

single monopoly region SM
i consists of all production costs such that, after

Firm Fi’s investment, the new production costs are in the monopoly region

of Firm Fi. The single monopoly boundary region SB
i consists of all produ-

ction costs such that, after Firm Fi’s investment, the new production costs

are in the boundary between the monopoly region and the duopoly region

of Firm Fi. The single duopoly region SD
i consists of all production costs

such that, after the Firm Fi’s investment, the new production costs are still

in the duopoly region of Firm Fi.

The Nash investment equilibria are not necessarily unique leading to an

economical complexity in the choice of the best R&D investment strate-

gies by the Firms. In the AJ-Model, the Nash investment equilibria are

unique (at least when the Firms do not decide to go on a Joint Venture

program together) but, for the FOP-Model, the intersections between the

single Nash investment region S1, the single Nash investment region S2 and

the competitive Nash investment region C are not always empty.
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We also compute the best Nash investment response functions when

the Firms go on a Joint Venture program together and exhibit how the

Nash investment regions change. We note that for the AJ-Model and in

opposition with what was observed in the pure competition case, there are

regions with multiple Nash investment equilibria.

In Section 2.6 we introduce, for the FOP-Model, the R&D determinis-

tic dynamics on the production costs of the Cournot competition, based

on the R&D investment strategies of the Firms, as follows: at every pe-

riod of time, the Firms choose the investment corresponding to one of the

Nash investment equilibria that determines the new production costs of the

Firms. Hence, the implicit equations determining the R&D deterministic

dynamics are distinct in the competitive Nash investment region C and in

the single Nash investment regions S1 and S2. The nil Nash investment

region N determines the set of all production costs that are fixed by the

dynamics. The competitive Nash investment region C determines the re-

gion where the production costs of both Firms evolve along the time. The

single Nash investment region S1 determines the set of production costs

where the production cost of Firm F2 is constant and only the production

cost of Firm F1 evolves. Similarly, the single Nash investment region S2

determines the set of production costs where the production cost of Firm

F1 is constant and only the production cost of Firm F2 evolves. Depending

upon the initial production costs of both Firms and upon their R&D invest-

ment strategies, the nil Nash investment region N is the set of equilibria

for the R&D deterministic dynamics. It is unusual in dynamical systems to

have a non-isolated set of equilibrium points. This is due to the complex
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investment structure that we have to deal in this problem. The nil Nash in-

vestment region N is the union of four disjoint compact sets with non empty

interior NLL, NHL, NLH , NHH . The nil Nash investment regions NLL, NHL

and NLH correspond to their asymptotic production costs. The R&D de-

terministic dynamics in the single Nash investment region S1 = SF
1 ∪ SR

1

are implicitly determined by Theorems 2.2.1 and 2.2.2. In the single Nash

investment region S1, only Firm F1 invests along the time. If (c1, c2) belongs

to the single favorable Nash investment region SF
1 , then, under the R&D

deterministic dynamics, the production costs approach, along the time, the

region NLH . Hence, the production costs of Firm F1 approach low costs of

production, but the production costs of Firm F2 are always fixed at high

values. Furthermore, at some period of time, the pair of new production

costs can fall in the monopoly region and, so, Firm F2 can be driven out

of the market by Firm F1. If (c1, c2) belongs to the single recovery Nash

investment region SR
1 then the production costs approach, under the R&D

deterministic dynamics, the region NLL. Hence, Firm F1 is able to recover,

along the time, from its disadvantage approaching the region where both

Firms have low production costs NLL. In the competitive Nash investment

region C both Firms invest and their new production costs, under the R&D

deterministic dynamics, belong to the duopoly region D. The R&D deter-

ministic dynamics in the competitive Nash investment region C lead both

Firms, along the time, to approach the nil Nash investment region NLL

corresponding to both Firms having low production costs. As described

above, the economical effects observed are quite distinct depending upon

the initial production costs of both Firms belonging to the single recovery
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Nash investment region SR
i , single favorable Nash investment region SF

i ,

and competitive Nash investment region C. For high production costs, that

can correspond to the production of new technologies, there are subregions

of production costs where there are multiple Nash investment equilibria.

Hence, the production costs evolve, along the time, to the distinct eco-

nomic regions NHL, NLH and NLL. In the region RS1∩S2 , where there are,

simultaneously, two single Nash investment equilibria, if one Firm decides

to invest in the first period, then the Firm that invests drives the other Firm

out of the Market, and its production costs will decrease, along the time, to

low production costs. Hence, the short and long term economical outcome

for both Firms depends only upon the R&D investment decision of both

Firms at period one. This shows the high relevance of the Firms rapidly

implementing their R&D cost reduction investment programs in the case

of high initial production costs. In the region RS1∩C (respectively RS2∩C) if

both Firms decide to implement their R&D cost reduction investment pro-

grams according to the Nash investment strategy in region C both Firms

will stay in the market and their production costs will approach, along the

time, low production costs. However, if one of the Firms decides not to in-

vest in period one, this Firm is driven out of the Market and the production

costs of the other Firm will approach, along the time, low production costs

in the region NLH (respectively NHL). For further information on R&D

cost reduction investment programs in Cournot competitions see the works

of Amir et al[2], Kamien et al[39].

The problem of providing strategic foundations of general equilibrium

theory, has been a long standing problem of crucial importance in economic
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theory. The main objective of this strand of thought is to provide a market

game, realistic enough to describe the behavior of agents in real market

situations, such that the equilibrium of this game approaches under certain

conditions the competitive equilibrium for the same market. A particularly

fruitful and popular way of pursuing this line of research is through the use

of dynamic matching games, in which agents meet randomly, and exchange

rationally, according to local rules. Such attempts started with the seminal

work Mathematical Pshycics of Francis Ysidro Edgeworth in 1881, [20], and

were further advanced by a number of researchers, including Shubik [71],

Aumann and Shapley [5],[6], Aliprantis, Brown and Burkinshaw [1], Mas

Colell [47] etc. More specifically, the approach through random matching

games was promoted by researchers such as Rubinstein and Wolinsky [66],

Binmore and Herrero [7], Gale [36] and references therein, McLennan and

Schonnenschein [49] etc. In Chapter 3 this problem is approached and we

wish to contribute to this literature, by studying conditions under which

the equilibrium of a market game, defined by a random matching game,

approaches the equilibrium of a fully competitive Walrasian model. We

study models of Edgeworthian exchange economies, without production nor

consumption of the two goods traded in the market place. The random

matching game, consists of agents, paired at random, who exchange goods

at the bilateral Walras equilibrium price, which is the price at the core, such

that the market locally clears. The choice for this scenario, is inspired by

the work of Binmore and Herrero [7]. Under some symmetry conditions,

on the initial endowments and the agents preferences, it is showed that for

the special case of Cobb-Douglas utility functions, the expectation of the
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logarithm of the equilibrium price, obtained as a limit for the repeated game

as the number of trades tends to infinity, is equal to the expectation of the

logarithm of the Walrasian equilibrium price. We also consider a modifi-

cation to the model, where we associate to each participant either a low

or high bargaining skill factor which brings up a game alike the prisoner’s

dilemma into the usual Edgeworthian exchange economy. In this model,

the participants trade at a price different from the bilateral Walras equi-

librium price, with advantage to the more skilled bargainer. However, if

both participants are highly skilled bargainers, they will not be allowed to

trade, as a penalization. If the pair elected to trade is formed by two low

skilled bargainers, they will trade according to the usual bilateral Walras

equilibrium price. For this modified model we consider that the market has

a group of low skilled bargainers and a group of high skilled bargainers, with

different sizes. We study, in this market, the variations on the utility values

of the participants. Our observations indicate that the group with higher

median increase in the utilities is the one in minority, meaning that is better

to be in minority. Finally, we let the bargaining skills of the participants

be a continuous variable that evolves, along the trades, according to one

of the following rules: a) the bargaining skills of the participants decrease

if they were able to trade and increases otherwise; b) the bargaining skills

of the participants increases if they were able to trade and decreases other-

wise. We observe that for rule a) the bargaining skills of the participants

approach either a high bargaining skill or a low bargaining skill, and that for

rule b) the bargaining skills of all participants converge to an intermediate

bargaining skill.
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The primary function of the immune system is the protection of the

host from pathogen invasion. During such an invasion, T cells specific to

the antigen proliferate and under most circumstances successfully remove

the pathogen. However, the immune system can also target self antigens

(autoimmunity) and cause tissue damage and death. Regulatory T cells, or

Tregs, have emerged as a fundamental component of the T cell repertoire,

being generated in the thymus under positive selection by self peptides [38].

The Treg repertoire is as diverse as conventional T cells [38] and perform

vital immune suppressive functions. Removal of Tregs, eg by (cell sorted)

adoptive transfer experiments cause a variety of autoimmune disorders in

rodents, whilst many autoimmune diseases can be associated with a mis-

regulation of Tregs, eg IPEX [68]. Under exposure to their specific antigen,

conventional T cells are activated leading to secretion of growth cytokines

(predominantly interleukine 2, denoted IL2), and expression of the inter-

leukine 2 receptor which triggers cytokine driven proliferation. However,

in the presence of active Tregs the growth of conventional T cells is in-

hibited. Part of this growth inhibition is the inhibition of IL2 secretion by

T cells [74, 69]. Significantly, addition of IL2 abrogates inhibition, whilst IL2

appears to be a key intermediary of the dynamics between Tregs and con-

ventional T cells [35, 65, 76]. The process of Treg signalling to conventional

T cells is still a matter of debate, evidence exists for both cell:cell mediated

inhibition and soluble mediators such as TNFβ and IL10 [68]. It is likely

that multiple methods of regulation are involved. Further, most studies indi-

cate that regulation is not T cell specific, i.e. Tregs inhibit all conventional

T cells independent of their antigen specificity [75], although a different
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report suggests the contrary [73]. Tregs clearly function to limit such au-

toimmune responses with a delicate balance between appropriate immune

activation and immune response suppression being achieved. How such a

balance is established and controlled is the central focus of the papers [11],

[13]. The motivation is the observation that T cell proliferation through cy-

tokines already has such a control structure; cytokine driven growth exhibits

a quorum population size threshold [18]. In [11] it is proposed that Tregs

locally adjust these thresholds by inhibiting IL2 secretion. The immune

response-suppression axis is then a balance between the local numbers of

activated T cells (eg from a pathogen encounter) and activated Tregs. This

balance can be altered by cross reactivity [11] or through bystander pro-

liferation [15]. In Subsection 4.1.1 we present an immune response model

as a set of six ordinary differential equations. The analysis of the model is

discussed in Section 4.2, where is shown that this model has a bistability

region bounded by two thresholds of antigenic stimulation of T cells and

we discuss the immune responses when there is cross reactivity between a

pathogen and a self antigen. An asymmetry in the immune response model

is presented in Section 4.3. This asymmetry takes into account that T cells

in different states have distinct death rates. We observe that this model has

a better behavior than the model with symmetric death rates in the simula-

tions of a bystander immune response. The model with the asymmetry has

a transcritic bifurcation for some tuning between the antigenic stimulation

of T cells and the antigenic stimulation of Tregs. Thus, the rate of increase

of antigenic stimulation of T cells may determine, for parameter values near

the transcritic bifurcation, if an immune response arises or not.



Chapter 2

Cournot competition Models

2.1 Introduction

The work presented in this Chapter is joint work with B. Oliveira and A.A.

Pinto and most of it is contained in the research articles [29] and [30], in

the conference proceedings [21], [22], [23], [54], [55], [57] and [58] and in the

book chapters [31] and [59].

We present a new R&D cost reduction investment function in a Cournot

competition model inspired by the logistic equation. We do a full characteri-

zation of the associated game and study the short and long term economical

effects derived from using this new R&D cost reduction investment function.

In particular, we find the existence of regions with multiple Nash investment

equilibria. We present an exhaustive characterization of the boundaries of

the different economical regions that are found. For low production costs,

that can correspond to the production of old technologies, the long term

economical effects are not very sensitive to small changes in the efficiency of
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the R&D programs neither to small changes in the market structure. How-

ever, for high production costs, that can correspond to the production of

new technologies, the long term economical effects are very sensitive to small

changes in the efficiency of the R&D programs and also to small changes

in the market structure. We compare the results obtained for the model

using our cost reduction investment function with the ones obtained using

d’Aspremont and A. Jacquemin’s cost reduction investment function.

2.2 R&D investments on costs

The Cournot competition with R&D cost reduction investment programs

consists of two subgames in one period of time. The first subgame is an

R&D cost reduction investment program, where both Firms have initial

production costs and choose, simultaneously, their R&D investment strate-

gies to obtain new production costs. The second subgame is a Cournot

competition with production costs equal to the reduced cost determined

by the R&D cost reduction investment function. As it is well known, the

second subgame has a unique perfect Nash equilibrium. For the first sub-

game two different cost reduction investment functions are considered: the

standard R&D cost reduction function, aA
i , introduced in the literature by

d’Aspremont and A. Jacquemin [4]; and an R&D cost reduction invest-

ment function, inspired by the logistic equation, ai, that was introduced by

Ferreira et al [29]. Throughout this Section we will describe and compare

both cost reduction investment functions and analyze, in terms of equilibria

outcome, both cases. We will refer to the model where d’Aspremont and A.
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Jacquemin’s cost reduction investment function is used as AJ-Model and

to the model where our cost reduction investment function is used as the

FOP-Model.

2.2.1 The R&D cost reduction investment programs

Let us consider an economy with a monopolistic sector with two Firms, F1

and F2, each one producing a differentiated good. Following Singh and Vives

[72], we assume that the representative consumer preferences are described

by the following utility function

U(q1, q2) = α1q1 + α2q2 −
(
β1q

2
1 + 2γq1q2 + β2q

2
2

)
/2, (2.1)

where qi is the quantity produced by the Firm Fi, and αi, βi > 0. The

inverse demands are linear and, letting pi be the price of the good produced

by the Firm Fi, they are given, in the region of quantity space where prices

are positive, by

pi = αi − βiqi − γqj.

The goods can be substitutes γ > 0, independent γ = 0, or complements

γ < 0.

Demand for good i is always downward sloping in its own price and in-

creases (decreases) the price of the competitor, if the goods are substitutes

(complements). The ratio γ2/β2
i expresses the degree of product differenti-

ation ranging from zero, when the goods are independent, to one, when the

goods are perfect substitutes. When γ > 0 and γ2/β2
i approaches one, we
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are close to a homogeneous market. We consider two different cost redu-

ction investment functions: ai, inspired by the logistic equation, that was

introduced by Ferreira et al [29] and is used in the FOP-Model; and aA
i that

was introduced by d’Aspremont and A. Jacquemin [4] and is used in the

AJ-Model.

In the FOP-Model, the Firm Fi invests an amount vi in an R&D cost

reduction investment program ai : R
+
0 → [bi, ci] that reduces its production

cost to

ai(vi) = ci − εi(ci − cL)(vi + θivj)

λi + vi + θivj

. (2.2)

where (i) the parameter θi is the spillover parameter determining how the

investment vj made by Firm Fj affects Firm Fi’s new production cost (bigger

θi, means bigger advantage taken by Firm Fi from Firm Fj’s investment on

R&D); (ii) the parameter ci is the unitary production cost of Firm Fi at

the beginning of the period satisfying cL ≤ ci ≤ αi; (iii) the parameter cL is

the minimum attainable production cost; (iv) the parameter 0 < εi < 1 as

the following meaning: since bi = ai(+∞) = ci − εi(ci − cL), the maximum

reduction Δi = εi(ci−cL) of the production cost is a percentage 0 < εi < 1 of

the difference between the current cost ci and the lowest possible production

cost cL; (v) the parameter λi > 0 can be seen as a measure of the inverse

of the quality of the R&D cost reduction investment program for Firm Fi,

because a smaller λi will result in a bigger reduction of the production

costs for the same investment. Note that, in particular, when there are no

spillovers, i.e. θ1 = θ2 = 0, ci − ai(λi) gives half Δi/2 of the maximum

possible reduction Δi of the production cost for Firm Fi (see Figure 2.1).
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Let us define, for simplicity of notation, ηi = εi(ci − cL).
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Figure 2.1: New production costs as a function of the investment (when
θ1 = θ2 = 0). (A) The maximum reduction in the production costs is Δi,
obtained for an infinite investment vi = +∞. (B) (zoom of the left part of
(A)) When the investment is vi = λi the reduction in the production costs
is Δi/2. (C) Figure (A) with both axes in the Logarithmic scale.

In the AJ-Model, a different R&D cost reduction investment function is

used (see [4] for more details), aA
i : [0, (λici/ηi)

2] → [0, ci], given by

aA
i (vi) = ci − εi(ci − cL)

λi

√
vi + θivj, (2.3)

with εi, λi > 0. The main differences between both R&D cost reduction

investment programs are in the shape of the underlying cost reduction

investment functions (see Figure 2.2) determining that (when there are

no spillovers θi = θj = 0): (a) the derivative at zero investment using

d’Aspremont and A. Jacquemin’s R&D cost reduction investment program

[4] is infinity whereas using ours is a finite value, i.e.

∂aA
i /∂vi = ∞ and ∂ai/∂vi �= ∞

(b) the cost reduction obtained by the Firms using d’Aspremont and A.



36 Cournot competition Models

Jacquemin’s R&D cost reduction investment program tends to infinity with

the investment whereas the cost reduction obtained by the Firms using

our R&D cost reduction investment program tends to a capacity that is

proportional to the difference between the current production cost of Firm

Fi and the minimum attainable production cost cL i.e.

lim
vi→∞

aA
i = ci −∞ and lim

vi→∞
ai = ci − ηi = ci − ε(ci − cL)
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Figure 2.2: (A) R&D cost reduction investment functions: FOP-Model cost
reduction investment function, ai, green line, and AJ-Model cost reduction
investment function, aA

i , black line; (B) Figure (A) with both axes in the
Logarithmic scale.

2.2.2 Optimal output levels

The profit πi(qi, qj) of Firm Fi is given by

πi(qi, qj) = qi (αi − βiqi − γqj − ai) − vi, (2.4)
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for i, j ∈ {1, 2} and i �= j.

The Nash equilibrium output (q∗1, q
∗
2) is given by

q∗i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Ri ≤ 0

Ri, if 0 < Ri <
αj−aj

γ

αi−ai

2βi
, if Ri ≥ αj−aj

γ

, (2.5)

where

Ri =
2βjαi − γαj − 2βjai + γaj

4βiβj − γ2
,

with i, j ∈ {1, 2} and i �= j. Hence if Ri ≤ 0, the Firm Fj is at monopoly

output level and, conversely, if Ri ≥ (αj −aj)/γ the Firm Fi is at monopoly

output level and for intermediate values, 0 < Ri < (αj − aj)/γ, both Firms

have positive optimal output levels and so we are in the presence of duopoly

competition. From now on, we assume that both Firms choose their Nash

equilibrium outputs (q∗1, q
∗
2). Thus, Firm Fi has profit π∗

i (q∗1, q
∗
2) given by

π∗
i (q∗1, q

∗
2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−vi, if Ri ≤ 0

βiR
2
i − vi, if 0 < Ri <

αj−aj

γ

(αi−ai)
2

4βi
− vi, if Ri ≥ αj−aj

γ

. (2.6)
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2.2.3 New Production costs

The sets of possible new production costs for Firms F1 and F2, given initial

production costs c1 and c2, are Ai for the FOP-Model and AA
i for the AJ-

Model. These sets are given, respectively, by

Ai = Ai(c1, c2) = [bi, ci] and AA
i = AA

i (c1, c2) = [0, ci],

where bi = ci − εi(ci − cL), for i ∈ {1, 2}.

The R&D cost reduction investment programs a1 and a2 of the Firms

determine a bijection between the investment region R
+
0 ×R

+
0 of both Firms

and the new production costs region A1 × A2, given by the map

a = (a1, a2) : R
+
0 × R

+
0 −→ A1 × A2

(v1, v2) 	−→ (a1(v1, v2), a2(v1, v2))

where

ai(vi) = ci − ηi(vi + θivj)

λi + vi + θivj

.

We denote the inverse map of a by W = (W1, W2) : a
(
R

+
0 × R

+
0

) → R
+
0 ×R

+
0

Wi(ai, aj) =
λi(ai − ci)(cj − aj − ηj) + θi(ai − ci)(aj − cj) + ηiθiλj(aj − cj)

hihj + θiθj(ci − ai)(aj − cj) + θiθjηj(ci − ai) + ηiθiθj(cj − aj) − ηiηjθiθj

where hi = (ci − ai − ηi).

The R&D cost reduction investment programs aA
1 and aA

2 of the Firms

determine a bijection between the investment region R
+
0 ×R

+
0 of both Firms
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and the new production costs region AA
1 × AA

2 , given by the map

aA = (aA
1 , aA

2 ) : R
+
0 × R

+
0 −→ AA

1 × AA
2

(v1, v2) 	−→ (aA
1 (v1, v2), a

A
2 (v1, v2))

where

ai(vi) = ci − ηi

λi

√
vi + θivj.

We denote the inverse map of aA by WA = (WA
1 , WA

2 ) : aA
(
R

+
0 × R

+
0

) →
R

+
0 × R

+
0

WA
i (aA

i , aA
j ) =

⎛
⎝(

λi(ci − aA
i )

ηi

)2

− θi

(
λj(cj − aA

j )

ηj

)2
⎞
⎠ /(1 − θiθj).

The new production costs region can be decomposed, at most, into three

disconnected economical regions characterized by the optimal output level

of the Firms (see Figure 2.3):

M1 the monopoly region M1 of Firm F1 that is characterized by the optimal

output level of Firm F1 being the monopoly output, hence the optimal

output level of Firm F2 is zero;

D the duopoly region D that is characterized by the optimal output levels of

both Firms being non-zero and, hence, below their monopoly output

levels;

M2 the monopoly region M2 of Firm F2 that is characterized by the optimal

output level of Firm F2 being the monopoly output and, hence the

optimal output level of Firm F1 is zero.



40 Cournot competition Models

The boundary between the duopoly region D and the monopoly region Mi

is lMi
with i ∈ {1, 2}

4 5 6 7 8 9 10
4

5

6

7

8

9

10

c
1

c 2

M
2

D

M
1

l
M

1

l
M

2

Figure 2.3: We exhibit the duopoly region D and the monopoly regions M1

and M2 for Firms F1 and F2, respectively, in terms of their new production
costs (a1, a2); lMi

with i ∈ {1, 2} are the boundaries between Mi and D.

Lemma 2.2.1 The boundary between the monopoly region M2 and the duopoly

region D is the segment line lM2 given by

a2 =
2β2

γ
(a1 − α1) + α2.

Proof: By equation (2.5), we have that

q∗1 = (2β2α1 − γα2 − 2β2a1 + γa2)/(4β1β2 − γ2).

Hence, q∗1 becomes zero if, and only if,
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2β2α1 − γα2 − 2β2a1 + γa2 = 0.

�

Lemma 2.2.2 The boundary between the monopoly region M1 and the duopoly

region D is the segment line lM1 given by

a2 =
γ

2β1

(a1 − α1) + α2.

Proof: Analogous to the previous proof.

�

In equilibrium, i.e. when both Firms choose their optimal output levels,

the profit function πi : Ai × Aj → R of Firm Fi, in terms of its new

production costs (a1, a2), is a piecewise smooth continuous function given

by

πi(a1, a2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πi,Mi
, if (a1, a2) ∈ Mi

πi,D, if (a1, a2) ∈ D

−Wi(a1, a2), if (a1, a2) ∈ Mj

,
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where

πi,Mi
= πi,Mi

(a1, a2; c1, c2) =
(αi − ai)

2

4βi

− Wi(a1, a2)

πi,D = πi,D(a1, a2; c1, c2) =
βi (2βj(αi − ai) − γ(αj − aj))

2

(4βiβj − γ2)2 − Wi(a1, a2)

2.2.4 Best R&D investment response functions

We can now derive the best investment response function V1(v2) of Firm F1

to a given investment v2 of Firm F2:

V1(v2) = arg max
v1

π1(a1(v1, v2), a2(v1, v2)).

We will study separately the cases where the new production costs belong to

(i) the monopoly region M1; (ii) the duopoly region D; (iii) the monopoly

region M2. First, we compute the best investment response function for

the FOP-Model when the Firms are in pure competition. Afterwards we

do the same computations when the Firms decide to go on a Joint Venture

together. Finally, we determine the best investment response function for

the AJ-Model when Firms are in pure competition and when the Firms

decide to go on a Joint Venture together.

FOP-Model

Here, we compute the best investment response functions for the FOP-

Model. If there is v1 ∈ R
+
0 such that (a1(v1, v2), a2(v1v2)) ∈ M1, we select

the best response v1 of Firm F1, restricted to (a1(v1, v2), a2(v1, v2)) ∈ M1,
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to the investment v2 of Firm F2 as follows: Let ZM1 be the set of solutions

v1 of the following equation

∂π1,M1

∂v1

= 0,

such that (a1(v1, v2), a2(v1, v2)) ∈ M1. Let FM1 be the set of v1 such that

(a1(v1, v2), a2(v1, v2)) ∈ lM1 . The best response v1 of Firm F1 in M1 is given

by

v1 = arg max
v1∈ZM1

∪FM1

π1,M1(a1(v1, v2), a2(v1, v2)).

Since the investment v2 is fixed, let us characterize the set ZMi
.

Let Li = 6βiλ
2
i − η2

i λi + ηiλi(ci − αi) and Ni = 2βiλ
3
i + ηiλ

2
i (ci − αi).

Theorem 2.2.1 Let vi be such that (a1(v1, v2), a2(v1, v2)) ∈ Mi. The set

ZMi
is the set of zeros of the following polynomial:

2βiv
3
i + 6βiλiv

2
i + Livi + Ni = 0 (2.7)

Proof: Let us compute

dπi,M

dvi

=
∂πi,M

∂ai

∂ai

∂vi

+
∂πi,M

∂vi

Hence dπi,M/dvi = 0, if and only if

ηiλi(αi − ai)

2βi(λi + vi)2
= 1
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Since ai = ci − (ηivi)/(λi + vi), the previous expression can be written as

ηiλi(αi − ci) +
λiη

2
i vi

λi + vi

= 2βi(λ
2
i + 2λivi + v2

1)

That is equivalent to

ηiλi(αi − ci)vi + ηiλ
2
i (αi − ci) + η2

i λivi = 2βiλ
3
i + 2βiλ

2
i vi +

+ 4βiλ
2
i vi + 4βiλiv

2
i + 2βiλiv

2
i + 2βiv

3
i .

The above equality is equivalent to (2.7).

�

If there is v1 ∈ R
+
0 such that (a1(v1, v2), a2(v1, v2)) ∈ D, we select the

best response v1 of Firm F1, restricted to (a1(v1, v2), a2(v1, v2)) ∈ D, to the

new production cost a2 of Firm F2 as follows: Let ZD be the set of zeros v1

of the following polynomial
∂π1,D

∂v1

= 0,

such that (a1(v1, v2), a2(v1, v2)) ∈ D. The best response v1 of Firm F1 in D

is given by

v1 = arg max
v1∈ZD∪FM1

π1,D(a1(v1, v2), a2(v1, v2)).

Let us characterize the set ZD.

Let Ai = 4βiβjηiλi, Bi = 2βiγηjλj, C = (4βiβj − γ2)
2
, Ei = αi − ci + ηi,

Fi = 2βjEi − γEj, Gi = −2βjηiλi and Hi = γηiλi.

Theorem 2.2.2 Let (v1, v2) be such that (a1(v1, v2), a2(v1, v2)) ∈ D. The
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set ZD is the set of zeros of the following polynomial:

f1(θi, θj, Wi, Wj) − θjf2(θi, θj, Wi, Wj) = 0 (2.8)

where

f1(θi, θj, Wi, Wj) = −CW 3
i W 3

j + AiFiWiW
3
j + AiGiW

3
j + AiHjW

2
j Wi,

f2(θi, θj, Wi, Wj) = BiFiWjW
3
i + BiGiW

2
i Wj + BiHjW

3
i ,

and Wi = λi + vi + θivj.

Proof: Since Wi = λi + vi + θivj, we get αi − ai = Ei − ηiλi/Wi and

aj − αj = −Ej + ηjλj/Wj.

Let us compute

dπi,D

dvi

=
∂πi,D

∂ai

∂ai

∂vi

+
∂πi,D

∂aj

∂aj

∂vi

+
∂πi,D

∂vi

. (2.9)

We have that

∂πi,D

∂ai

= −4βiβj (2βj(αi − ai) + γ(aj − αj))

(4βiβj − γ2)2 =
−4βiβj(Fi + Gi/Wi + Hj/Wj)

C
,

∂ai

∂vi

= − ηiλi

(λi + vi + θivj)2
=

−ηiλi

W 2
i

,

∂πi,D

∂aj

=
2βiγ (2βj(αi − ai) + γ(aj − αj))

(4βiβj − γ2)2 =
2βiγ(Fi + Gi/Wi + Hj/Wj)

C
,

∂aj

∂vi

= − θjηjλj

(λj + vj + θjvi)2
=

−ηjθjλj

W 2
j

,

∂πi,D

∂vi

= −1.
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Using the previous equalities in equation (2.9), we get

dπi,D

dvi

=
−4βiβj(Fi + Gi/Wi + Hj/Wj)

C

−ηiλi

W 2
i

+

+
2βiγ(Fi + Gi/Wi + Hj/Wj)

C

−ηjθjλj

W 2
j

− 1

Hence, dπi,D/dvi = 0 if, and only if

−CW 3
i W 3

j + AiFiWiW
3
j + AiGiW

3
j + AiHjW

2
j Wi −

− θj

(
BiFiWjW

3
i + BiGiW

2
i Wj + BiHjW

3
i

)
= 0

�

Let Ii = −AiFi/C, Ji = −AiHi/C and Ki = −AiGi/C.

Corollary 2.2.1 Suppose that Firms use patents (i.e. without spillovers, θi =

θj = 0). Let (v1, v2) be such that (a1(v1), a2(v2)) ∈ D. The set ZD is the set of

zeros of the following polynomial:

V 3
i Vj + IiViVj + JiVi + KiVj = 0, (2.10)

where Vi = λi + vi.

Proof: From (2.8), making θi = θj = 0 we get

CV 3
j V 3

i − AiFiV
3
j Vi − AiGiV

3
j − AiHiViV

2
j = 0.
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Since Vj �= 0, the previous equation can be written as (2.10).

�

If there is v1 ∈ R
+
0 such that (a1(v1, v2), a2(v1, v2)) ∈ M2, the best response

v2 of Firm F1, restricted to (a1(v1, v2), a2(v1, v2)) ∈ M2, is given by Firm F1

investing zero, i.e. not investing. Hence, V1(v2) is given by

V1(v2) = arg max
v1∈F

π1(a1(v1, v2), a2(v1, v2)),

where V1 ∈ F = ZM1 ∪ FM1 ∪ ZD ∪ {0}.
We note that, the best investment response function Vi : R

+
0 → R

+
0 can be a

multi-valued function.

Theorem 2.2.3 The best investment response function Vi : R
+
0 → R

+
0 of Firm

Fi is explicitly computed.

Proof: Using lM1 and lM2 we know, explicitly, the domains ZD and ZM . Applying

Theorem 2.2.2, we find the investment critical points and we check, using lM1 and

lM2 , if they belong to ZD. If so, we keep them, otherwise we discard them. We

apply Theorem 2.2.1, to find the investment critical points and we check, using

lM1 and lM2 , if they belong to ZM . If so, we keep them, otherwise we discard

them. Finally, we compare the profit values along the boundaries of ZD and

ZM with the profit values attained at the critical points kept in ZD and ZM to

determine the best investment vi for Firm Fi.

�

FOP-Model with Joint Venture

Here, we compute the best investment response functions when both Firms decide

to go on a Joint Venture program together. Thus, the equivalents to Theorems
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2.2.1 and 2.2.2 are computed for this case. Since they go on a Joint Venture

program, each Firm maximizes the sum of both Firms profits when taking their

decisions. Thus, π = π1 + π2.

Theorem 2.2.4 Let vi be such that (a1(v1, v2), a2(v1, v2)) ∈ Mi. The set ZMi is

the set of zeros of the following polynomial:

2βiv
3
i + 6βiλiv

2
i + Livi + Ni = 0.

Proof: If (ai, cj) ∈ Mi, then π = πi + πj = πi. Thus Theorem 2.2.1 still holds in

the case of Joint venture.

�

Theorem 2.2.5 Let (v1, v2) be such that (a1(v1, v2), a2(v1, v2)) ∈ D. The set

ZD is the set of zeros of the following polynomial:

f1(θi, θj , Wi, Wj) + θjf2(θi, θj , Wi, Wj) = 0 (2.11)

where

f1(θi, θj , Wi, Wj) = CW 3
i W 3

j + (Ai − BjFj) WiW
3
j + (Ai − BjGj) W 2

j Wi +

+ (AiGi − BjHi) W 3
j ,

f2(θi, θj , Wi, Wj) = (Aj − BiFi) W 3
i Wj + (Aj + BiGi) W 2

i Wj + (Aj − BiHj) W 3
i ,

and Wi = λi + vi + θivj.

Proof: Since Wi = λi + vi + θivj , we get αi − ai = Ei − ηiλi/Wi and aj − αj =

−Ej+ηjλj/Wj . Since we are in the case where Firms cooperate via Joint Venture,

the profit both Firms want to optimize is given by π = πi + πj .
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Let us compute

dπD

dvi
=

∂πi,D

∂ai

∂ai

∂vi
+

∂πi,D

∂aj

∂aj

∂vi
+

∂πi,D

∂vi
+

∂πj,D

∂ai

∂ai

∂vi
+

∂πj,D

∂aj

∂aj

∂vi
+

∂πj,D

∂vi
(2.12)

We have that

∂πi,D

∂ai
= −4βiβj (2βj(αi − ai) + γ(aj − αj))

(4βiβj − γ2)2
=

−4βiβj(Fi + Gi/Wi + Hj/Wj)
C

,

∂ai

∂vi
= − ηiλi

(λi + vi + θivj)2
=

−ηiλi

W 2
i

,

∂πi,D

∂aj
=

2βiγ (2βj(αi − ai) + γ(aj − αj))
(4βiβj − γ2)2

=
2βiγ(Fi + Gi/Wi + Hj/Wj)

C
,

∂aj

∂vi
= − θjηjλj

(λj + vj + θjvi)2
=

−ηjθjλj

W 2
j

,

∂πj,D

∂ai
= −2γβj (2βi(αj − aj) + γ(ai − αi))

(4βiβj − γ2)2
=

2γβj(Fj + Gj/Wj + Hi/Wi)
C

,

∂πj,D

∂aj
=

−4βiβj(Fj + Gj/Wj + Hi/Wi)
C

,

∂πi,D

∂vi
= −1.

Using the previous equalities in equation (2.12), we get

dπi,D

dvi
=

2βiγ(Fj + Gj/Wj + Hi/Wi)
C

−ηiλi

W 2
i

+

+
−4βiβj(Fj + Gj/Wj + Hi/Wi)

C

−ηjλjθj

W 2
j

+

+
−4βiβj(Fi + Gi/Wi + Hj/Wj)

C

−ηiλi

W 2
i

+

+
2βiγ(Fi + Gi/Wi + Hj/Wj)

C

−ηjλjθj

W 2
j

− 1
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Hence, dπi,D/dvi = 0 if, and only if

− CW 3
i W 3

j + (Ai − BjFj) WiW
3
j + (Ai − BjGj) W 2

j Wi + (AiGi − BjHi) W 3
j +

+ θj

(
(Aj − BiFi) W 3

i Wj + (Aj + BiGi) W 2
i Wj + (Aj − BiHj) W 3

i

)
= 0

�

Corollary 2.2.2 Suppose that Firms use patents (i.e. without spillovers, θi =

θj = 0).Let(v1, v2) be such that (a1(v1, v2), a2(v1, v2)) ∈ D. The set ZD is the set

of zeros of the following polynomial:

CW 3
i W 3

j + (Ai − BjFj) WiW
3
j + (Ai − BjGj) W 2

j Wi +

+ (AiGi − BjHi) W 3
j = 0 (2.13)

where Wi = λi + vi.

Proof: From (2.11), making θi = θj = 0 we get (2.13).

�

AJ-Model

Here, we compute the best investment response functions for the AJ-Model. If

there is v1 ∈ R
+
0 such that (a1(v1, v2), a2(v1, v2)) ∈ M1, we select the best response

v1 of Firm F1, restricted to (a1(v1, v2), a2(v1, v2)) ∈ M1, to the investment v2 of

Firm F2 as follows: Let ZM1 be the set of solutions v1 of the following equation

∂π1,M1

∂v1
= 0,
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such that (a1(v1, v2), a2(v1, v2)) ∈ M1. Let FM1 be the set of v1 such that

(a1(v1, v2), a2(v1, v2)) ∈ lM1 . The best response v1 of Firm F1 in M1 is given

by

v1 = arg max
v1∈ZM1

∪FM1

π1,M1(a1(v1, v2), a2(v1, v2)).

Since the investment v2 is fixed, let us characterize the set ZMi .

Theorem 2.2.6 Let vi be such that (a1(v1, v2), a2(v1, v2)) ∈ Mi. The set ZMi is

given by:

vi =
(

ηiλi(αi − ci)
4βiλ2

i − ε2i (ci − cL)2

)2

.

Proof: We have that

∂πi,M

∂ai
=

(ai − αi)
2βi

,

∂ai

∂vi
= − ηi

2λi
√

vi
,

∂πi

∂vi
= −1.

Thus,

dπi,M

dvi
=

(αi − ai)
2βi

ηi

2λi
√

vi
− 1

=
ηi(αi − ai)
4βiλi

√
vi

− 1

Hence, dπi,M/dvi = 0 if, and only if
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vi =
(

ηiλi(αi − ci)
4βiλ2

i − ε2i (ci − cL)2

)2

�

If there is v1 ∈ R
+
0 such that (a1(v1, v2), a2(v1, v2)) ∈ D, we select the best

response v1 of Firm F1, restricted to (a1(v1, v2), a2(v1, v2)) ∈ D, to the new

production cost a2 of Firm F2 as follows: Let ZD be the set of zeros v1 of the

following polynomial
∂π1,D

∂v1
= 0,

such that (a1(v1, v2), a2(v1, v2)) ∈ D. The best response v1 of Firm F1 in D is

given by

v1 = arg max
v1∈ZD∪FM1

π1,D(a1(v1, v2), a2(v1, v2)).

Let us characterize the set ZD.

Let Oi = −4βiβj/(4βiβj − γ2)2.

Theorem 2.2.7 Let (v1, v2) be such that (a1(v1, v2), a2(v1, v2)) ∈ D. The set

ZD is the set of zeros of the following polynomial:

f1(θi, θj , Wi, Wj) + θjf2(θi, θj , Wi, Wj) = 0 (2.14)

where

f1(θi, θj , Wi, Wj) = W 2
j (2λiλjβjγOiηiηj) + WiWj

(−4β2
j λ2

jη
2
i Oi − 4βjλ

2
i λ

2
j

)
+

+ Wj

(−4Oiβ
2
j ηiλiλ

2
j (αi − ci) + 2λiλ

2
jβjγηiOi(αj − cj)

)
f2(θi, θj , Wi, Wj) = W 2

i (2βjλiλjOiγηiηj) + WiWj

(−Oiγ
2η2

j λ
2
i

)
+

+ Wi

(
2βjλ

2
i λjOiγηj(αi − ci) − Oiλjλ

2
i γ

2ηj(αj − cj)
)
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and Wi =
√

vi + θivj .

Proof: Note that Wi =
√

vi + θivj . Thus, Let us compute

dπi,D

dvi
=

∂πi,D

∂ai

∂ai

∂vi
+

∂πi,D

∂aj

∂aj

∂vi
+

∂πi,D

∂vi
. (2.15)

We have that

∂πi,D

∂ai
= −4βiβj (2βj(αi − ai) + γ(aj − αj))

(4βiβj − γ2)2
= 2Oiβj(αi − ci) +

2βjηiOi

λi
Wi −

− γOi(αj − cj) − γηjOi

λj
Wj ,

∂ai

∂vi
= −ηi(ci − cL)

2λiWi
= − ηi

2λiWi
,

∂πi,D

∂aj
=

2βiγ (2βj(αi − ai) + γ(aj − αj))
(4βiβj − γ2)2

= −Oiγ(αi − ci) − Oiγηi

λi
Wi +

+
Oiγ

2

2βj
(αj − cj) +

Oiγ
2ηj

2βjλj
Wj ,

∂aj

∂vi
= −θjηj(cj − cL)

2λjWj
= − ηjθj

2λjWj
,

∂πi,D

∂vi
= −1.

Using the previous equalities in equation (2.15), we get

dπi,D

dvi
=

(
2Oiβj(αi − ci) +

2βjηiOi

λi
Wi − γOi(αj − cj) − γηjOi

λj
Wj

) (
− ηi

2λiWi

)
+

+
(
−Oiγ(αi − ci) − Oiγηi

λi
Wi +

Oiγ
2

2βj
(αj − cj) +

Oiγ
2ηj

2βjλj
Wj

) (
− ηjθj

2λjWj

)
− 1
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Hence, dπi,D/dvi = 0 if, and only if

W 2
j (2λiλjβjγOiηiηj) + WiWj

(−4β2
j λ2

jη
2
i Oi − 4βjλ

2
i λ

2
j

)
+

+ Wj

(−4Oiβ
2
j ηiλiλ

2
j (αi − ci) + 2λiλ

2
jβjγηiOi(αj − cj)

)
+

+ θj

(
W 2

i (2βjλiλjOiγηiηj) + WiWj

(−Oiγ
2η2

j λ
2
i

)
+

+ Wi

(
2βjλ

2
i λjOiγηj(αi − ci) − Oiλjλ

2
i γ

2ηj(αj − cj)
)

= 0

�

Corollary 2.2.3 Suppose that Firms use patents (i.e. without spillovers, θi =

θj = 0).Let(v1, v2) be such that (a1(v1, v2), a2(v1, v2)) ∈ D. The set ZD is the set

of zeros of the following polynomial:

W 2
j (2λiλjβjγOiηiηj) + WiWj

(−4β2
j λ2

jη
2
i Oi − 4βjλ

2
i λ

2
j

)
+

+ Wj

(−4Oiβ
2
j ηiλiλ

2
j (αi − ci) + 2λiλ

2
jβjγηiOi(αj − cj)

)
= 0 (2.16)

where Wi =
√

vi.

Proof: From (2.14), making θi = θj = 0 we get (2.16).

�

If there is v1 ∈ R
+
0 such that (a1(v1, v2), a2(v1, v2)) ∈ M2, the best response

v1 of Firm F1, restricted to (a1(v1, v2), a2(v1, v2)) ∈ M2, is given by Firm F1

investing zero, i.e. not investing. Hence, V1(v2) is given by

V1(v2) = arg max
v1∈F

π1(a1(v1, v2), a2(v1, v2)),

where V1 ∈ F = ZM1 ∪ FM1 ∪ ZD ∪ {0}.
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Theorem 2.2.8 The best investment response function Vi : R
+
0 → R

+
0 of Firm

Fi is explicitly computed.

Proof: Analogous to Theorem 2.2.3.

�

AJ-Model with Joint Venture

Here, we compute the best investment response functions when both Firms decide

to go on a Joint Venture program together. Thus, the equivalents to Theorems

2.2.6 and 2.2.7 are computed for this case. Since they go on a Joint Venture

program, each Firm maximizes the sum of both Firms profits when taking their

decisions. Thus, π = π1 + π2.

Theorem 2.2.9 Let vi be such that (a1(v1, v2), a2(v1, v2)) ∈ Mi. The set ZMi is

given by:

vi =
(

ηiλi(αi − ci)
4βiλ2

i − ε2i (ci − cL)2

)2

.

Proof: If (ai, cj) ∈ Mi, then π = πi + πj = πi. Thus Theorem 2.2.6 still holds in

the case of Joint venture.

�

If there is v1 ∈ R
+
0 such that (a1(v1, v2), a2(v1, v2)) ∈ D, we select the best

response v1 of Firm F1, restricted to (a1(v1, v2), a2(v1, v2)) ∈ D, to the new

production cost a2 of Firm F2 as follows: Let ZD be the set of zeros v1 of the

following polynomial
∂π

∂v1
= 0,
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such that (a1(v1, v2), a2(v1, v2)) ∈ D. The best response v1 of Firm F1 in D is

given by

v1 = arg max
v1∈ZD∪FM1

π(a1(v1, v2), a2(v1, v2)).

Let us characterize the set ZD.

Theorem 2.2.10 Let (v1, v2) be such that (a1(v1, v2), a2(v1, v2)) ∈ D. The set

ZD is the set of zeros of the following polynomial:

f1(θi, θj , Wi, Wj) + θjf2(θi, θj , Wi, Wj) = 0 (2.17)

where

f1(θi, θj , Wi, Wj) = W 2
j (2λiλjβiβjγOiηiηj + 2Oiγηiηjβiβj) +

+ WiWj

(−4β2
j βiλ

2
jη

2
i Oi − 4βiβjλ

2
i λ

2
j − 2Oiγ

2η2
i βiβjλ

2
j

)
+

+ Wj(−4Oiβiβ
2
j ηiλiλ

2
j (αi − ci) + 2λiλ

2
jβiβjγηiOi(αj − cj) +

+ 2Oiγηiβiβjλiλ
2
j (αj − cj) − Oiηiγ

2λiλ
2
jβi(αi − ci))

f2(θi, θj , Wi, Wj) = W 2
i (2βiβjλiλjOiγηiηj + 2Oiγηiηjλiλjβiβj) +

+ WiWj(−Oiγ
2η2

j λ
2
i βi − 4β2

i Oiη
2
j λ

2
i βj) +

+ Wi(2βiβjλ
2
i λjOiγηj(αi − ci) − Oiβiλ

2
i γ

2ηj(αj − cj) −
− 4Oiβ

2
i βjηjλjλ

2
i (αj − cj) + 2Oiγηjλjλ

2
i βiβj(αi − ci))

and Wi =
√

vi + θivj .

Proof: Note that Wi =
√

vi + θivj . Since we are in the case where Firms

cooperate via Joint Venture, the profit both Firms want to optimize is given by

π = πi + πj .

Let us compute
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dπD

dvi
=

∂πi,D

∂ai

∂ai

∂vi
+

∂πi,D

∂aj

∂aj

∂vi
+

∂πi,D

∂vi
+

∂πj,D

∂ai

∂ai

∂vi
+

∂πj,D

∂aj

∂aj

∂vi
+

∂πj,D

∂vi
. (2.18)

We have that

∂πi,D

∂ai
= −4βiβj (2βj(αi − ai) + γ(aj − αj))

(4βiβj − γ2)2
= 2Oiβj(αi − ci) +

2βjηiOi

λi
Wi −

− γOi(αj − cj) − γηjOi

λj
Wj ,

∂ai

∂vi
= −ηi(ci − cL)

2λiWi
= − ηi

2λiWi
,

∂πi,D

∂aj
=

2βiγ (2βj(αi − ai) + γ(aj − αj))
(4βiβj − γ2)2

= −Oiγ(αi − ci) − Oiγηi

λi
Wi +

+
Oiγ

2

2βj
(αj − cj) +

Oiγ
2ηj

2βjλj
Wj ,

∂aj

∂vi
= −θjηj(cj − cL)

2λjWj
= − ηjθj

2λjWj
,

∂πj,D

∂ai
= −2γβj (2βi(αj − aj) + γ(ai − αi))

(4βiβj − γ2)2
= −Oiγ(αj − cj) − Oiγηj

λj
Wj +

+
Oiγ

2

2βi
(αi − ci) +

Oiγ
2ηi

λi
Wi,

∂πj,D

∂aj
= 2Oiβi(αj − cj) +

2βiOiηj

λj
Wj − Oiγ(αi − ci) − Oiγηi

λi
Wi,

∂πi,D

∂vi
= −1,

∂πj,D

∂vi
= 0.

Using the previous equalities in equation (2.18), we get

dπD

dvi
=

(
2Oiβj(αi − ci) +

2βjηiOi

λi
Wi − γOi(αj − cj) − γηjOi

λj
Wj

) (
− ηi

2λiWi

)
+

+
(
−Oiγ(αi − ci) − Oiγηi

λi
Wi +

Oiγ
2

2βj
(αj − cj) +

Oiγ
2ηj

2βjλj
Wj

) (
− ηjθj

2λjWj

)
− 1+
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+
(
−Oiγ(αj − cj) − Oiγηj

λj
Wj +

Oiγ
2

2βi
(αi − ci) +

Oiγ
2ηi

λi
Wi

) (
− ηi

2λiWi

)
+

+
(

2Oiβi(αj − cj) +
2βiOiηj

λj
Wj − Oiγ(αi − ci) − Oiγηi

λi
Wi

) (
− ηjθj

2λjWj

)

Hence, dπi,D/dvi = 0 if, and only if

W 2
j (2λiλjβiβjγOiηiηj + 2Oiγηiηjβiβj) +

+ WiWj

(−4β2
j βiλ

2
jη

2
i Oi − 4βiβjλ

2
i λ

2
j − 2Oiγ

2η2
i βiβjλ

2
j

)
+

+ Wj(−4Oiβiβ
2
j ηiλiλ

2
j (αi − ci) + 2λiλ

2
jβiβjγηiOi(αj − cj) +

+ 2Oiγηiβiβjλiλ
2
j (αj − cj) − Oiηiγ

2λiλ
2
jβi(αi − ci)) +

+ θj(W 2
i (2βiβjλiλjOiγηiηj + 2Oiγηiηjλiλjβiβj) +

+ WiWj(−Oiγ
2η2

j λ
2
i βi − 4β2

i Oiη
2
j λ

2
i βj) +

+ Wi(2βiβjλ
2
i λjOiγηj(αi − ci) − Oiβiλ

2
i γ

2ηj(αj − cj) −
− 4Oiβ

2
i βjηjλjλ

2
i (αj − cj) + 2Oiγηjλjλ

2
i βiβj(αi − ci)) = 0

�

Corollary 2.2.4 Suppose that Firms use patents (i.e. without spillovers, θi =

θj = 0).Let(v1, v2) be such that (a1(v1, v2), a2(v1, v2)) ∈ D. The set ZD is the set

of zeros of the following polynomial:

W 2
j (2λiλjβiβjγOiηiηj + 2Oiγηiηjβiβj) +

+ WiWj

(−4β2
j βiλ

2
jη

2
i Oi − 4βiβjλ

2
i λ

2
j − 2Oiγ

2η2
i βiβjλ

2
j

)
+

+ Wj(−4Oiβiβ
2
j ηiλiλ

2
j (αi − ci) + 2λiλ

2
jβiβjγηiOi(αj − cj) +

+ 2Oiγηiβiβjλiλ
2
j (αj − cj) − Oiηiγ

2λiλ
2
jβi(αi − ci)) = 0 (2.19)

where Wi =
√

vi.
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Proof: From (2.17), making θi = θj = 0 we get (2.19).

�

2.3 Nash investment equilibria

Let cL be the minimum attainable production cost and α the market saturation.

Given production costs (c1, c2) ∈ [cL, α1]×[cL, α2], the Nash investment equilibria

(v1, v2) ∈ R
+
0 × R

+
0 are the solutions of the system

⎧⎨
⎩ v1 = V1(v2)

v2 = V2(v1)

where V1 and V2 are the best investment response functions computed in the

previous sections. All the results presented hold in an open region of parameters

(cL, εi, αi, λi, βi, γi, θi, θj) containing the point (4, 0.2, 10, 10, 0.013, 0.013, 0, 0).

For the FOP-Model, we find four different regions of Nash investment equi-

libria namely, a competitive Nash investment region C where both Firms invest,

a single Nash investment region S1 for Firm F1, where only Firm F1 invests, a

single Nash investment region S2 for Firm F2, where only Firm F2 invests, and

a nil Nash investment region N , where neither of the Firms invest (see Figure

2.4). The single Nash investment region Si can be decomposed into two disjoint

regions: a single favorable Nash investment region SF
i where the production costs,

after investment, are favorable to Firm Fi; and a single recovery Nash investment

region SR
i where the production costs, after investment are, still, favorable to

Firm Fj but Firm Fi recovers, slightly, from its initial disadvantage. The eco-

nomical reasons for Firm Fj deciding not to invest in the single favorable Nash

investment region SF
i and in the single recovery Nash investment region SR

i are
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opposite. In the single favorable Nash investment region SF
i , the production costs

of Firm Fj are too high for the Firm Fj to recover its investment by increasing

its profit due to decreasing its production costs. In the single recovery Nash in-

vestment region SR
i , the production costs of Firm Fj are too low for the Firm

Fj to be willing to invest to decrease, even more, its production costs and, so,

Firm Fi is able to decrease its production costs by investing. The single favorable

Nash investment region SF
i can also be decomposed into three regions: the sin-

gle duopoly region SD
i , the single monopoly region SM

i and the single monopoly

boundary region SB
i . The single monopoly region SM

i consists of all production

costs such that, after Firm Fi’s investment, the new production costs are in the

monopoly region of Firm Fi. The single monopoly boundary region SB
i consists

of all production costs such that, after Firm Fi’s investment, the new production

costs are in the boundary between the monopoly region and the duopoly region

of Firm Fi. The single duopoly region SD
i consists of all production costs such

that, after the Firm Fi’s investment, the new production costs are still in the

duopoly region of Firm Fi. The economical reasons for both Firms choosing not

to invest in the nil Nash investment regions NLL, NHL, NLH and NHH are quite

different. In the region NLL, neither of the Firms invest because the Firms al-

ready have so low costs that the investment is not recovered by the increase in

the profit associated to the decrease of their production costs. In the region NLH

(respectively NHL), neither of the Firms invest because Firm F1 (respectively

F2) has so low production costs and Firm F2 (respectively F1) has so high pro-

duction costs that if one Firm invests and decreases its production costs, then it

is not able to recover its investment with the corresponding increase in the profit

associated to the new production costs. In the region NHH neither of the Firms

invest because the Firms already have so high production costs that the invest-
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ment is not recovered by the increase in the profit associated to the decrease of

their production costs. In the AJ-Model we only find three different Nash in-

vestment equilibria regions, i.e., the competitive Nash investment region C and

the single Nash investment regions S1 and S2. This different behavior is due to

the shape of d’Aspremont and A. Jacquemin’s R&D cost reduction investment

function traducing an higher incentive to invest reflected in the disappearance of

the nil Nash investment region. We also find that, for the FOP-Model, the Nash

investment equilibria consists of a unique, or two, or three points depending upon

the pair of initial production costs, as we will explain throughout this Section.

The set of all Nash investment equilibria form the Nash investment equilibrium

set. We now present the Nash investment equilibria by considering the following

three regions of production costs:

C the competitive Nash investment region C that is characterized by both Firms

investing;

Si the single Nash investment region Si that is characterized by only one of the

Firms investing;

N the nil Nash investment region N that is characterized by neither of the Firms

investing.

Denote by R = [cL, α1]× [cL, α2] the region of all possible pairs of productions

costs (c1, c2). Let Ac = R − A be the complementary of A in R. As shown in

Figure 2.4 where we exhibit the Nash investment regions for the FOP-Model,

(i) the intersection RS1∩S2 = (SM
1 ∪ SB

1 ) ∩ (SM
2 ∪ SB

2 ) ∩ Cc between the single

Nash investment regions S1 and S2 is non empty; (ii) the intersection RC∩Si =

C ∩ (SM
i ∪ SB

i ) ∩ Sc
j with i �= j between the competitive Nash investment region

C and the single Nash investment region Si is non empty; (iii) for high enough
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Figure 2.4: Full characterization, for the FOP-Model, of the Nash invest-
ment regions in terms of the Firms’ initial production costs (c1, c2). The
monopoly lines lMi

are colored black. The nil Nash investment region N is
colored grey. The single Nash investment regions S1 and S2 are colored blue
and red, respectively. The competitive Nash investment region C is colored
green. The region where S1 and S2 intersect are colored pink, the region
where S1 and C intersect are colored lighter blue and the region where S2

and C intersect are colored yellow. The region where the regions S1, S2 and
C intersect are colored lighter grey.
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initial production costs, unexpectedly, the intersection RS1∩C∩S2 = (SM
1 ∪ SB

1 )∩
C ∩ (SM

2 ∪SB
2 ) between the competitive Nash investment region C and the single

Nash investment regions S1 and S2 is non empty.

In Figure 2.5, we illustrate the Nash investment regions for the AJ-Model.

We observe that there are only three different Nash investment equilibria regions:

a competitive Nash investment region C, a single Nash investment region S1 for

Firm F1 and a single Nash investment region S2 for Firm F2. Moreover, the

regions with multiple Nash investment equilibria, RS1∩S2 , RC∩Si and RS1∩C∩S2 ,

that appear in the FOP-Model, no longer exist.

Figure 2.5: Full characterization, for the AJ-Model, of the Nash investment
regions in terms of the Firms’ initial production costs (c1, c2). The monopoly
lines lMi

are colored black. The single Nash investment regions S1 and S2

are colored blue and red, respectively. The competitive Nash investment
region C is colored green.

In the next Figures, we exhibit both for the FOP-Model and the AJ-Model:

the Firms’ Nash investment equilibria (see Figure 2.6), the Firms’ Profits (see

Figure 2.7), the Firms’ new production costs (see Figure 2.8), the ratio between

the Firms’ investment on R&D and their total income (see Figure 2.9). We ob-
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serve that the Firms choose higher values of investment when the production

costs take intermediate values. Moreover, there is a discontinuity in the produ-

ction costs between the monopoly and the duopoly regions. We also observe that

each Firm has higher profits when its own production cost is low and the other

Firm’s production cost is high. For the Firms’ profits, we notice a discontinuity

in the derivative, when the production costs change from the monopoly to the

duopoly region. For the percentage of the Firms’ total profit invested in R&D,

we observe that, the higher the production costs, the higher the ratio is. In par-

ticular, for the FOP-Model, when the production costs are really high, the Firms’

investment in R&D is almost all their entire profit.

A B

Figure 2.6: Firms’ Nash investments in terms of their initial production
costs (c1, c2). The Nash investment for Firm F1 in the competitive Nash
investment region C are colored blue and the Nash investment for Firm F2

in the competitive Nash investment region C are colored green. The Nash
investments in the single Nash investment region S1 (respectively S2) are
colored lighter blue (respectively yellow). (A) FOP-Model; (B) AJ-Model.
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A B

Figure 2.7: Firms’ profits in terms of their initial production costs (c1, c2).
The Nash investment for Firm F1 in the competitive Nash investment region
C are colored blue and the Nash investment for Firm F2 in the competitive
Nash investment region C are colored green. The Firms’ profits in the
single Nash investment region S1 (respectively S2) are colored lighter blue
(respectively yellow). (A) FOP-Model; (B) AJ-Model.

A B

Figure 2.8: Firms’ new production costs in terms of their initial production
costs (c1, c2). The Nash investment for Firm F1 in the competitive Nash
investment region C are colored blue and the Nash investment for Firm F2

in the competitive Nash investment region C are colored green. The Firms’
new production costs in the single Nash investment region S1 (respectively
S2) are colored lighter blue (respectively yellow). (A) FOP-Model; (B)
AJ-Model.
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A B

Figure 2.9: Percentage of the Firms’ total profit invested in R&D in terms
of their initial production costs (c1, c2). The Nash investment for Firm
F1 in the competitive Nash investment region C are colored blue and the
Nash investment for Firm F2 in the competitive Nash investment region
C are colored green. The Firms’ new production costs in the single Nash
investment region S1 (respectively S2) are colored lighter blue (respectively
yellow). (A) FOP-Model; (B) AJ-Model.

In Figure 2.10, we exhibit how the Nash investment regions change when the

Firms go on a Joint Venture program. Note that for the AJ-Model, we observe

the appearance of two regions with multiple equilibria: a region with a single

Nash investment equilibrium S1 and a competitive Nash investment equilibrium

C and a region with a single Nash investment equilibrium S2 and a competitive

Nash investment equilibrium C. Next, we show how the Firms’ Nash investment

equilibria (see Figure 2.11), the Firms’ Profits (see Figure 2.12), the Firms’ new

production costs (see Figure 2.13), the ratio between the Firms’ investment on

R&D and their total income (see Figure 2.14) change when the Firms decide to go

on a Joint Venture program. Notice that the competitive region is much smaller

for both Firms when they go on a joint venture together.
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A B

C D

Figure 2.10: Full characterization of the Nash investment regions in terms
of the Firms’ initial production costs (c1, c2). The monopoly lines lMi

are
colored black. The nil Nash investment region N is colored grey. The single
Nash investment regions S1 and S2 are colored blue and red, respectively.
The competitive Nash investment region C is colored green. The region
where S1 and S2 intersect are colored pink, the region where S1 and C
intersect are colored lighter blue and the region where S2 and C intersect
are colored yellow. The region where the regions S1, S2 and C intersect
are colored lighter grey. (A) FOP-Model; (B) AJ-Model; (C) Zoom of (B);
(D) Zoom of (B).
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A B

Figure 2.11: Firms’ Nash investments in terms of their initial production
costs (c1, c2). The Nash investment for Firm F1 in the competitive Nash
investment region C are colored blue and the Nash investment for Firm F2

in the competitive Nash investment region C are colored green. The Nash
investments in the single Nash investment region S1 (respectively S2) are
colored lighter blue (respectively yellow). (A) FOP-Model; (B) AJ-Model.

A B

Figure 2.12: Firms’ profits in terms of their initial production costs (c1, c2).
The Nash investment for Firm F1 in the competitive Nash investment region
C are colored blue and the Nash investment for Firm F2 in the competitive
Nash investment region C are colored green. The Firms’ profits in the
single Nash investment region S1 (respectively S2) are colored lighter blue
(respectively yellow). (A) FOP-Model; (B) AJ-Model.
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A B

Figure 2.13: Firms’ new production costs in terms of their initial production
costs (c1, c2). The Nash investment for Firm F1 in the competitive Nash
investment region C are colored blue and the Nash investment for Firm F2

in the competitive Nash investment region C are colored green. The Firms’
new production costs in the single Nash investment region S1 (respectively
S2) are colored lighter blue (respectively yellow). (A) FOP-Model; (B)
AJ-Model.

A B

Figure 2.14: Percentage of the Firms’ total profit invested in R&D in terms
of their initial production costs (c1, c2). The Nash investment for Firm
F1 in the competitive Nash investment region C are colored blue and the
Nash investment for Firm F2 in the competitive Nash investment region
C are colored green. The Firms’ new production costs in the single Nash
investment region S1 (respectively S2) are colored lighter blue (respectively
yellow). (A) FOP-Model; (B) AJ-Model.
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2.4 FOP-Model boundary characterization

In this Section we present, for the FOP-Model, a full characterization of the

boundaries of the Nash investment regions described previously. We study sepa-

rately the boundaries of the single Nash investment region (see Subsection 2.4.1),

the nil Nash investment region (see Subsection 2.4.2) and the competitive Nash

investment region (see Subsection 2.4.3).

2.4.1 Single Nash investment region
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Figure 2.15: Full characterization of the single Nash investment region S1

and of the nil Nash investment region N in terms of the Firms’ initial
production costs (c1, c2). The subregions NLL, NLH , NHL and NHH of the
nil Nash investment region N are colored yellow. The subregion SR

1 of the
single Nash investment region S1 is colored lighter blue. The subregion SF

1

of the single Nash investment region S1 is decomposed in three subregions:
the single Duopoly region SD

i colored blue, the single Monopoly region SM
i

colored green and the single Monopoly boundary region SB
i colored red.

The single Nash investment region Si consists of the set of production costs

(c1, c2) with the property that the Nash investment equilibrium set contains a
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pair (v1, v2) with the Nash investment vi = Vi(0) > 0 and the Nash investment

vj = Vj(vi) = 0, for j �= i.

The single Nash investment region Si can be decomposed into two disjoint re-

gions: a single favorable Nash investment region SF
i where the production costs,

after investment, are favorable to Firm Fi, and in a single recovery Nash invest-

ment region SR
i where the production costs, after investment are, still, favorable

to Firm Fj but Firm Fi recovers a little from its disadvantageous (see Figure

2.15).

The single favorable Nash investment region SF
i can be decomposed into

three regions: the single Duopoly region SD
i , the single Monopoly region SM

i

and the single Monopoly boundary region SB
i (see Figure 2.15). For every cost

(c1, c2) ∈ SF
i , let (a1(v1), a2(v2)) be the new production costs obtained by the

Firms F1 and F2 choosing the Nash investment equilibrium (v1, v2) with vj = 0.

The single duopoly region SD
i consists of all production costs (c1, c2) such that for

the Nash new investment costs (a1(v1), a2(v2)) the Firms are in the duopoly region

D (see Figure 2.15). The single monopoly region SM
i consists of all production

costs (c1, c2) such that for the new production costs (a1(v1), a2(v2)) Firm Fi is in

the interior of the Monopoly region Mi. The single monopoly boundary region

SB
i consists of all production costs (c1, c2) such that the new production costs

(a1(v1), a2(v2)) are in the boundary of the Monopoly region lM i.

We now characterize the boundaries of the single favorable Nash investment

region SF
1 (due to the symmetry, a similar characterization holds for SF

2 ). We

study the boundaries of SM
1 by separating it into four distinct boundaries: the

upper boundary UM
S1

, that is the union of a vertical segment line U l
S1

and a curve

U c
S1

, the intermediate boundary IM
S1

, the lower boundary LM
S1

and the left boundary

LeS
M
1 (see Figure 2.16). The left boundary of the single monopoly region LeM

S1
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is the right boundary d1 of the nil Nash investment region NLH that will be

characterized in Subsection 2.4.2.

The boundary of the single monopoly boundary region SB
1 is the union of a

upper boundary UB
S1

and a lower boundary LB
S1

(see Figure 2.20).

The boundary of the single duopoly region SD
1 is the union of a upper boundary

UD
S1

, a lower boundary LD
S1

and a left boundary LeD
S1

(see Figure 2.21). The left

boundary of the single duopoly region LeD
S1

is the right boundary d3 of the nil

Nash investment region NLH that will be characterized in Subsection 2.4.2.

The single recovery Nash investment region SR
1 has three boundaries: the

upper boundary UR
S1

, the left boundary LeR
S1

, and the right boundary RR
S1

(see

Figure 2.23).

Boundary of the single monopoly region SM
1

A B
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Figure 2.16: (A) Full characterization of the boundaries of the single
monopoly region SM

1 : the upper boundary UC
S1

is the union of a vertical
segment line U l

S1
with a curve U c

S1
; the lower boundary LM

S1
; and the left

boundary LeM
S1

; (B) Zoom of the upper part of figure (A) where the bound-
aries UC

S1
and U l

S1
can be seen in more detail.

In the following Lemmas we characterize, separately, the boundaries of the
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single monopoly region SM
1 . Let us characterize the boundary U l

S1
between the

single monopoly region SM
1 and the nil Nash investment region NHH with initial

production costs (c1, c2) in the Monopoly region M1. The boundary U l
S1

is a ver-

tical segment line corresponding to initial production costs (c1, c2) such that the

profit π1,M1(0, 0; c1, c2) = π1,M1(v1, 0; c1, c2) where v1 = V1(0) is the best invest-

ment response of Firm F1 to a zero investment of Firm F2 (see Figure 2.17). In

Lemma 2.4.1, we give the algebraic characterization of U l
S1

= {cM
1 }×[lMS1

(cM
1 ), α1]

by determining the value cM
1 . The value lMS1

(cM
1 ) such that (cM

1 , lMS1
(cM

1 )) ∈ lM1

is computed using Lemma 2.2.2. Let

• K1 = −(8β1λ1 − ε21(c1 − cL)2 − 2ε1(α1 − c1)(c1 − cL))/(8β1);

• K2 = (4β1λ
2
1 − 2ε1λ1(α1 − c1)(c1 − cL))/(64β1);

• K3 = −(4β1λ
2
1 − 2ε1λ1(α1 − c1)(c1 − cL))/(4β1).

Lemma 2.4.1 The initial production costs c1 = cM
1 of Firm F1, such that

(cM
1 , c2) ∈ U l

S1
and the best investment response v1 = V1(0) of Firm F1 to a

zero investment of Firm F2 are implicitly determined as solutions of the follow-

ing polynomial equations:

2β1v
3
1 + 6β1λ1v

2
1 + L1v1 + N1 = 0 (2.20)

K2
2 − K2

1 + K3 + 2V1K1 − V 2
1 = 0 (2.21)

Proof: By Theorem 2.2.1, ∂π1,M1(v1, 0; c1, c2)/∂v1 = 0 can be written as equality
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(2.20). From π1,M1(0, 0; c1, c2) =π1,M1(v1, 0; c1, c2), we get

(α1 − c1)2 =
(

α1 − c1 +
ε1(c1 − cL)v1

λ1 + v1

)2

− 4β1v1

that leads to

4β1v
2
1+(8β1λ1−ε21(c1−cL)2−2ε1(α1−c1)(c1−cL))v1+(4β1λ

2
1−2ε1λ1(α1−c1)(c1−cL)) = 0.

Choosing the positive solution of the above equality, we get

v1 = K1 +
√

K2
2 + K3

that is equivalent to equality (2.21). By Theorem 2.2.1, ∂π1,M1(v1, 0; cM
1 (c2), c2)/∂v1 =

0 can be written as equality (2.20).

�

Let us characterize the boundary U c
S1

between the single monopoly region SM
1

and the nil Nash investment region NHH with initial production costs (c1, c2) in

the Monopoly region M1. The boundary U c
S1

is a curve corresponding to initial

production costs (c1, c2) such that the profit π1,M1(0, 0; c1, c2) = π1,M1(v1, 0; c1, c2)

where v1 = V1(0) is the best investment response of Firm F1 to a zero investment

of Firm F2 (see Figure 2.18). In Lemma 2.4.2 we give the algebraic characteriza-

tion of the curve U c
S1

= {c1(c2) : c2 ∈ [B(UC
S1

; IM
S1

), lMS1
(cM

1 )]}. The value lMS1
(cM

1 )

is such that (cM
1 , lMS1

(cM
1 )) ∈ lM1 is computed and, as before, using Lemma 2.2.2.

Let B(UC
S1

; IM
S1

) be the common boundary UC
S1

∩ IM
S1

between the boundaries of

the single monopoly region UC
S1

and IM
S1

. The point B(UC
S1

; IM
S1

) is determined

as a solution of the polynomial equations presented in Lemma 2.4.1 and Lemma

2.4.2.
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Figure 2.17: Each of the plots corresponds to the profit π1 of Firm F1 when
Firm F2 decides not to invest, i.e. π1(v1, 0; c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ U l

S1
, the plot in blue

(I) corresponds to a pair of production costs (c1, c2) that are in the single
monopoly region SM

1 and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the nil Nash investment region NHH .

Let

• K4 = (β1(2β2(α1 − c1) − γ(α2 − c2))2)/((4β1β2 − γ2)2);

• K5 = K4 − (α1 − c1)2 − ε21(c1 − cL)2 − 2ε1(c1 − cL)(α1 − c1) + 8β1α1;

• K6 = 2λ1K4 − 2λ1(α1 − c1)2 − 2ε1λ1(c1 − cL)(α1 − c1) + 4β1λ
2
1.

Lemma 2.4.2 The initial production costs c1 = cM
1 (c2) of Firm F1 such that

(cM
1 (c2), c2) ∈ U c

S1
, and the best investment response v1 = V1(0) of Firm F1 to a

zero investment of Firm F2 are implicitly determined as solutions of the following

polynomial equations:

2βv3
1 + 6βλv2

1 + L1v1 + N1 = 0 (2.22)
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and

4β1v
3
1 + K5v

2
1 + K6v1 + K4λ

2
1 − (α1 − c1)2λ2

1 = 0 (2.23)

Proof: From π1,D(0, 0; c1, c2) = π1,M1(v1, 0; c1, c2) we get

β1(2β2(α1 − c1) − γ(α2 − c2))2

(4β1β2 − γ2)2
=

(
α1 − c1 +

ε1(c1 − cL)v1

λ1 + v1

)2

− 4β1v1

that leads to equation (2.23). By Theorem 2.2.1, ∂π1,M1(v1, 0; cM
1 (c2), c2)/∂v1 = 0

can be written as equality (2.22).

�

Figure 2.18: Each of the plots corresponds to the profit π1 of Firm F1 when
Firm F2 decides not to invest, i.e. π1(v1, 0; c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ U c

S1
, the plot in blue

(I) corresponds to a pair of production costs (c1, c2) that are in the single
monopoly region SM

1 and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the nil Nash investment region NHH .

Let us characterize the boundary IM
S1

between the single monopoly region SM
1

and the single Nash investment region SM
2 with initial production costs (c1, c2)



2.4 FOP-Model boundary characterization 77

in the Monopoly region M1 (see Figure 2.19). The intermediate boundary IM
S1

of

the single monopoly region SM
1 is characterized by the best investment response

V2(V1(0)) of Firm F2 to the best investment response V1(0) of Firm F1 to zero,

to be a set with two elements. One of the elements V −
2 of V2(V1(0)) is zero and

the other element V +
2 is greater than zero. In Lemma 2.4.3 we give the algebraic

characterization of the curve IM
S1

= {c1(c2) : c2 ∈ [B(IM
S1

; LM
S1

), B(U c
S1

; IM
S1

)]}.
The point B(IM

S1
; LM

S1
) is implicitly determined as a solution of the polynomial

equations presented in Lemma 2.4.3 and Lemma 2.4.2. The point B(UC
S1

; IM
S1

)

is determined, as before, as a solution of the polynomial equations presented in

Lemma 2.4.1 and Lemma 2.4.2.

Let L1 and N1 be as in Theorem 2.2.1. Let C, A2, B2 and H2 be as in Theorem

2.2.2. Let

• K7 = −4β1γ(c1 − ε1(c1 − cL))(c2 − ε2(c2 − cL));

• K8 = −4β1γε1λ1(c2 − cL)(c1 − ε1(c1 − cL));

• K9 = −4β1γε1λ1(c1 − cL)(c2 − ε2(c2 − cL));

• K10 = −4β1γε1ε2λ1λ2(c1 − cL)(c2 − cL);

• K11 = 4β2
1c2

1+ε21(c1−cL)−2ε1c1(c1−cL)+γc2
2+ε22(c2−cL)−2ε2c2(c2−cL)+

c1(8β2
1α1 +4β1α1γ)−ε1(c1−cL)(8β2

1α1 +4β1α1γ)+c2(−2α2γ
2 +4β1γα2)−

ε2(c2−cL)(−2α2γ
2+4βγ1α2)+4β2

1α2
1+γ2α2

2−4β1γα2
2+(λ1(4β1β2−γ2)2)/β2;

• K12 = −2λ1ε
2
1(c1 − cL) + 2ε1λ1c1(c1 − cL) + λ1ε1(c1 − cL);

• W1 = v1 + λ1; W2 = v2 + λ2.

Lemma 2.4.3 The initial production costs c1 = cM
1 (c2) of Firm F1 such that

(cM
1 (c2), c2) ∈ IM

S1
, the best investment v1 = V1(0) of Firm F1 to a zero investment
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of Firm F2 and the best investment of Firm F2 V +
2 ∈ V2(V1(0)) are implicitly

determined as solutions of the following polynomial equations:

K7W
4
1 W 4

2 + K8W
4
1 W 3

2 + K9W
3
1 W 4

2 + K10W
3
1 W 3

2 − ((4β1β2 − γ2)2/β2)W 3
2 W 2

1 +

+ K11W
2
1 W 2

2 + K12W1W
2
2 + K13W2W

2
1 + (2.24)

+ λ2
2ε

2
2(c2 − cL)W 2

1 + λ2
1ε

2
1(c1 − cL)W 2

2 = 0

and

CW 3
2 W1 + A2W2W1 + B2W1 − (B2/λ2)H2W2 = 0 (2.25)

and

2β1(W1 − λ1)3 + 6β1λ1(W1 − λ1)2 + L1(W1 − λ1) + N1 = 0 (2.26)

Proof: From π2,D(v1, v2; c1, c2) = 0, we get

β2(2β1(α1 − a1) − γ(α2 − a2))2

(4β1β2 − γ2)2
− v2 = 0.

The equality above can be written as

4β2
1a2

1 + γa2
2 + (−8β2

1α1 + 4β1α1γ)a1 + (−2α2γ
2 + 4β1γα2)a2 − 4β1γa1a2 +

+ (4β2
1α2

1 + γ2α2
2 − 4β1γα2

2) − ((4β1β2 − γ2)2/β2)v2 = 0.

Substituting ai = ci − (ηivi)/(λi + vi) and doing some algebric manipulations we

get equality (2.24). By Theorem 2.2.2, we have that ∂π2,D(v1, v2; cM
1 (c2), c2)/∂v2 =

0 can be written as equality (2.25).
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By Theorem 2.2.1, we have that ∂π1,M1(v1, 0; cM
1 (c2), c2)/∂v1 = 0 can be

written as equality (2.26).

�

Figure 2.19: Each of the plots corresponds to the Profit π2 of Firm F2 when
Firm F1 decides to invest v1 and Firm F2 has two possible best responses
V2(v1) = {v2; 0} with v2 > 0, i.e. π2(V1(0), v2; c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ IM

S1
, the plot in blue

(I) corresponds to a pair of production costs (c1, c2) that are in the single
monopoly region SM

1 and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the single monopoly region SM

2 .

Let us characterize the boundary LM
S1

between the single monopoly region SM
1

and the single monopoly boundary region SB
1 with initial production costs (c1, c2)

in the Monopoly region M1. In Lemma 2.4.4 we give the algebraic characteri-

zation of the curve LM
S1

= {c1(c2) : c2 ∈ [B(LM
S1

; LeM
S1

), B(Ic
S1

; LM
S1

)]}. The point

B(LM
S1

; LeM
S1

) is implicitly determined as a solution of the polynomial equations

presented in Lemma 2.4.4 and Theorem 2.4.2. The point B(IM
S1

; LM
S1

) is deter-

mined, as before, as a solution of the polynomial equations presented in Lemma

2.4.3 and Lemma 2.4.4. Let L1 and N1 be as in Theorem 2.2.1.
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Lemma 2.4.4 The initial production costs c1 = cM
1 (c2) of Firm F1 such that

(cM
1 (c2), c2) ∈ LM

S1
, and the best investment v1 = V1(0) of Firm F1 to a zero

investment of Firm F2 are implicitly determined as solutions of the following

polynomial equations:

2β1v
3
1 + 6β1λ1v

2
1 + L1v1 + N1 = 0, (2.27)

where

v1 =
γλ1(c2 − α2) − 2β2λ1(c1 − α1)

2ε1β2(cL − c1) + 2β2(c1 − α1) − γ(c2 − α2)
(2.28)

Proof: By Theorem 2.2.1, ∂π1,M1(v1, 0; c1, c2)/∂v1 = 0 can be written as equa-

tion (2.27). Take a1 = c1 − (ε1(c1 − cL)v1)/(λ1 + v1) and a2 = c2, by Lemma

2.2.1, we get

(
γ

2β2
(c2 − α2) − (c1 − α1)

)
(λ1 + v1) = ε1(cL − c1)v1 (2.29)

Thus (2.28) follows from (2.29).

�

Boundary of the single monopoly boundary region SB
1

The upper boundary of the single monopoly boundary region UB
S1

is the lower

boundary of the single monopoly region LM
S1

and has already been characte-

rized in the beginning of this Section. Let us characterize the boundary LB
S1

between the single monopoly boundary region SB
1 and the single duopoly region

SD
1 for initial production costs (c1, c2) in the monopoly region M1. In Lemma
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Figure 2.20: Full characterization of the boundaries of the single monopoly
boundary region SB

1 : the upper boundary UB
S1

and the lower boundary LB
S1

.

2.4.5 we give the algebraic characterization of the curve LB
S1

= {c1(c2) : c2 ∈
[B(LD

S1
; LB

S1
), B(LB

S1
; d3)]}. The point B(LD

S1
; LB

S1
) is implicitly determined as a

solution of the polynomial equations presented in Lemma 2.4.6 and Lemma 2.4.5.

The point B(LB
S1

; d3) is implicitly determined as a solution of the polynomial

equations presented Lemma 2.4.5 and Theorem 2.4.1.

Let A1, E1, F1, G1 and H1 be as in Theorem 2.4.1.

Lemma 2.4.5 The initial production costs c1 = cM
1 (c2) of Firm F1 such that

(cM
1 (c2), c2) ∈ LB

S1
and the best investment v1 = V1(0) of Firm F1 to a zero

investment of Firm F2 are implicitly determined as solutions of the following

polynomial equations:

A1c
2
1 + E1c1c2 + F1c1 + G1c2 + H1 = 0 (2.30)
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and

v1 =
γλ1(c2 − α2) − 2β2λ1(c1 − α1)

2ε1β2(cL − c1) + 2β2(c1 − α1) − γ(c2 − α2)
(2.31)

Proof: By Theorem 2.4.1, ∂π1,D(v1, 0; c1, c2)/∂v2 = 0 can be written as equation

(2.30). We get equation (2.31) as in Lemma 2.4.4.

�

Boundary of the single duopoly region SD
1
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Figure 2.21: (A) Full characterization of the boundaries of the single
duopoly region SD

1 : the upper boundary UD
S1

; the lower boundary LD
S1

; and
the left boundary LeD

S1
; (B) Zoom of the lower part of LeD

S1
.

The upper boundary of the single duopoly region UD
S1

is the lower boundary of

the single monopoly boundary region LB
S1

and has already been characterized in

this Subsection. The left boundary of the single duopoly region LeD
S1

is the right

boundary d3 of the nil Nash investment region NLH that will be characterized in

Subsection 2.4.2.
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Let us characterize the boundary LD
S1

between the single duopoly region SD
1

and the competitive Nash investment region C for initial production costs (c1, c2)

in the monopoly region M1 (see Figure 2.22). In Lemma 2.4.6 we give the alge-

braic characterization of the curve LD
S1

= {c1(c2) : c2 ∈ [B(LB
S1

; LD
S1

), B(LD
S1

; d3)]}.
The point B(LB

S1
; LD

S1
) is implicitly determined as a solution of the polynomial

equations presented in Lemma 2.4.5 and Lemma 2.4.6. The point B(LB
S1

; d3)

is implicitly determined as a solution of the polynomial equations presented in

Lemma 2.4.6 and Theorem 2.4.1.

Lemma 2.4.6 The initial production costs c1 = cM
1 (c2) of Firm F1 such that

(cM
1 (c2), c2) ∈ LD

S1
, the best investment v1 = V1(0) of Firm F1 to a zero investment

of Firm F2 and the best investment of Firm F2 V +
2 ∈ V2(V1(0)) are implicitly

determined as solutions of the following polynomial equations:

K7W
4
1 W 4

2 + K8W
4
1 W 3

2 + K9W
3
1 W 4

2 + K10W
3
1 W 3

2 − ((4β1β2 − γ2)2/β2)W 3
2 W 2

1 +

+ K11W
2
1 W 2

2 + K12W1W
2
2 + K13W2W

2
1 + (2.32)

+ λ2
2ε

2
2(c2 − cL)W 2

1 + λ2
1ε

2
1(c1 − cL)W 2

2 = 0

and

CW 3
2 W1 + A2W2W1 + B2W1 − (B2/λ2)H2W2 = 0 (2.33)

and

CW 3
1 W2 + A1W1W2 + B1W2 − (B1/λ1)H1W1 = 0 (2.34)
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Proof: We get equation (2.32) as in Lemma 2.4.3.

By Theorem 2.2.2, ∂π2,D(v1, v2; c1, c2)/∂v2 = 0 can be written as equation (2.33).

By Theorem 2.2.2, ∂π1,D(v1, v2; c1, c2)/∂v1 = 0 can be written as equality (2.34).

�

Figure 2.22: Each of the plots corresponds to the Profit π2 of Firm F2 when
Firm F1 decides not to invest. The plot in red (II) corresponds to a pair of
production costs (c1, c2) ∈ LD

S1
, the plot in blue (I) corresponds to a pair of

production costs (c1, c2) that are in the competitive Nash investment region
C and the plot in green (III) corresponds to a pair of production costs
(c1, c2) that are in the single duopoly region SD

2 .

Boundary of the single recovery region SR
1

The single recovery region SR
1 (due to the symmetry, a similar characteriza-

tion holds for SR
2 ) has three boundaries: the upper boundary UR

S1
, the left boun-

dary LR
S1

, and the right boundary RR
S1

(see Figure 2.23). We are now going to

characterize the upper boundary UR
S1

of the single recovery region SR
1 and will

leave the left and right boundaries of the single recovery region, that are also

boundaries of the nil Nash investment region, to be characterized in Subsection
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Figure 2.23: Full characterization of the boundaries of the single recovery
region SR

1 : the upper boundary UR
S1

; the right boundary RR
S1

; and the left
boundary LeR

S1
. In green the competitive Nash investment region C, in grey

the nil Nash investment region N , in red the single Nash investment region
S2 for Firm F2 and in blue the single recovery region SR

1 for Firm F1.

2.4.2 (see Figure 2.24). In Lemma 2.4.7 we give the algebraic characterization of

the curve UR
S1

= {c1(c2) : c2 ∈ [Q; P3)]} where the point Q is characterized by

being in the intersection between the competitive Nash investment region C and

the nil Nash investment region NLL and the point P3 is characterized by being in

the intersection between the competitive Nash investment region C and the nil

Nash investment region NHL.

Lemma 2.4.7 The initial production costs c1 = cR
1 (c2) of Firm F1 such that

(cR
1 (c2), c2) ∈ UR

S1
are implicitly determined as solutions of the following polyno-

mial equations:

A2c
2
2 + E2c1c2 + F2c2 + G2c1 + H2 = 0 (2.35)



86 Cournot competition Models

and

A1c
2
1 + E1c1c2 + F1c1 + G1c2 + H1 = 0 (2.36)

Proof: By Theorem 2.4.1, we get equations (2.35) and (2.36).

�

Figure 2.24: Each of the plots corresponds to the profit π2 of Firm F2 when
Firm F1 decides not to invest, i.e. π2,D(V1(0), v2; c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ UR

S1
, the plot in blue (I)

corresponds to a pair of production costs (c1, c2) that are in the nil Nash
investment region NHL and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the single recovery region SR

1 .

2.4.2 Nil Nash investment region

The nil Nash investment region N is the set of production costs (c1, c2) ∈ N with

the property that (0, 0) is a Nash investment equilibrium. Hence, the nil Nash

investment region N consists of all production costs (c1, c2) with the property that
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Figure 2.25: Full characterization of the nil Nash investment region N in
terms of the Firms’ initial production costs (c1, c2): (A) The subregion NLL

of the nil Nash investment region N is colored grey corresponding to initial
production cost such that the Firms do not invest and do not produce; (B)
The subregion NLH of the nil Nash investment region N is colored grey
corresponding to initial production cost such that the Firms do not invest
and do not produce and dark blue corresponding to cases where the Firms
do not invest but Firm F1 produces a certain amount q1 greater than zero;
(C) The subregion NHH of the nil Nash investment region N is colored grey
corresponding to initial production cost such that the Firms do not invest
and do not produce; dark blue corresponding to cases where the Firms do
not invest but Firm F1 produces a certain amount q1 greater than zero and
dark red corresponding to cases where the Firms do not invest but Firm F2

produces a certain amount q2 greater than zero.
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the new production costs (a1(v1), a2(v2)), with respect to the Nash investment

equilibrium (0, 0), are equal to the production costs (c1, c2).

The nil Nash investment region N is the union of four disjoint sets: the set

NLL consisting of all production costs that are low for both Firms (see Figure

2.25 (A)); the set NLH (resp. NHL) consisting of all production costs that are

low for Firm F1 (resp. F2) and high for Firm F2 (resp. F1) (see Figure 2.25 (B));

and the set NHH consisting of all production costs that are high for both Firms

(see Figure 2.25 (C)).

In this Subsection, we characterize the boundaries of these nil Nash invest-

ment regions. The boundaries of the nil Nash investment region NHH have been

characterized in the previous Subsection. The left boundary LeNHH
of the nil

Nash investment region NHH coincides with the upper boundary of the single

monopoly region UM
S1

(see Lemmas 2.4.1 and 2.4.2) and the lower boundary LNHH

of the nil Nash investment region NHH coincides with the upper boundary of the

single monopoly region UM
S2

. To characterize all the other boundaries of the nil

Nash investment regions, we will use the following Theorems:

Let Ai, Ei, Fi, Gi and Hi be as in Theorem 2.4.1. Let us define the following

parameters:

• Ii = 4βiβj/λi; Ai = −2Iiεiβi; Ei = Iiεiγ;

• Gi = −IiεiγcL; Fi = 2Iiεiβiαi + 2IiεicLβi − Iiεiγαi;

• K = (4βiβj − γ2)2; Hi = −2IiεicLβiαi + IiεicLγαi − K.

Theorem 2.4.1 The solutions of ∂πi,D(0, 0; c1, c2)/∂vi = 0 are contained in

Aic
2
i + Eicicj + Fici + Gicj + Hi = 0.
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Proof: Let us compute

dπi,D

dvi
=

∂πi,D

∂ai

∂ai

∂vi
+

∂πi,D

∂aj

∂aj

∂vi
+

∂πi,D

∂vi
. (2.37)

We have that

∂πi,D

∂ai
= −4βiβj(2βj(αi − ai) + γ(aj − αj))

(4βiβj − γ2)2

∂ai

∂vi
=

ηiλi

(λi + vi)2

∂πi,D

∂aj
= − 2βiγ(2βj(αi − ai) + γ(aj − αj))

(4βiβj − γ2)2

∂πi,D

∂vi
= −1.

Hence, dπi,D/dvi = 0 if, and only if,

4βiβjηiλ(2βj(αi − ai) + γ(aj − αj))
λ2

i

= K (2.38)

Taking ai = ci and aj = cj , we get that dπi,D/dvi = 0 if, and only if,

Iiηi(2βi(αi − ci) + γ(cj − αj)) − K = 0

After algebric manipulations, we get

2Iiηiβiαi − 2Iiηiβici + Iiηiγcj − Iiηiγαi − K = 0

which leads to

Aic
2
i + Eicicj + Fici + Gicj + Hi = 0.

�



90 Cournot competition Models

Let Q = εi(αi + cL) and R = −εiαicL − 2βiλi.

Theorem 2.4.2 The solution of ∂πi,Mi(0, 0; c1, c2)/∂vi = 0, is contained in

ci = (−Q +
√

Q2 − 4PR)/(−2εi). (2.39)

Proof: Let us compute

dπi,Mi

dvi
=

∂πi,Mi

∂ai

∂ai

∂vi
+

∂πi,Mi

∂vi
.

Since

∂πi,Mi(vi, 0; c1, c2)/∂vi = (εiλi(αi − ai)(ci − cL)) /
(
2βi(λi + vi)2

) − 1,

dπi,Mi(vi, 0; c1, c2)/dvi = 0 if, and only if,

εiλi(αi − ai)(ci − cL) = 2βi(λi + vi)2.

Letting vi = 0 (ai = ci), we get

εiλi(αi − ci)(ci − cL) = 2βiλ
2
i

that can be written as

−εiλic
2
i + εiλi(αi + cL)ci − εiλiαicL − 2βiλ

2
i = 0.
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Choose the positive solution, we get

ci = (−Q +
√

Q2 − 4PR)/(−2εi).

�

We begin by characterizing the boundary of the nil Nash investment region

NLL that is composed by a right boundary RNLL
and a upper boundary UNLL

.

The right boundary of the nil Nash investment region NLL (see Figure 2.25 (A))

is given by the curve (see Theorem 2.4.1 and Figure 2.26)

∂π1,D

∂v1
(0, 0; c1, c2) = 0.

Figure 2.26: Each of the plots corresponds to the profit π1 of Firm F1 when
Firm F2 decides not to invest, i.e. π1,D(V1(0), 0; c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ RNLL

, the plot in blue
(I) corresponds to a pair of production costs (c1, c2) that are in the nil Nash
investment region NLL and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the single recovery region SR

1 .

Furthermore, the upper boundary of the region NLL is given by the curve (see

Theorem 2.4.1 and Figure 2.27)

∂π2,D

∂v2
(0, 0; c1, c2) = 0



92 Cournot competition Models

Figure 2.27: Each of the plots corresponds to the profit π2 of Firm F2 when
Firm F1 decides not to invest, i.e. π2,M2(0, V2(0); c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ UNLL

, the plot in blue
(I) corresponds to a pair of production costs (c1, c2) that are in the nil Nash
investment region NLL and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the single recovery region SR

2 .

We will refer to the boundaries of the region NLH as d1, d2, d3 and d4 (see Figure

2.25 (B)). The arc d1 is given by the curve (see Theorem 2.4.2 and Figure 2.28)

∂π1,M1

∂v1
(0, 0; c1, c2) = 0

The arc d2 is a segment line lM1 characterized in Lemma 2.2.2. The arc d2 is

described above. The arc d3 is given by the curve (see Theorem 2.4.1 and Figure

2.29)
∂π1,D

∂v1
(0, 0; c1, c2) = 0

and the arc d4 is given by the curve (see Theorem 2.4.1 and Figure 2.30)

∂π2,D

∂v2
(0, 0; c1, c2) = 0
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Figure 2.28: Each of the plots corresponds to the profit π1 of Firm F1 when
Firm F2 decides not to invest, i.e. π1(V1(0), 0; c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ d1, the plot in blue (I)
corresponds to a pair of production costs (c1, c2) that are in the nil Nash
investment region NLH and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the single favorable region SF

1 .

Figure 2.29: Each of the plots corresponds to the profit π1 of Firm F1 when
Firm F2 decides not to invest, i.e. π1,D(V1(0), 0; c1, c2). The plot in red (II)
corresponds to a pair of production costs (c1, c2) ∈ d3, the plot in blue (I)
corresponds to a pair of production costs (c1, c2) that are in the nil Nash
investment region NLH and the plot in green (III) corresponds to a pair of
production costs (c1, c2) that are in the single favorable region SF

1 .
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Figure 2.30: Each of the plots corresponds to the profit π2 of Firm F2

when Firm F1 decides not to invest, i.e. π2,D(0, V2(0); c1, c2). The plot in
red (II) corresponds to a pair of production costs (c1, c2) ∈ d4, the plot in
blue (I) corresponds to a pair of production costs (c1, c2) that are in the
single recovery region SR

2 and the plot in green (III) corresponds to a pair
of production costs (c1, c2) that are in the nil Nash investment region NLH .

2.4.3 Competitive Nash investment region

The competitive Nash investment region C consists of all production costs (c1, c2)

such that there is a Nash investment equilibrium (v1, v2) with the property that

v1 > 0 and v2 > 0. Hence, the new production costs a1(v1) and a2(v2) of Firms

F1 and F2 are smaller than the actual production costs c1 and c2 of the Firms F1

and F2, respectively.

In Figure 2.31, the boundary of region C consists of four piecewise smooth

curves: The curve C1 is characterized by a1(v1) = c1 i.e. v1 = 0; the curve

C2 is characterized by a2(v2) = c2 i.e. v2 = 0; the curve C3 corresponds to

points (c1, c2) such that the new production costs (a1(v1), a2(v2)) have the pro-

perty that π1(a1, a2) = π1(a1, c2); and the curve C4 corresponds to points (c1, c2)

such that the Nash investment equilibrium (a1(v1), a2(v2)) has the property that

π1(a1, a2) = π1(c1, a2). The curve C2 (respectively C1) is the common boundary

between the competitive Nash investment region C and the single recovery region

SR
2 (respectively SR

1 ). The boundary C3 can be decomposed in three parts CD
3 ,
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Figure 2.31: Firms’ investments in the competitive Nash investment region.
The competitive Nash investment region is colored green, the single Nash
investment region S1 (respectively S2) is colored blue (respectively red) and
the nil Nash investment region N is colored grey.

CB
3 and CM

3 . The boundary CD
3 consists of all points in C3 between the points

P3 and E3 (see Figure 2.31). The boundary CD
3 −{P3} has the property of being

contained in the lower boundary of the single duopoly region SD
2 of Firm F2.

The boundary CB
3 consists of all points in C3 between the points E3 and F3 (see

Figure 2.31). The boundary CB
3 has the property of being contained in the lower

boundary of the single monopoly boundary region SB
2 of Firm F2. The boundary

CM
3 consists of all points in C3 between the points F3 and V (see Figure 2.31).

The boundary CM
3 has the property of being contained in the lower boundary of

the single monopoly boundary region SB
2 of Firm F2. Due to the symmetry, a

similar characterization holds for the boundary C4. The points P3, P4, Q and V

are the corners of the competitive Nash investment region C (see Figure 2.31).

The point Q is characterized by being in the intersection between the competitive

Nash investment region C and the nil Nash region NLL. The point P3 (respe-
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ctively P4) is characterized by being in the intersection between the competitive

Nash investment region C and the nil Nash investment region NHL (respectively

NLH). The point E3 in the boundary of the competitive Nash investment region

C is characterized by belonging to the boundaries of the single duopoly region

SD
2 and the single monopoly boundary region SB

2 (see Figure 2.31). The point

F3 in the boundary of the competitive Nash investment region C is characterized

by belonging to the boundaries of the single monopoly boundary region SB
2 and

the single monopoly region SM
2 (see Figure 2.31).

2.5 FOP-Model regions with multiple Nash

equilibria

A B C
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Figure 2.32: (A) Nash investment regions in the high production costs
region, ci ∈ [9, 10], with i �= j; (B) Zoom of (A) in the region where there
are three Nash investment equilibria; (C)Dynamics on the production costs
in the high production costs region, ci ∈ [9, 10], with i �= j: in blue, the
dynamics in the single Nash investment region for Firm F1, S1 where only
Firm F1 invests; in red the dynamics in the single Nash investment region
for Firm F2, S2 where only Firm F2 invests; and in green the dynamics in
the competitive Nash investment region C where both Firms invest.

Let us consider the region of high production costs, that can correspond to
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the production of new technologies, where there are multiple Nash investment

equilibria. Recall that Sc
i = R − Si and Cc = R − C. In this section, we

study the production costs that correspond to the existence of multiple Nash

investment equilibria. We find a region SF
1 ∩ SF

2 ∩ C with a competitive Nash

investment equilibrium, a single favorable Nash investment equilibrium to Firm

F1 and a single favorable Nash investment equilibrium to Firm F2 (see Figure

2.35); a region SF
1 ∩ SF

2 ∩ Cc where there are, simultaneously, a single favorable

Nash investment equilibrium to Firm Fi and a single favorable Nash investment

equilibrium to Firm F2 (see Figure 2.33); and a region SF
i ∩ C ∩ Sc

j , with i �= j,

where there are two Nash investment equilibria, one favorable to Firm F1 and a

competitive one (see Figure 2.34).

This shows the high complexity of the R&D strategies of the Firms, for high

values of initial production costs.
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Figure 2.33: We fix the initial production cost of Firm F1, c1 = 9.7 and
plot (A) the Nash investment equilibria (NIE) of Firm F1 and the Nash
investment equilibria of Firm F2; (B) the profit of Firm F1 and the profit
of Firm F2 where green means that the pair (c1, c2) belongs to the single
Nash investment region S1 and red means that the pair (c1, c2) belongs to
the single Nash investment region S2.
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Figure 2.34: We fix the initial production cost of Firm F1, c1 = 9.2 and
plot (A) the Nash investment equilibria (NIE) of Firm F1 and the Nash
investment equilibria of Firm F2; (B) the profit of Firm F1 and the profit of
Firm F2 where green means that the pair (c1, c2) belongs to the single Nash
investment region S1, red means that the pair (c1, c2) belongs to the single
Nash investment region S2 and blue means that the pair (c1, c2) belongs to
the competitive Nash investment region C.
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Figure 2.35: We fix the initial production cost of Firm F1, c1 = 9.35 and
plot (A) the Nash investment equilibria (NIE) of Firm F1 and the Nash
investment equilibria of Firm F2; (B) the profit of Firm F1 and the profit of
Firm F2 where green means that the pair (c1, c2) belongs to the single Nash
investment region S1, red means that the pair (c1, c2) belongs to the single
Nash investment region S2 and blue means that the pair (c1, c2) belongs to
the competitive Nash investment region C.
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2.6 FOP-Model R&D deterministic dynamics
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Figure 2.36: Dynamics on the production costs in terms of the initial pro-
duction costs (c1, c2): in blue, the dynamics in the single Nash investment
region for Firm F1, S1 where only Firm F1 invests; in red the dynamics in
the single Nash investment region for Firm F2, S2 where only Firm F2 in-
vests; and in green the dynamics in the competitive Nash investment region
C where both Firms invest.

The R&D deterministic dynamics on the production costs of the duopoly

competition appear from the Firms deciding to play a perfect Nash equilibrium

in the Cournot competition with R&D cost reduction investment programs, pe-

riod after period. The nil Nash investment region is the set of equilibria for these

dynamics. It is unusual in dynamical systems to have a non-isolated set of equili-

brium points. We notice that we have a single Nash investment region coexisting

with a competition Nash investment region, and we have the single Nash invest-

ment regions for both Firms coexisting with the competitive Nash investment

region. This is due to the complex investment structure that we have to deal in

these problems. For simplicity, we will study, separately, the R&D deterministic

dynamics in the competitive, in the single and in the nil Nash investment regions,
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using the corresponding Nash investment equilibrium.

The R&D deterministic dynamics in the single Nash investment region is

implicitly determined by Theorems 2.2.1 and 2.2.2. Let S1 = SF
1 ∪ SR

1 be the

single Nash investment region of Firm F1. If (c1, c2) ∈ SF
1 , then only Firm F1

invests along the time. Furthermore, at some period of time, the pair of new

production costs falls in the monopoly region and so Firm F2 is driven out of the

market by Firm F1. The production costs approach, along the time, the region

NLH (see Figure 2.36). Hence, the production costs of Firm F1 approach low

costs of production but the production costs of Firm F2 are always fixed at high

production costs. If (c1, c2) ∈ SR
1 then only Firm F1 invests along the time. So,

Firm F1 will recover, along the time, from its disadvantageous position. The

production costs approach, along the time, the nil Nash investment region NLL

(see Figure 2.36). Hence Firm F1 is able to recover, along the time, to the region

where both Firms have low production costs.

The R&D deterministic dynamics in the competitive Nash investment region

is implicitly determined by Theorems 2.2.1 and 2.2.2. In the competitive Nash

investment region both Firms invest, along the time, and the production costs

converge to the nil Nash investment region NLL. Hence, the production costs

of both Firms are driven by the R&D deterministic dynamics to low production

costs.

When the production costs are high (see Section 2.5) we have regions with

multiple Nash investment equilibria. In the region RS1∩S2 , the Firm that decides

to invest in the first period can drive the other Firm out of the Market, and its

production costs will approach, along the time, low production costs either in

the nil Nash investment region NLH or in the nil Nash investment region NHL.

Hence, the short and long term economical outcome for the Firms can depend
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only upon the R&D investment decision of both Firms at period one. In Figure

2.37, we observe that for some production cost c2, the Firms face two possible

dynamics depending on which of the two possible equilibria S1 or S2 they decide

to choose. In the region RSi∩C , with i �= j, if both Firms decide to implement

their R&D cost reduction investment programs according to the Nash investment

strategy in the competitive Nash investment region C, both Firms will stay in the

market, along the time, and their production costs will approach low production

costs. However, if one of the Firms decides not to invest in period one, this Firm

can be driven out of the Market and the production costs of the other Firm will

approach, along the time, low production costs. In Figure 2.38, we observe that

for some production cost c2, the Firms face two possible dynamics depending

on which of the two possible equilibria S1 or C decide to choose. Finally, in

Figure 2.39 we see that for some production cost c2, the Firms face three possible

dynamics depending on which of the three possible equilibria S1 or C or S2 decide

to choose.
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Figure 2.37: Plot of the New production cost (NPC) of Firm F1 and the
New production cost of Firm F2 with the initial production cost of Firm F1

c1 = 9.7 fixed where green means that the pair (c1, c2) belongs to the single
Nash investment region S1 and red means that the pair (c1, c2) belongs to
the single Nash investment region S2.
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Figure 2.38: Plot of the New production cost (NPC) of Firm F1 and the
New production cost of Firm F2 with the initial production cost of Firm
F1 c1 = 9.2 fixed where green means that the pair (c1, c2) belongs to the
single Nash investment region S1, red means that the pair (c1, c2) belongs to
the single Nash investment region S2 and blue means that the pair (c1, c2)
belongs to the competitive Nash investment region C.
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Figure 2.39: Plot of the New production cost (NPC) of Firm F1 and the
New production cost of Firm F2 with the initial production cost of Firm
F1 c1 = 9.35 fixed where green means that the pair (c1, c2) belongs to the
single Nash investment region S1, red means that the pair (c1, c2) belongs to
the single Nash investment region S2 and blue means that the pair (c1, c2)
belongs to the competitive Nash investment region C.

2.7 Conclusions

In this Chapter, we presented R&D deterministic dynamics on the production

costs of Cournot competitions, based on perfect Nash equilibria of R&D invest-

ment strategies of the Firms at every period. The following conclusions are valid

in some parameter region of our model. We introduced a new R&D investment

function inspired by the logistic equation and found all Perfect Nash investment

equilibria of the Cournot competition model with R&D cost reduction investment

programs.

We described four main economic regions corresponding to distinct perfect

Nash equilibria: a competitive Nash investment region C where both Firms in-

vest, a single Nash investment region for Firm F1, S1, where only Firm F1 invests,

a single Nash investment region for Firm F2, S2, where only Firm F2 invests, and
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a nil Nash investment region N where neither of the Firms invest. For the FOP-

Model these four Nash investment regions appear whereas for the AJ-Model we

only find three different Nash investment equilibria regions: a competitive Nash

investment region C, a single Nash investment region S1 for Firm F1 and a single

Nash investment region S2 for Firm F2. The non existence of nil Nash invest-

ment region N has to do with the shape of d’Aspremont and Jacquemin’s R&D

cost reduction investment function that reflects an higher incentive to invest. For

the FOP-Model, the nil Nash investment region has four subregions: NLL, NLH ,

NHL and NHH . The single Nash investment region can be divided into four sub-

regions: the single favorable region for Firm F1, SF
1 , the single recovery region

for Firm F1, SR
1 , the single favorable region for Firm F2, SF

2 , the single recovery

region for Firm F2, SR
2 . The single favorable region SF

1 (due to the symmetry

the same characterization holds for SF
2 ) is the union of three disjoint regions: the

single duopoly region SD
1 where the production costs, after the investments, be-

long to the duopoly region D; the single monopoly boundary region SB
1 where the

production costs, after the investments, belong to the boundary of the monopoly

region lM1 ; and the single monopoly region SM
1 where the production costs, after

the investments, belong to the monopoly region M1.

We showed the existence of regions where the Nash investment equilibria are

not unique: the intersection RS1∩S2 between the single Nash investment region S1

and the single Nash investment region S2 is non empty; the intersection RSi∩C ,

with between the single Nash investment region Si and the competitive Nash

investment region C is non empty; the intersection RS1∩C∩S2 between the sin-

gle Nash investment region S1, the single Nash investment region S2 and the

competitive Nash investment region C is non empty.

In Section 2.6, we presented, for the FOP-Model, the R&D deterministic dy-
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namics on the production costs of Cournot competitions, based on R&D invest-

ment strategies of the Firms and we illustrated the transients and the asymptotic

limits of the R&D deterministic dynamics on the production costs. We introduced

the implicit equations (see Theorems 2.2.1 and 2.2.2) determining the R&D de-

terministic dynamics that are distinct in the competitive Nash investment region

C and in the single Nash investment regions S1 and S2. The nil Nash investment

region N determines the set of all production costs that are fixed by the dyna-

mics and thus is the set of equilibria for the R&D deterministic dynamics. The

nil Nash investment regions NLL, NHL and NLH will appear as the asymptotic

production costs for both Firms depending upon their R&D investment strate-

gies. The single Nash investment region Si determines the set of production costs

where the production cost of Firm Fj is constant, along the time, and only the

production cost of Firm Fi evolves. We saw that if (c1, c2) belongs to the single

favorable Nash investment region SF
1 (respectively SF

2 ), then only Firm F1 (res-

pectively Firm F2) invests along the time. The production costs approach, along

the time, the region NLH (respectively NHL). On the other hand, we observed

that if (c1, c2) belongs to the single recovery Nash investment region SR
1 (res-

pectively SR
2 ) then only Firm F1 (respectively Firm F2) invests along the time.

Hence, Firm Fi is able to recover, along the time, from its disadvantageous po-

sition approaching the region where both Firms have low production costs NLL.

The R&D deterministic dynamics in the competitive Nash investment region C

lead both Firms, along the time, to approach the nil Nash investment region NLL

corresponding to a case where both Firms have low production costs.

Interestingly, for high initial production costs, that can correspond to the

production of new technologies, the single favorable regions of both Firms and

the competitive Nash investment region have non-empty intersection. Hence,
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in this region, depending upon the Nash investment strategy chosen from the

three possible Nash investment equilibria, the time evolution of the production

costs will approach three distinct economic equilibria regions called NLL, NLH

and NHL. Hence, our analysis showed that in the case of production of new

technologies, corresponding to high initial production costs, the R&D investment

strategies chosen by both Firms are essential for their maintenance in the market.

This also shows that the market can be driven, in a short period of time to a

monopoly situation.



Chapter 3

Edgeworthian Economies

Models

3.1 Introduction

The work presented in this Chapter is joint work with B.F. Finkenstädt, B.

Oliveira, A.A. Pinto and A.N. Yannacopoulos and most of it is contained in the

research article [27], in the conference proceedings [24], [25], [26], [33] and [56]

and in the book chapter [28].

In most economies three basic activities occur: production, exchange and

consumption. We analyze the case of a pure exchange economy where individuals

trade their goods in the market place for mutual advantage. We present models

of an Edgeworthian exchange economy where two goods are traded in a market

place.

In Section 3.3 we show that for a specific class of random matching Edgewor-

thian economies, the expectation of the limiting equilibrium price coincides with
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that of related Walrasian economies.

In Sections 3.7 and 3.8 two new modifications to the model are introduced.

In both these models, participants do not necessarily trade according to their

bilateral Walras equilibrium price. We associate to each participant either a low

or high bargaining skill factor bringing up a game alike the “prisioner’s dilemma”.

The exact location in the core where the trade takes place is decided by both

participants’ bargaining skills. If a more skilled participant meets a less skilled

participant, trade occurs with an advantage to the more skilled bargainer (see

Section 3.7). However, if both participants are too skilled, they are penalized by

not being allowed to trade. If the pair randomly chosen to trade is formed by

two low skilled bargainers, they will trade according to the usual bilateral Walras

equilibrium price.

We analyze the effect of the participants’s bargaining skills in the variation

of their utilities. Finally, in Section 3.8, we let the bargaining skills of the par-

ticipants evolve, along the trades, according to two predefined rules and analyse

how these bargaining skills evolve depending on these rules.

3.2 The Edgeworth model and some necessary

results

We consider agents with preferences �i that can be described by Cobb-Douglas

type utility functions Ui(xi, yi) = xαi
i y1−αi

i .

Assume the following model for an exchange economy with 2 durable goods.

Out of an initial collection of agents we pick N agents, through a sampling scheme

with or without replacement.

The Cobb-Douglas utility function is a model which is so well rooted in eco-
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nomic theory that its use hardly needs to be justified. As stated in the excellent

review paper of Lloyd [45] the Cobb-Douglas function has been around for ages,

even well before its formal statement by Cobb and Douglas, and its roots are

inherent in the works of Mill, Pareto, Wicksell, Von Thünen, etc, and for var-

ious reasons serves as the standard test bed for a great number of studies in

mathematical economics. One of these reasons is its mathematical simplicity,

which however, captures important theoretical issues such as constant maximal

rate of substitution etc. However, this is not the sole reason for its generali-

zed use. Recent results of Voorneveld [80] show that the utility function being

of the Cobb-Douglas form is equivalent to the preferences of the agents having

the property of strict monotonicity, homotheticity in each coordinate and upper

semicontinuity. These properties are rather generic properties for the preferences,

which can be seen as very reasonable modelling assumptions. Furthermore, there

is empirical evidence [62], according to which with very large and increasing per

capita income the utility function becomes asymptotically indistinguishable from

Cobb-Douglas. These very interesting results shed new light on the Cobb-Douglas

utility function and provides further justification for its use as a standard model,

apart from its apparent analytical simplicity.

Then these agents, at subsequent time instants, meet randomly in pairs and

exchange goods so that their utility levels are maximized. When the pair (i, j)

meets, they trade at the bilateral equilibrium price p which is given by

p =
αi yi + αj yj

(1 − αi) xi + (1 − αj) xj
(3.1)

and their demands in the two goods (xi, yi) and (xj , yj) are such that the utili-

ties of the agents are maximized under the constraints available as if only these

two agents were participating in the market. The bilateral equilibrium price,
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determines the unique point in the core such that the market “locally” clears. In

some sense, the agents behave in a myopic way, interacting only in pairs, and not

forseeing the future interactions or keeping memory of their past encounters.

The randomness of the encounters introduces some randomness into this mar-

ket. The agents start with a set of initial endowments (xi(0), yi(0)), then they

trade in random pairs and after the t trade they end up with a consumption

bundle (xi(t), yi(t)) which are traded in the bilateral equilibrium price p(t), given

by the formula (3.1) with xi, xj , yi, yj substituted by xi(t − 1), xj(t − 1), yi(t −
1), yj(t−1). On each trade only two randomly chosen agents i, j exchange goods,

and the consumption bundles of all the other agents k �= i, j remain unchanged,

i.e. (xk(t − 1), yk(t − 1)) = (xk(t), yk(t)). On account of the random pairing of

the agents, the demand of the agents on the two goods is a stochastic process,

and that turns the price p(t) into a stochastic process as well.

An interesting question that arises in this context is the following:

Does there exist a limiting price p∞ = limt→∞ p(t) and if so how

would that compare to the Walrasian equilibrium price, where all

agents meet at once and trade in one go?

An answer to the first question has been given by a number of authors, see

for example [36] and references therein. According to this bibliography, p∞ exists

almost surely, and it is a random variable. However, it depends on the actual

game of the play, that is the exact order of the random pairing of the agents.

The aim of the present work is to provide some results on the expectation

of this random variable p∞, and how this compares to the Walrasian price. In

particular, under some rather general symmetry conditions on the initial endow-

ments of the agents and distribution of initial preferences, we show that the
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expectation of the logarithm of p∞ equals the logarithm of the Walrasian price

for the same initial endowments of the agents. This is an interesting result, in the

sense that even though the agents meet and trade myopically in random pairs,

they somehow “self-organize” and the expected limiting price equals that of a

market where a central planner announces prices and all the agents conform to

them through utility maximization, as happens in the Walrasian model.

The main reason why organizing behavior is observed is the symmetry in the

endowments and preferences of the agents that, as will become clear from our

analysis in the next section, poses global constraints in the market, in the sense

that it enforces each agents to have a mirror, or a dual agent.

3.3 The main result

We introduce the concept of duality in the market.

We assume that the collection of agents is completely characterized by their

preferences α, and their endowments (x, y) in the 2 goods. We may define a

probability distribution function on (α, x, y) space, f(α, x, y) which provides the

probability that a chosen agent has preferences in (α, α + dα) × (x, x + dx) ×
(y, y + dy). We assume that the probability distribution has compact support,

and the support in (x, y) is bounded away from zero.

Definition 3.3.1 We say that a market satisfies the p - statistical duality

condition if the probability function has the symmetry property

f(α, x, y) = f

(
1 − α,

y

p
, p x

)

where p ∈ R.
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The p-statistical duality property means that each agent with characteristics

(α, x, y) has a mirror agent with characteristics (1 − α, y/p, p x) with the same

probability under f . The class of probability functions f(α, x, y) of the form

f1(α)f2(x, y) with the property that f1(α) = f1(1−α) and f2(x, y) = f2(y/p, p x)

satisfies the p-statistical duality. A common probability function f2, satisfying

the above condition, is the uniform distribution. Another common example of a

probability function satisfying the p-statistical duality is used in Corollary 3.3.1,

below, and determines the most well known matching technology used in random

matching games with N agents.

Statistical duality guarantees that the prices observed in the random matching

Edgeworthian economy coincide in expectation with those of the Walrasian eco-

nomy. For each collection of agents, let pw denote the Walrasian equilibrium

price of the market.

Theorem 3.3.1 Assume a market consisting of a finite number N of agents,

such that p-statistical duality holds for the initial endowments, then

E[ln(p(t)] = Ē[ln(pw)] = ln(p), for all t ∈ {1, 2, . . . ,+∞}.

Furthermore,

E[ln(p∞)] = ln(p)

where Ē is the expectation over the distribution of agents and E is expectation

over the distribution of agents and over all possible runs of the game.

In Theorem 3.3.1, the advantage of using the logarithm of the price is that if we

consider the other good to be the enumeraire, the absolute value of the logarithm
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of the price keeps the same and just the sign of the value of the logarithm of the

price changes.

A relevant and well known example of an economy with the p-statistical

duality property is an economy where with probability 1 we start with a sample

of N = 2M agents where M agents have characteristics (ai, xi, yi), i = 1, · · · , M ,

and the remaining M agents have characteristics (ai+M , xi+M , yi+M ) = (1 −
ai, yi/p, p xi), i = 1, · · · , M . In other words, in this economy, each agent has

a dual agent, i.e. agent i is dual to agent i + M where i = 1, · · · , M . This

corresponds to choosing f to consist of 2M Dirac masses and choosing N agents

out an initial collection of N .

Corollary 3.3.1 Assume a market consisting of a finite number N = 2M of

agents, such that M agents have characteristics (ai, xi, yi), i = 1, · · · , M , and the

remaining M agents have characteristics (ai+M , xi+M , yi+M ) = (1−ai, yi/p, p xi),

i = 1, · · · , M , then

E[ln(p(t)] = ln(pw) = ln(p), for all t ∈ {1, 2, . . . ,+∞}.

Furthermore,

E[ln(p∞)] = ln(p)

where E is the expectation over all possible runs of the game.

Proof: The distribution function f consists of 2M Dirac masses and satisfies the

p-statistical duality because every agent has a dual.

�
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The theorem can also be shown to hold for a generalized random matching

economy in which agents do not only meet in pairs. In this game, we initially pick

N agents and then for each trading date we pick randomly M ≤ N agents, that

decide to trade on the competitive price for the local market consisting only of

these M agents. The number M , may change with t. Then, under our statistical

duality condition, it may be shown that the stated result holds.

3.4 Beyond the p-statistical duality

We consider an example of an economy where with probability 1 we start with

a sample of N = 2 M agents where M agents are of type A with characteristics

(αA, xA, yA), and the remaining M agents are of type B and have characteristics

(αB, xB, yB). For simplicity, we consider that the initial endowments of the two

goods are xi = yi = 1/N for all agents. In other words, in this economy, each

agent has a dual agent, i.e. agents of type A are dual to agent of type B. This

corresponds to choosing f , in definition 3.3.1, to consist of 2M Dirac masses

and choosing the agents out an initial collection of N . Hence, letting pA,B
w be

the Walrasian equilibrium price of the market, we observe that the expected

value E[ln(pA,B∞ )] over the distribution of agents is equal to ln(pA,B∞ ). Let pA,B∞ =

limt→∞ p(t) be the limiting price, for a given run of the game, where p(t) is the

bilateral equilibrium price at trade t. Our object of study is the value dαA,αB =

E[ln(pA,B∞ )] − ln(pA,B
w ) where E[ln(pA,B∞ )] is the expectation over all runs of the

game.

In Figure 3.1, we consider the simple case where dα = dα−0.25,α+0.25 and

α ∈]0, 1[. The p-statistical duality holds for α = 0.5 giving d0.5 = 0.We observe

that when we deviate α from 0.5, breaking the p-statistical duality, the value of

dα varies continuously with α. Furthermore, for values of α close to 0.5, dα looks
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as a contact with order greater than one to the horizontal line at 0. Hence, these

numerical results give evidence that Theorem 3.3.1 is robust in the sense that

dαA,αB is small for small deviations from the p-statistical duality.
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Figure 3.1: The horizontal line, in red, corresponds to d = 0. (A) The error
bar is, as usual, centered in the mean and the upper (resp. lower) limit is
the mean plus (resp. minus) the standard deviation; (B) The error bar is
centered in the mean and the upper (resp. lower) limit is the mean plus
(resp. minus) the standard deviation over the square root of the number of
runs (100).

3.5 Proof of Theorem 3.3.1

The proof uses the following lemma which follows from Proposition 3, Chapter 1

of [36].

Lemma 3.5.1 There exists a random variable p∞(ω) such that

lim
t→∞ p(t, ω) = p∞(ω), a.s. (3.2)
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where by ω we denote a particular realization of the game, that is an initial choice

of N agents and the subsequent random pair matchings.

To facilitate the presentation of the proof of Theorem 3.3.1 we need the following

notation.

We will identify an agent Ai at time t, hereafter denoted by Ai(t), with the

triple (αi, xi(t), yi(t)) consisting of her preference and her consumption bundle at

time t.

We say that agent Ai at time t, which we will hereafter denote by Ai(t) is dual

to agent Aj(t) at time t, if αj = 1 − αi and (xi(t), yi(t)) = (yj(t)/p, p xj(t)). We

denote that by Āi(t) = Aj(t).

The initial choice of agents is a random event which will be denoted by ωA. We

can define the random variable A(ωA) = {A1, A2, · · · , AN} which is the initial

choice of agents that will participate in the market.

Having initially chosen the group of agents A = {A1, · · · , AN}, denote by ωr

the infinite sequence of pairs ωr = (ωr(1), ωr(2), · · · ) where ωr(t) is the pair

(i(t), j(t)), i(t) �= j(t), corresponding to the pair of agents (Ai(t), Aj(t)) that have

been randomly chosen to trade at time t.

A full run of the game is the sequence ωAωr that is an initial choice of agents and

an infinite sequence of random matchings. A finite time run of the game is the se-

quence ωAωr |t where ωr |t is the restriction of ωr for the first t random matchings.

Proof of Theorem 3.3.1: Suppose that we have two initial sets of agents

A = {A1, A2, · · · , AN} and B = {B1, · · · , BN}, such that every agent Bi = Āi is

the dual agent of Ai. Choose a run of the play ωr. After each trade t + 1, the

consumption bundles of the agents (i, j) that have exchanged will be given by
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the following formulae

xi(t + 1) = αi

(
yi(t)
pij(t)

+ xi(t)
)

(3.3)

yi(t + 1) = (1 − αi) (pij(t) xi(t) + yi(t) )

and similarly for j where

pij(t) =
αi yi(t) + αj yj(t)

(1 − αi) xi(t) + (1 − αj) xj(t)
.

We observe from (3.3) that, if ω(t) = (i(t), j(t)) and (Āi(t−1)(t − 1), Āj(t−1)(t −
1)) = (Bi(t−1)(t − 1), Bj(t−1)(t − 1)) then

(Āi(t)(t), Āj(t)(t)) = (Bi(t)(t), Bj(t)(t)) . (3.4)

That means that the random dynamical system defined by equations (3.3) is

equivariant under the duality transformation.

By statistical duality, for each run of the economy ω := ωAωr we have a dual

run ω̄ := ωĀωr with the same probability P (ωAωr |t) = P (ωBωr |t). Therefore,

by (3.4), the statistical duality is invariant over time. Again, by (3.4), we obtain

that

ln(p(ωAωr |t)) + ln(p(ωBωr |t)) = 2 ln(p) (3.5)

which implies, by statistical duality, that E[ln(p(t, ω))] = ln(p), for all t ∈ N.

Observe that equation (3.5) reflects the invariance of the maximal rate of substi-

tution for dual pairings.

Consider now the Walrasian price pW for the initial choice of agents A. In

this case, we assume that all agents trade simultaneously in one time step. The
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Walrasian price is given by the formula

pW =
∑N

i=1 αi yi∑N
i=1(1 − αi) xi

.

Taking logarithms in this formula and averaging over all possible choices of the

initial agents, we obtain that statistical duality implies that Ē[ln(pW )] = ln(p).

Let us now consider the case where t = ∞. There exists a constant K ≥ 0

such that for all t, we have that | ln(p(t, ω)) |≤ K almost surely. The boundendess

of the price follows from the assumption that all the distribution of endowments

for the agents has compact support which is bounded away from 0 for all t. Then

by a direct application of Lebesgue’s dominated convergence theorem we have

that

E

[
lim
t→∞ ln(p(t, ω))

]
= lim

t→∞E [ln(p(t, ω))] = E[ln(p∞(ω))]

from which follows that

E[ln(p∞(ω)] = Ē[ln(pW )] = ln(p)

This concludes the proof of the theorem. �

3.6 An extension to Arrow-Debreu economies

The results presented may have an interesting extension to the study of economies

in the presence of uncertainty, within the framework of the Arrow-Debreu model.

Consider a economy with uncertainty, in which two states of the world are

possible. Only one of these states may occur in each time instance, with proba-

bility (α, 1 − α), respectively. In this model we consider good 1 and good 2 as
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consumption levels of a single consumption good at each state of the world. We

allow each agent to have her own personalized view concerning probability the

occurence of future states of the world.

Consider that agents, make their decisions according to an expected utility

function of the logarithmic form,

E[ln(C)] = α ln(x) + (1 − α) ln(y)

where C = (x, y) is now the random variable that describes consumption at

different states of the world.

Notice, the formal similarity of the above model with that of the logarithm

of the Cobb-Douglas function with two physical goods. Within the context of

the present Arrow-Debreu type model, the preferences α of the agents have to

be interpreted as personalized views concerning the probability of occurence of

the different states of the world, whereas the two goods have to be interpreted

as consumption levels of the same physical good, in different states of the world.

The concept of statistical duality makes sense here, if interpreted as follows: For

every agent having a certain idea about the probability of occurence of the future

states of the world, there is a mirror agent, having the opposite ideas about

them, as well as a “reflected” and properly dilated initial endowment, providing

her the ability to consume in different states of the world. This spread in ideas

about states of the world, reflects in some way the absence of information in the

economy. Therefore, this model may be a good model for markets in which there

is no clear idea concerning the future states of the world that are about to emerge.

As such it may provide a good model for markets where there is not enough data

on which a detailed study that will allow us to predict the probability of future

states can be based. Theorem 3.3.1 is directly applicable for this model. The
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consequences of the theorem are interesting. For instance, one may conclude that

in this model, the effect of the symmetry is to make the market converge to some

Walrasian equilibrium, out of which an “average” Arrow-Debreu measure may be

extracted, which depends on the statistics of the views of each agent, concerning

the states of the world, as well as on the initial endowments. Therefore, the

model may allow some understanding of the dynamics, of how beliefs survive and

propagate through the market, and may serve as a paradigm for evolutionary

finance.

3.7 Trade deviating from the bilateral Wal-

ras equilibrium

The model with trade deviating from bilateral equilibrium is similar to the Edge-

worth model. The difference is that, in this model, we introduce a new parameter

gi ∈ {0, 1} representing the bargaining skill of each participant. If two less skilled

gi = gj = 0 participants meet they will trade in the point of the core determined

by their bilateral Walras equilibrium price, as in the Edgeworth model. However,

if a more skilled participant gi = 1 meets a less skilled gi = 0 participant, they

will trade in a point of the core between the point determined by their bilateral

Walras equilibrium price and the interception of the core with the indifference

curve of the less skilled participant, as can be seen in Figure 3.2 traducing an

advantage to the more skilled participant. Finally, if both participants are highly

skilled gi = gj = 1 they are penalized by not being able to trade. This is similar

to the “prisoner’s dilemma”, where two non cooperative players are penalized,

a non cooperative player has a better payoff than a cooperative player, and two

cooperative players have a better payoff than when they meet a non cooperative



3.7 Trade deviating from the bilateral Walras equilibrium 121

player but still worse than the payoff of the non cooperative player.

x

y

E

O
j

O
i

D
A

Figure 3.2: Edgeworth Box with the indifference curves for the more skilled
participant i (blue curve) and for the less skilled participant j (green curve).
The red curve is the core and the red dots represent the contract curve. The
slope of the pink segment line is the bilateral Walras equilibrium price. The
slope of the black segment line is a price that gives advantage to the more
skilled participant. The interception point D of the black line with the core
indicates the final allocations from the trade deviating from the bilateral
Walras equilibrium. The point E indicates the initial endowments.

We study the effect of the bargaining skills in the increase of the value of the

utility of the participants. Let the variation of the utility function of a participant

uf − u0 be the difference between the limit value of the utility function and the

initial value of the utility function. We present, in Figure 3.3, two cumulative

distribution functions of the variation of the utility functions one corresponding

to the less skilled participants (black) and the other corresponding to the more

skilled participants (red). This function indicates the proportion of participants

that have variations of the utility function less than or equal to its argument.

In Figure 3.3 (A) there are 20% of highly skilled participants. We observe that
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the median of the variation of the utility function is higher for the more skilled

participants. On the other hand, in Figure 3.3 (B) there are 80% of highly

skilled participants, and we observe that the median of the variation of the utility

function is lower for the more skilled participants. We notice that the strategy

followed the minority is the one that provides a higher median variation in the

utility function.
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Figure 3.3: Cumulative distribution function of the variation of the utility
(defined as uf − u0) for the less skilled participants (black) and for the
more skilled participants (red). (A) Simulation with 20% of highly skilled
participants and 80% of less skilled participants; (B) Simulation with 80%
of highly skilled participants and 20% of less skilled participants.

3.8 Evolution of the bargaining skills

In this Section, at each iteration, a random pair of participants (i, j) is chosen

with trade occurring deviating from the bilateral Walras equilibrium price (as

in the previous Section). In this Section we consider that the bargaining skill

g is a continuous variable, where higher values mean better bargaining skills.

Without loss of generality we can consider that gi ≥ gj . We impose that trade
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only occurs if gi + gj ≤ 1 and gi − gj ∈ [0, 1]. The pair trades to the point in

the core determined by the price pg = ηp + (1 − η)mj where p is the bilateral

Walras equilibrium price, η = gi − gj and mj is the maximum price at which the

participant j accepts to trade determined by the interception of the core with

the indifference curve of participant j . After the trade we allow evolution on

the bargaining skills of the participants according to two distinct rules: a) the

bargaining skills of the participants increase if they were not able to trade and

decreases if they were able to trade; b) the bargaining skills of the participants

decreases if they were not able to trade and increases otherwise. In case a) if

the sum of their bargaining skills is above a cut point, the participants are not

allowed to trade and both participants bargaining skills are increased. Otherwise,

if the sum of their bargaining skills is below the cut point, the participants will be

allowed to trade with advantage to the more skilled participant. After the trade,

the bargaining skills of both participants decrease. In this case we observe (see

Figure 3.4 (A)) that the participants bargaining skills converge to one of two limit

values (close to 0 or close to 1). In case b) if the sum of their bargaining skills is

above a cut point, the participants are not allowed to trade and their bargaining

skills are decreased. Otherwise, if the sum of their bargaining skills is below the

cut point, the participants will be allowed to trade with advantage to the more

skilled participant. After the trade, the bargaining skills of both participants

increase. In this case (see Figure 3.4 (B)) we observe that the bargaining skills

converge to one limit value (close to 1/2).



124 Edgeworthian Economies Models

A B

� ���� ���� ���� ���� �����
����

�

���

�

���

���������	
0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

iterations

g

Figure 3.4: Variation of the bargaining skills with time. (A) The bargain-
ing skills decrease when trade is allowed and increase otherwise; (B) The
bargaining skills increase when trade is allowed and decrease otherwise.

3.9 Conclusions

In this Chapter we have proven that, under symmetry conditions, prices in a

random exchange economy with two goods, where the agents preferences are

characterized by the Cobb-Douglas utility function, converge to the Walrasian

price. In Section 3.7 we associate a bargaining skill to each participant which

brings up a game alike the Prisoner’s Dilemma. When we considered a group

of less skilled bargainers and a group of more skilled bargainers, the group in

minority has a higher median increase in the value of the utilities. In Section 3.8

we studied the possibility of the participants adapting their bargaining skills along

the time. We considered two distinct evolutionary rules: when the bargaining

skills decrease with the trade, the bargaining skills of the participants converge,

in time, to one of two possible limit values; when the bargaining skills increase

with trade, we observe that the bargaining skills converge, in time, to a single

intermediate value.



Chapter 4

Immune Response Models

4.1 Introduction

The work presented in this Chapter is joint work with N.J. Burroughs, B. Oliveira

and A.A. Pinto and most of it is contained in the research articles [13], [14] and

[15] and in the book chapter [32].

We analyse the effect of the Regulatory T cells (Tregs) in the local control

of the immune responses by T cells. We study the model presented in [11]. We

obtain an explicit formula for the level of antigenic stimulation of T cells as a

function of the concentration of T cells and the parameters of the model. The

relation between the concentration of T cells and the antigenic stimulation of T

cells is an hysteresis, that is unfold for some parameter values. We study the

appearance of autoimmunity from cross-reactivity between a pathogen and a self

antigen or from bystander proliferation. We also study an asymmetry in the

death rates. Under this asymmetry we show that the antigenic stimulation of

Tregs is able to control locally the population size of Tregs. Other effects of this
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asymmetry are a faster immune response and an improvement in the simulations

of the bystander proliferation. The rate of variation of the levels of antigenic

stimulation determines if the outcome is an immune response or if Tregs are

able to maintain control due to the presence of a transcritical bifurcation for

some tuning between the antigenic stimuli of T cells and Tregs. This behavior is

explained by the presence of a transcritical bifurcation.

4.1.1 Immune response model

There are a number of different (CD4) T cell regulatory phenotypes reported; we

study a model of Tregs, which are currently identified as CD25+ T cells, although

this is not a definitive molecular marker. At a genetic level, these Tregs express

Foxp3, a master regulator of the Treg phenotype inducing CD25, CTLA-4 and

GITR expression, all correlating with a suppressive phenotype [68].

Figure 4.1: Model schematic showing growth, death and phenotype transi-
tions of the Treg populations R, R∗, and autoimmune T cell T, T ∗ popula-
tions. Cytokine dynamics are not shown: IL-2 is secreted by activated T
cells T ∗ and adsorbed by all the T cell populations equally.
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We model a population of Tregs (denoted R,R∗) and conventional T cells

(T ,T ∗) with processes shown schematically in Figure 4.1. Both populations re-

quire antigenic stimulation for activation, Tregs being activated by self antigens.

Levels of antigenic stimulation are denoted a and b for Tregs and conventional

T cells respectively. On activation conventional T cells both secrete IL-2 and

acquire proliferative capacity in the presence of IL-2 while Tregs proliferate in

the presence of IL-2, although less efficiently than normal T cells [74], and they

do not secrete IL-2. Activated Tregs suppress IL-2 secretion [74] thereby inhibi-

ting T cell growth. However, if IL-2 is present (CD4) T cells can still proliferate

[68, 69]. In the model we assume that T cells activated by exposure to their

specific antigen have a cytokine secreting state (a normal activated state) and a

non secreting state to which they revert at a constant rate k. Thus in absence of

antigen growth halts. Tregs also induce a transition to the (inhibited) nonsecre-

ting state and this transition rate is assumed proportional to the Treg population

density. This transition can either be through direct cell:cell contact or be in-

duced by soluble inhibitors [68], both of which give identical mass action kinetics

over suitable density ranges. T cells regain secretion status on CD28 coreceptor

stimulation [76], which we assume correlates with antigen exposure through an

increased conjugate formation rate. Thus in the presence of costimulation and

Tregs, the T cell population would be a mixture of partially inhibited, and normal

T cells. Although we assume an antigen dependent rate of secretion inhibition

reversion, similar results would be obtained with a constant reversion rate, i.e.

if costimulation exposure is independent of antigen density. Note that exoge-

nous IL-2 does not reverse the suppressed phenotype, i.e. secretion status is not

reacquired on cell proliferation [76].
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Regulatory T cells are assumed to be in homeostasis, thus Treg density is con-

trolled through some type of (nonlinear) competition. Homeostatic mechanisms

of Tregs are currently poorly understood. In [11] it is used a generic mechanism

that utilizes a cytokine (denoted J), analogous to interleukine 7 which is known to

homeostatically regulate memory T cells [70]. We assume the cytokine is secreted

by the local tissues, thereby sustaining a local population of Tregs activated by

a probably tissue specific profile of self antigens. Tregs compete for this cytokine

by adsorption and thus population homeostasis is achieved.

In Section 4.3 we discuss an asymmetry in the model where we assume that

the secreting T cells T ∗ have a lower death rate than the non secreting T cells

T and that the active Tregs R∗ also have a lower death rate than inactive Tregs

R [13]. We also consider an inflow Rinput of tregs instead of the J cytokine

(both mechanisms yield similar results). This asymmetry in the death rates and

the inflow Rinput of Tregs allow the antigenic stimulation a of Tregs to regulate

the size of the local population of Tregs. We also include a growth limitation

mechanism and we use a (quadratic) Fas-FasL death mechanism [52], that is

assumed to act on all T cells equally. Results will be similar with any saturation

mechanism. Finally, we include an influx of (auto) immune T cells into the tissue

(Tinput in cells per ml per day), which can represent T cell circulation or naive T

cell input from the thymus.

A set of ordinary differential equations is employed to study the dynamics,

with a compartment for each T cell population (inactive Tregs R, active Tregs

R∗, non secreting T cells T , secreting activated T cells T ∗), interleukine 2 density

I and the homeostatic Treg cytokine J ,

dR

dt
= (ερ(I+J)−β(R + R∗ + T + T ∗) − d̂)R + k̂(R∗ − aR),
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dR∗

dt
= (ερ(I+J)−β(R + R∗ + T + T ∗) − d̂)R∗ − k̂(R∗ − aR),

dJ

dt
= σ̂(S − (α̂(R + R∗) + δ̂)J),

dT

dt
= (ρI − β(R + R∗+T + T ∗) − d)T + k(T ∗ − bT+γR∗T ∗) + Tinput,

dT ∗

dt
= (ρI − β(R + R∗+T + T ∗) − d)T ∗ − k(T ∗ − bT+γR∗T ∗),

dI

dt
= σ(T ∗ − (α(R + R∗+T + T ∗) + δ)I). (4.1)

Parameters are defined in Table 4.1. The model has components that have

been used in previous models, for instance cytokine dependent growth [18, 48],

cytokine kinetics [78], Fas-FasL mediated death [16], and positive feedback of T

cells on Tregs [42, 43], in [11] this is explicitly though IL-2.

The only important aspects of this model are a mechanism to sustain a po-

pulation of Tregs, secretion inhibition of T cells with a rate that correlates with

Treg population size, and growth and competition for IL-2 with a higher growth

rate of T cells relative to Tregs. Other aspects of the model can be altered with

only quantitative differences in behavior.

4.1.2 Dynamics of the model

To establish the model dynamics, in [11] it was initially simulated an influx

of an autoimmune population of T cells into a tissue where the Tregs are at

homeostatic equilibrium. This could model adoptive transfer experiments where

there is no native circulation/production of these (foreign) T cells, i.e. Tinput = 0.

There are two possible outcomes depending on the strength of activation and

initial conditions: the autoimmune population is controlled with elimination of

autoimmune T cells and the Treg population reverting to an homeostatic state;

or the autoimmune population expands and escapes control. Escape can only
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Parameter Symbol Range Value

T cell T , T ∗

T cell Maximum growth rate1 ρ
‹
α < 6 day−1 4 day−1

Death rate of T cells d = d̂ 0.1-0.01 day−1 0.1 day−1

[50]

Capacity of T cells2 ρ
‹
(αβ) 106 − 107 cells/ml 107 cells/ml

[51]

Input rate Tinput 0 − 104 cells/ml/day 0,100 cells/ml per day

Secretion reversion (constant)3 k hrs-days 0.1 hr−1

Antigen stimulation level bk 0.001-200 ×ak̂ Bifurcation parameter

Tregs R, R∗

Growth rate ratio Treg :T ε < 1 0.6

Homeostatic capacity Rhom (ερS/d̂ − δ̂)
‹
α̂ 10 − 105 cells/ml 104 cells/ml

Relaxation rate k̂ hrs-days 0.1 hr−1

Death rate ratio Treg :T d̂
‹
d 1

Treg antigen stimulation level ak̂ 0-10 per day 1 per day

Secretion inhibition4 γ 0.1-100 ×R−1
hom 10 R−1

hom

Cytokines

Max. cytokine concentration5 1
‹
α 100-500 pM 200 pM

IL-2 secretion rate σ 6 0.07, 2 fgrms h−1 106 molecs s−1 cell−1

[79]

Relative adsorbance J to IL-2 σ̂α̂
‹
σα < 1 0.1

Relative secretion rate of J σ̂
‹
σ < 1 0.01

Cytokine decay rate σδ = σ̂δ̂ hrs-days 1.5 hr −1

[3]
1 Minimum duration of SG2M phase αρ−1 ≈ 3hrs.
2 Maximum T cell density for severe infections (based on LCMV).
3 This is in absence of Tregs.
4 This is in terms of the homeostatic Treg level Rhom which we set to 104 cells per ml.
5 This is taken as 20 times the receptor affinity (10pM [46]).
6 Naive and memory cells respectively. This corresponds to 3000-105 molecules per h, IL-2 mass 15-18 kDa.

Table 4.1: Model parameters. Reproduced from [11].
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Figure 4.2: Time series plots for T cell populations on exposure to antigen
with various antigenicities b and Tinput = 0. Two initial conditions are
shown, low initial T cell load (solid), and high initial T cell load (dashed).
(A) Regulation, low b = 5 × 10−2; (B) Escape and control, intermediate
b = 0.5; (C) Escape, high b = 5000. Total Treg (red), immune T cells
(black). Reproduced from [11].

occur if the autoimmune antigenic stimulation b is above a threshold, denoted

bL. At low antigenic stimulation levels, autoimmune T cells are always eliminated

for all initial loads. However, even if stimulation is above bL escape requires the

initial load to be sufficiently high. The dependence on T cell density is a quorum

mechanism, specifically if there is a sufficiently high density of secreting T cells

cytokine levels are high enough for cell proliferation to exceed cell death. During

immune responses (escape of Treg control) the Treg population initially grows

in the IL-2 rich environment (bystander growth), but as the T cell population

saturates, by Fas-FasL apoptosis assumed in [11], the Treg population decays

because it is assumed susceptible to Fas-FasL apoptosis similar to conventional

T cells.

4.1.3 Bifurcation diagrams

These observations can be summarised in a plot of the equilibrium states. How-

ever above a critical antigenic load bL two new steady states emerge (only one of
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which is stable and thus realisable). To reach that state the initial load has to be

sufficiently high, the load threshold lying on the basin of attraction of the escape

state with I = T = 0 and R,R∗ at their homeostatic densities. This threshold

is lowest for large b [11]. It gives the (necessary) minimum quorum size for es-

cape Tquorum and is approximated by the density T + T ∗ of the unstable steady

state. This dose dependence for proliferation is observed in transfer experiments.

Experimentally, suppression in vitro can be overcome at high levels of antigenic

stimulation [37]. This is observed here provided the initial density is higher than

Tquorum when there is a threshold in the antigenic stimulation level b at which

escape occurs. In the absence of Tregs the system shows identical bifurcation

behavior but the antigenic stimulation (bL) and quorum (Tquorum) thresholds are

lower. Thus Tregs shift the growth threshold to alter the balance in favour of inhi-

bition than immune responses. Therefore removal of Tregs (CD25+) in adoptive

transfer experiments lowers the threshold for immune responses, and autoimmune

populations that were previously suppressed in the presence of Tregs are then able

to escape. In normal healthy tissue a continuous influx of autoimmune T cells is

expected, both from the thymus and through the circulation. This is modelled

as an influx term Tinput > 0 to the T cell population. This has two significant

effects, firstly a non zero T cell population is sustained which means that es-

cape is easier, and secondly, above an antigenic stimulation threshold, denoted

bH , control is impossible (see Figure 4.3). This is because the influx population

alone is sufficient to satisfy the quorum condition. Thus, in the bifurcation plot

(see Figure 4.3) a lower steady state equilibrium exists at low antigenic stimu-

lation (controlled state), but only the escape/immune response state exists at

high antigenic stimulation. At intermediate levels of antigenic stimulation b we

have two possible stable outcomes. The state that is attained depends on the
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Figure 4.3: Bifurcation plots with respect to the antigenic stimulation b of
T cells. Shown are two cases: Tregs present with R + R∗ red, T + T ∗

black, and no Tregs with T + T ∗ blue. Stable steady states are shown as
solid lines, unstable as dashed. Reproduced from [11].

initial conditions. So far it was assumed that levels of antigenic stimulation are

constant, however there are likely to be both fluctuations and a slow variation

over time, eg during puberty. Thus, if antigenic stimulation rises above the thre-

shold bH in Figure 4.3, control is lost and autoimmunity arises. Note that even

if the antigenic stimulation level b falls to the original value, at which control

was originally achieved, control may not be reacquired, and is only attained if

stimulation falls below the second threshold bL in Figure 4.3. This phenomena,

termed hysteresis, is common in many physical and biological systems. The sys-

tem displays a control state and an immune state. This biphasic behavior is a

consequence of the IL-2 driven dynamics where the IL-2 concentration must be

high enough such that the growth rate exceeds the death rate. This requires a

sufficiently high density of secreting T cells. Thus even in the absence of Tregs,

T cells can display this behavior (in fact in Figure 4.3 the parameters are such

that the bifurcation points bL, bH are lost and hysteresis is no longer observed
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although a sharp transition with b remains).

The presence of Tregs increases the thresholds bL, bH in Figure 4.3, thereby

enhancing the control state. The thresholds bL, bH can be tuned by adjusting the

Treg homeostatic population size with a larger size conferring greater protection.

We note that Tregs must be less efficient at utilising IL-2 to proliferate, ε < 1, eg

through a lower density of surface receptors (IL-2 receptor), otherwise escape is

impossible. Correspondingly, Tregs need a mechanism to sustain their numbers

such that Treg die out is prevented. An homeostatic mechanism (cytokine distinct

from IL-2) to maintain a local population is used. In this case conventional

T cells must be less efficient at utilising this cytokine for growth than Tregs.

Alternatively, a continuous input Rinput can be used to maintain the population

(see Section 4.3). This asymmetry between Tregs and conventional T cells is

essential for the immune system to display both control and immune response

escape. Thus, at low inflammation levels, Treg survival is predominant, while at

high levels of pathogen load T cell growth is faster than Treg growth.

The bistability region vanishes when the thresholds bL and bH meet in a cusp

bifurcation. In the immune response model, this happens for low growth rates

of T cells and Tregs, for low values of the growth rate ratio between Tregs and

T cells, for low values of the secretion rate of cytokine J , and for high thymic

inputs.

4.1.4 Dynamics of cross-reactive proliferation

Humans are continuously exposed to pathogens which invoke T cell activation and

immune responses. This has consequences on Treg control of autoimmune states

since immune responses produce IL-2 and thus can lead to bystander growth and

loss of Treg homeostasis, or in the case of cross reactivity direct stimulation of
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auto reactive T cells.
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Figure 4.4: T cell cross reactivity between a pathogen and self. (A) Cross
reactive autoimmune T cells on pathogen infection can return to a controlled
state if antigenic stimulation from self (b = 0.1) is low; (B) For high b = 0.5
stimulation from self, an initially controlled autoimmune T cell clone escapes
when infection occurs with a cross reacting pathogen; (C) Identical to (B)
except infection interval is 7 days. A pathogen infection is modelled as a
step increase in b to 5000 for day 0-10 ((A) and (B)), 0-7 ((C)) to model
both the increase in antigen (cross reactive) and costimulation. Key: Red
solid R + R∗, Black dashed T + T ∗. Reproduced from [11].

It was simulated, in [11], a pathogen exposure in a tissue with initial Treg

control of an autoimmune population where there is cross reactivity between the

pathogen specific T cells and self. Depending on the strength of the autoimmune

antigen it was observed either a loss of control, i.e. Tregs fail to reacquire control,

or autoimmune suppression is reinstated post infection. The former case corres-

ponds to autoimmune antigenic stimulation levels bL < b < bH , although escape

is not guaranteed as the immune response must be of sufficient duration to allow

autoimmune T cells numbers to rise and sufficiently outnumber Tregs (about 5.5

days in the simulations). Autoimmune T cells with b < bL are always controlled

post infection (see Figure 4.4 (A)). The length of the period post infection for

autoimmune control to be reestablished is determined by the slow death rate of

T cells. It was not included a specific downsizing mechanism or memory diffe-
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rentiation in the model which would reduce this period. Escape dynamics can

also show a delay in the onset of autoimmunity when infection duration is short

(see Figure 4.4 (C)). Cross reactivity enhances escape, however pure bystander

growth can also lead to escape although longer infection periods and higher b are

required for escape (see Subsection 4.3.4). Infections transiently enhance Treg

populations, either eventually returning to homeostasis, or in the case of autoim-

mune responses being themselves suppressed. In this model it is because of their

susceptibility to Fas-FasL mediated apoptosis. Other population saturation mo-

dels, specifically assumptions of the impact on Tregs of T cell saturation, can give

different levels of Tregs.

4.2 Analysis of the model

The immune response model presented in [11] was studied in [12] with the re-

sults proven by us in [14]. We study the equilibria of the immune system in

a neighbourhood of the default values for the parameters and variables. The

concentration of T cells varies between a minimum value corresponding to the

homeostasis concentration of T cells Thom, i.e. when there is no antigenic stimu-

lation of T cells (b = 0), and a maximum value, the capacity of T cells Tcap, which

is obtained for high levels of antigenic stimulation of T cells (b = +∞). Using

Equation (4.29), the values Thom and Tcap are implicitly determined as zeros of a

polynomial. In particular, for the default values of the parameters, these values

are given by Thom = 9.6×102 cells per ml and Tcap = 9.7×106 cells per ml. When

the system is at equilibrium, we present, in Theorem 4.2.1 an explicit formula for

the relation between the concentration of T cells and the concentration of Tregs

for values of the concentration of T cells between Thom and Tcap (see Figure 4.5).



4.2 Analysis of the model 137

A B

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

x=T+T*
y=

R
+

R
*

Figure 4.5: (A) The equilibria manifold for Thymic inputs Tinput ∈
[1, 10000]. Low values of b are darker and higher values are lighter; (B)
Cross section of the equilibria manifold for Tinput = 100. It illustrates The-
orem 4.2.1, showing the total concentration of Tregs y(x) = R + R∗ as a
function of the total concentration of T cells x = T + T ∗. The parameters
are at their default values.

Let Y1, Y2, Y3 be the following polynomials

Y1(x) = −α̂C(x) − βδ̂B(x)

Y2(x) = 2α̂βB(x)

Y3(x) = Y 2
1 (x) − 2(δC(x) − ερSx)Y2(x) ,

where B(x) = (1 − ε)x and C(x) = εTinput + B(x)(βx + d).

Let X1, X2, X3 be the following polynomials

X1(y) = BC(y)D(y) − ερS

X2(y) = −2βBC(y)

X3(y) = X2
1 (y) − 2εTinputC(y)X2(y) ,
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where B = 1 − ε and C(y) = α̂y + δ̂, and D(y) = βy + d.

Let x = T + T ∗ be the total concentration of T cells and y = R + R∗ be the

total concentration of Tregs.

Theorem 4.2.1 When the system is at equilibrium, the concentration of Tregs

y = R + R∗ is given by the Treg curve

y(x) =
Y1(x) +

√
Y3(x)

Y2(x)
, (4.2)

where x = T + T ∗ is the total concentration of T cells. Conversely, the concen-

tration of T cells x(y) is determined by

x = X−(y) =
X1(y) − √

X3(y)
X2(y)

or (4.3)

x = X+(y) =
X1(y) +

√
X3(y)

X2(y)
(4.4)

where y = R + R∗ is the total concentration of Tregs.

For simplicity of notation we write y(x) instead of y = Y (x). We also write x(y)

when either x = X−(y) or x = X+(y) should be used.

Proof: At equilibrium we have that:

σ̂(S − (α̂y + δ̂)J) = 0 , (4.5)

σ(T ∗ − (α(x + y) + δ)I) = 0 (4.6)

(ερ(I+J)−β(x + y) − d)R + k̂(R∗ − aR) = 0 , (4.7)

(ερ(I+J)−β(x + y) − d)R∗ − k̂(R∗ − aR) = 0 , (4.8)
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(ρI − β(x + y) − d)T + k(T ∗ − bT+γR∗T ∗) + Tinput = 0 , (4.9)

(ρI − β(x + y) − d)T ∗ − k(T ∗ − bT+γR∗T ∗) = 0. (4.10)

From (4.5), we get

J =
S

α̂y + δ̂
. (4.11)

From (4.6), we have

T ∗ = I(α(x + y) + δ). (4.12)

Adding (4.7) and (4.8), we obtain

ερ(I + J)−β(x + y) − d = 0 (4.13)

(or y = 0).

Subtracting (4.8) from (4.7), we get

(ερ(I+J)−β(x + y) − d)(R − R∗) + 2k̂(R∗ − aR) = 0 . (4.14)

From (4.13) and (4.14), we have

R∗ = aR . (4.15)

Let A = a/(a + 1). From (4.15), we get

R∗ = Ay . (4.16)

Adding (4.9) and (4.10), we obtain

ρI − β(x + y) − d +
Tinput

x
= 0 (4.17)
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(or x = 0).

Subtracting (4.17) from (4.13), we get

ερJ − (1 − ε)ρI − Tinput

x
= 0 . (4.18)

Subtracting (4.10) from (4.9), we have

(ρI − β(x + y) − d)(T − T ∗) + 2k(T ∗ − bT+γR∗T ∗) + Tinput = 0 . (4.19)

From (4.17) and (4.19), we have

T ∗(kx(1 + γR∗) + Tinput) = kxbT. (4.20)

From (4.20), we get

T ∗ =
kbx2

kx(1 + b + γR∗) + Tinput
. (4.21)

From (4.16) and (4.21), we obtain

T ∗ =
kbx2

kx(1 + b + γAy) + Tinput
. (4.22)

From (4.12) and (4.22), we get

I(α(x + y) + δ) =
kbx2

kx(1 + b + γAy) + Tinput
. (4.23)

Replacing (4.11) and (4.23) in (4.18), we have

ερS

α̂y + δ̂
− (1 − ε)ρkbx2

(α(x + y) + δ)(kx(1 + b + γAy) + Tinput)
− Tinput

x
= 0 . (4.24)
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Replacing (4.23) in (4.17), we obtain

ρkbx2

(α(x + y) + δ)(kx(1 + b + γAy) + Tinput)
− β(x + y) − d +

Tinput

x
= 0 . (4.25)

From (4.25), we get

ρkb

(α(x + y) + δ)(kx(1 + b + γAy) + Tinput)
= β(x + y) + d − Tinput

x
. (4.26)

Replacing (4.26) in (4.24), we have

ερS

α̂y + δ̂
− (1 − ε)(β(x + y) + d − Tinput

x
) − Tinput

x
= 0 . (4.27)

From (4.27), we obtain

xερS − (1 − ε)(β(x + y)x + dx − Tinput)(α̂y + δ̂) − Tinput(α̂y + δ̂) = 0 , (4.28)

which, solving (4.28) for y and considering only the positive root, proves equality

(4.2).

�

The maximum concentration Rmax of Tregs is a zero of a fourth order poly-

nomial and, so, Rmax has an explicit solution. In particular, for the default

values of the parameters, the maximum concentration Rmax of Tregs is given by

Rmax = 2.1 × 104 cells per ml, and the corresponding concentration of T cells is

1.9× 104 cells per ml. The minimum concentration Rmin of Tregs is 156 cells per

ml, and the corresponding concentration of T cells is given by Tcap = 9.7 × 106

cells per ml.

When the system is at equilibrium, we obtain the level of the antigenic stimu-

lation b(x, y(x)) of T cells from the concentration x of T cells, using the auxiliary
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Treg curve y(x) computed in Theorem 4.2.1 (see Figure 4.6). The antigen fun-

ction b(x, y) is given by

b(x, y) =
ϕ(x, y)(kx(1 + γAy) + Tinput)

k(1 − ε)ρx3(α̂y + δ̂) − kxϕ(x, y)
, (4.29)

where A = a/(1 + a) and ϕ(x, y) = (ερSx − Tinput(α̂y + δ̂))(α(x + y) + δ).

Theorem 4.2.2 Let b(x, y) be the antigen function, and let x(y) and y(x) be

as in Theorem 4.2.1. The level of the antigenic stimulation of T cells is given

by b(x, y(x)), or, equivalently, by b(x(y), y), when the system is at equilibrium

(stable or unstable). Conversely, given an antigenic stimulation level b of T cells,

the concentration x of T cells and the concentration y of Tregs are zeros of the

twelfth order polynomials that can be explicitly constructed.

Proof: From (4.18), we have

I(1 − ε)ρx = Jερx − Tinput . (4.30)

Replacing (4.11) in (4.30), we get

I =
ερSx − Tinput(α̂y + δ̂)

(1 − ε)ρx(α̂y + δ̂)
. (4.31)

Replacing (4.31) in (4.23), we obtain

(ερSx − Tinput(α̂y + δ̂))(α(x + y) + δ) =
(1 − ε)ρkbx3(α̂y + δ̂)

kx(1 + b + γAy) + Tinput
. (4.32)

Hence, solving (4.32) for b, we prove equality (4.29).

�
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Figure 4.6: The hysteresis of the equilibria manifold for Thymic inputs
Tinput ∈ [1, 10000], with the other parameters at their default values. These
figures show the relation between the antigenic stimulation level b, the con-
centration of T cells x = T +T ∗, and the concentration of Tregs y = R+R∗.
The hysteresis unfolds for high values of the parameter Tinput. (A) Low va-
lues of y = R + R∗ are darker and higher values are lighter; (B) Low values
of x = T + T ∗ are darker and higher values are lighter; (C) Cross section
of the equilibria manifold for Tinput = 100, illustrating Theorem 4.2.2, with
the concentration of T cells x (black solid line) and the concentration of
Tregs y (redred dashes); (D) Cross section of the equilibria manifold for
Tinput = 100, illustrating Theorem 4.2.3, with the concentration of T cells
x (blueblue dashes) for the simplified model without Tregs. We also show
the concentration of T cells x (black solid line) from Theorem 4.2.2.
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In Theorem 4.2.3, we obtain the level of the antigenic stimulation of T cells

from the concentration x of T cells, for the simplified model without Tregs. The

antigen function b̃(x) in the absence of Tregs is given by

b̃(x) =
(αx + δ)(kx + Tinput)(βx2 + dx − Tinput)
kx(ρx2 + (Tinput − βx2 − dx)(αx + δ))

. (4.33)

Theorem 4.2.3 Let us consider the simplified model with the concentration of

Tregs equal to zero (i.e. y = 0). The level of the antigenic stimulation of T cells is

given by b̃(x), when the system is at equilibrium (stable or unstable). Conversely,

given an antigenic stimulation level b, the concentration x of T cells is a zero of

the fourth order polynomial that can be explicitly constructed.

Proof: At equilibrium we have that:

σ(T ∗ − αx + δ)I) = 0 , (4.34)

(ρI − βx − d)T + k(T ∗ − bT ) + Tinput = 0 , (4.35)

(ρI − βx − d)T ∗ − k(T ∗ − bT ) = 0 . (4.36)

From (4.34), we have

T ∗ = I(αx + δ) . (4.37)

Adding (4.35) and (4.36), we obtain

ρI − βx − d +
Tinput

x
= 0 (4.38)

(or x = 0)

Subtracting (4.36) from (4.35), we have

(ρI − βx − d)(T − T ∗) + 2k(T ∗ − bT ) + Tinput = 0 . (4.39)
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From (4.38) and (4.39), we have

T ∗(kx + Tinput) = kxbT . (4.40)

From (4.40), we obtain

T ∗ =
kbx2

kx(1 + b) + Tinput
. (4.41)

From (4.37) and (4.41), we get

I(αx + δ) =
kbx2

kx(1 + b) + Tinput
. (4.42)

From (4.17), we have

I =
βx2 + dx − Tinput

ρx
. (4.43)

Finally, from (4.42) and (4.43), we get

b̃(x) =
(αx + δ)(kx + Tinput)(βx2 + dx − Tinput)
kx(ρx2 + (Tinput − βx2 − dx)(αx + δ))

. (4.44)

�

When the system is at equilibrium, the threshold values of antigen stimulation

bL and bH of T cells are determined using zeros of a polynomial. The antigen

threshold function V (x, y, z) is equal to V6(y, z)x6 + · · · + V0(y, z), where the
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functions V0(y, z), ..., V6(y, z) are given by the polynomials

V0(y, z) = kC2F 2T 3
input

V1(y, z) = 2kCFT 2
inputH

V2(y, z) = kTinput(H2 + CFTinput(3ρCE − γACFkz − 2αG))

V3(y, z) = kTinput(2FG(αG − ρCE + γBCFkz) + 2ρCEFk(1 + γAy)

−αCTinput(2γAFkz + ρEz − 2ρE + 2αG))

V4(y, z) = k(C(−G(ρE(αTinput(1 − z) + kF (1 + γAy)) − 4kzαγAFTinput)

−kCTinput(αρE(z − 1)(1 + γAy) + zγA(ρEF + α2Tinput)))

+G(−kzγBF 2G + α2GTinput − ρzα̂EFTinput))

V5(y, z) = ρGk(γBFk(δ̂ρE − 2αG) + ρE(kαC(1 + γAy) − kα̂F − αα̂Tinput))z

V6(y, z) = αGk2(−αγAG + Eρ(γδ̂A − α̂))z ,

where A = a/(1 + a), B = βδ − αd, C(y) = α̂y + δ̂, D(y) = βy + d, E = 1 − ε,

F (y) = αy + δ, G = ερS and H(y) = αC(y)Tinput − F (y)G.

Theorem 4.2.4 When the system is at equilibrium, a threshold of the antigenic

stimulation bM of T cells exists, if, and only if, there is a zero xM ∈ [Thom, Tcap]

of the antigen threshold function V (x, y(x), y′(x)). This zero is such that bM =

b(xM , y(xM )), where M ∈ {L, H}. The equality V (x, y(x), y′(x)) = 0 is equiva-

lent to Ṽ (x) = 0, where Ṽ (x) is a polynomial that can be explicitly constructed.

Proof: By equality (4.29), we have that b(x, y) = N(x, y)/D(x, y), where N and

D are the following cubic polynomials in x and y

N(x, y) = (ερSx − Tinput(α̂y + δ̂))(α(x + y) + δ)(kx(1 + γAy) + Tinput)

D(x, y) = k(1 − ε)ρx3(α̂y + δ̂) − kx(ερSx − Tinput(α̂y + δ̂))(α(x + y) + δ) .
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If Tinput > 0, the points xL and xH exist if, and only if, the function db(x, y(x))/dx

have two distinct positive zeros. The values xL and xH are these zeros. If

Tinput = 0, the point xL exists if, and only if, the function db(x, y(x))/dx has one

positive zero. Furthermore, xL is such zero. From equation (4.29), we have that

b(x, y) = N(x, y)/D(x, y), with N(x, y) and D(x, y) cubic polynomials in x and

y. Hence, db(x, y(x))/dx is equal to V (x, y(x), y′(x)) where

V (x, y, z) =
∂N(x, y)

∂x
D(x, y) − N(x, y)

∂D(x, y)
∂x

+
(

∂N(x, y)
∂y

D(x, y) − N(x, y)
∂D(x, y)

∂y

)
z .

Since

∂N(x, y(x))
∂x

= ερSV W + αUV + kUW (1 + γAy)

∂N(x, y(x))
∂y

= −α̂V WTinput + αUV + kxγAUW

∂D(x, y(x))
∂x

= −kUW − kxερSW − kxαU + 3kρ(1 − ε)(α̂y + δ̂)x2

∂D(x, y(x))
∂y

= kxα̂WTinput − kxαU + kα̂ρ(1 − ε)x3 .

where U(x, y) = ερSx − Tinput(α̂y + δ̂), V (x, y) = kx(1 + γAy) + Tinput and

W (x, y) = α(x + y) + δ, we get that the expression V (x, y, z) for the antigen

threshold function follows.

�

For the parameters that unfold the hysteresis, the antigenic thresholds bL and

bH form a cusp. The cusp bifurcation at the antigenic stimulation bC of T cells

is an origin of the unfold of the hysteresis, with respect to a parameter, and, so,

biologically relevant. The concentration xC of T cells corresponding to levels of
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the antigenic stimulation bC = b(xC , y(xC)) satisfies the following equalities

V (x, y(x), y′(x)) = 0 and

W (x, y(x), y′(x), y′′(x)) = 0 , (4.45)

where

W (x, y, z, v) =
n∑

i=1

Vi(y, z)
xi−1

i
+

n∑
i=0

∂Vi(y, z)
∂y

xiz +
∂Vi(y, z)

∂z
xiv .

In Figure 4.7, the antigenic thresholds bH and bL and the ratio bH/bL decrease

with Tinput. The cusp bC occurs at Tinput ≈ 650 cells per ml, unfolding the hys-

teresis. When Tinput gets close to the value 10.34 cells per ml the threshold bH

tends to infinity. The concentration x(bL) of T cells decreases and the concen-

tration x(bH) of T cells increases with Tinput. The concentration y(bL) of Tregs

increases with Tinput and the concentration y(bH) of Tregs has a maxima for

Tinput ≈ 500 cells per ml.

4.3 Asymmetry in the immune response model

In [13] we introduce an asymmetry reflecting that the difference between the

growth and death rates can be higher for the active T cells and the active Tregs

than for the inactive T cells and inactive Tregs. This asymmetry can be explained

by the effect of memory T cells. The memory T cells last longer than the other

T cells and react more promptly to their specific antigen [64]. This results in a

positive correlation between the antigenic stimulation and the difference between

growth rate and the death rate of T cells.

This asymmetry brings up the relevance of the antigenic stimulation of Tregs
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Figure 4.7: Dependence of the thresholds with the Thymic input parameter
Tinput ∈ [1, 650] with the other parameters at their default values. The
model with Tregs is with bold lines and the simplified model without Tregs
is with dotted lines. (A) The thresholds of the antigenic stimulation bL

(dark blue) and bH (light green); (B) The concentration x(bL) (dark blue)
of T cells and the concentration x(bH) (light green) of T cells; (C) The
concentration y(bL) (dark blue) of Tregs and the concentration y(bH) (light
green) of Tregs.

in the control of the local Treg population size. Hence, under homeostasis, a larger

antigenic stimulation of Tregs results in a larger Treg population size. Further-

more, there is a positive correlation between the antigenic stimulation of Tregs

and the thresholds bL and bH of antigenic stimulation of T cells. Hence, organs

with different antigenic stimulation of Tregs have different levels of protection

against the development of an immune response by T cells, under the presence

of their specific antigen.

We study the effect of a positive correlation between the antigenic stimulation

of T cells and the antigenic stimulation of Tregs, due to the antigen presenting

cells (APC), such as dendritic cells, present both self antigens and foreign antigens

[42, 43]. Here, with a structurally different model, we attain the same conclu-

sions, as in [44], due to the asymmetry in the difference between the growth and

death rates. We find, for some parameter values, that slow rates of increase of
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the antigenic stimuli do not lead to an immune response, but fast rates of in-

crease of the antigenic stimuli can trigger an immune response. This behavior is

mathematically explained by the presence of a transcritical bifurcation.

4.3.1 The model

The model proposed consists of a set of ordinary differential equations similar to

the one presented in [11], with a compartment for each T cell population (inactive

Tregs R, active Tregs R∗, non secreting T cells T , secreting activated T cells T ∗)

and interleukine 2 density I:

dR

dt
= (ερI−β(R + R∗ + T + T ∗) − dR)R + k̂(R∗ − aR) + Rinput,

dR∗

dt
= (ερI−β(R + R∗ + T + T ∗) − dR∗)R∗ − k̂(R∗ − aR),

dT

dt
= (ρI − β(R + R∗+T + T ∗) − dT )T + k(T ∗ − bT+γR∗T ∗) + Tinput,

dT ∗

dt
= (ρI − β(R + R∗+T + T ∗) − dT ∗)T ∗ − k(T ∗ − bT+γR∗T ∗),

dI

dt
= σ(T ∗ − (α(R + R∗+T + T ∗) + δ)I).

The parameters range are as in Table 4.1. The new parameters considered here

are Rinput = Tinput = 100 cells/ml/day which gives a homeostatic concentration

Rhom of Tregs of 1.36 × 103 cells/ml in the absence of antigenic stimulation of

T cells (b = 0). And the parameters for the asymmetry in the death rates

dR = dT = 0.1 per day, dR∗ = dT ∗ = 0.01 per day. The new aspect of this model,

comparing with the model presented in Section 4.1.1, is the asymmetry in the

difference between the growth and death rates.

With this kind of asymmetry present for the T cells, the increase of the

population of T cells with the increase of the antigenic stimulation b of T cells is
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caused both by the increase in cytokine secretion (similarly to the model presented

in Section 4.1.1) and by the decrease in the average death rate of T cells. Hence,

there is an improvement in the efficiency of the response of the immune system

for high antigenic stimulations (high values of the parameter b).

In the case of the cross reactive direct stimulation, the results obtained with

this model are similar to the ones presented in the Subsection 4.1.4. However,

when a bystander proliferation is considered, higher death rate of the non secre-

ting T cells provokes lower concentrations of the bystander T cells, thus improving

the results obtained (see [15]). In [13] we study the effects of different tunings

between the antigenic stimulation a of Tregs and the antigenic stimulation b of

T cells, by considering (for simplicity) a linear relation between a and b, eg due

to an increase in the number of antigen presenting cells. The protection of the

tissues against autoimmunity is enhanced by this relation between the stimuli a

and b since both antigenic thresholds bL and bH increase. This positive correla-

tion between the stimulation of T cells and the stimulation of Tregs resembles

some features of a different model [44] and, as in their case, we show, in the

presence of the asymmetry of the death rates, that the time rate of variation of

stimulation of the immune system can determine the presence or absence of an

immune response. We find that for some tuning between the antigenic stimula-

tion a of Tregs and the antigenic stimulation b of T cells, a high rate of variation

of the stimulation provokes an immune response, contrasting with a low rate of

variation of the stimulation which does not provoke an immune response. A ma-

thematical explanation for the fact that fast and slow variations of the antigenic

stimulation result in different outcomes is that for a given tuning and a given

antigenic stimulation b of T cells we are in the presence of a transcritic bifurca-

tion. Small perturbations of the tuning can bring the unfold of the transcritic
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bifurcation allowing the appearance of immune responses bursts for much lower

values of the antigenic stimulation of T cells than before the unfolding. The pe-

riod of time necessary for the appearance of the burst depends on the size of the

perturbations.

4.3.2 Bifurcation diagrams

We study the positive correlation between the antigenic stimulation a of Tregs

and the the antigenic stimulation b of T cells. Since both are presented by the

antigen presenting cells (APC). For simplicity, we study a linear relation between

these stimuli in the form: a = a0 +mb. If the the levels of antigenic stimulation a

of the Tregs and the levels of antigen stimulation b of the T cells are independent,

i.e. the slope m is equal to zero, an hysteresis is present regardless of the value

of the antigenic stimulation a of the Tregs. The two antigenic thresholds bL and

bH bound the bistability region of the hysteresis. We observe that the thresholds

bL and bH of antigenic stimulation of T cells and the ratio bH/bL increase with

the antigenic stimulation a of the Tregs. Similarly to the case when the antigenic

stimulation a of the Tregs is independent of the antigenic stimulation b of T cells

(see Figure 4.8 (A)), an hysteresis is present for small values 0 ≤ m < mS of the

slope m. We observe, when m = mS , the appearance of a saddle-node bifurcation

point, disconnected from the hysteresis (see Figure 4.8 (B)). For values of the slope

mS < m < mX , a loop is present, disconnected from the hysteresis (see Figures

4.8 (C) and (D)). When m = mX , a transcritical bifurcation appears when the

loop touches the hysteresis at the threshold bH of the hysteresis (see Figure 4.8

(E)). For values of m > mX the loop merges with the hysteresis, corresponding

to a system with a wider hysteresis (see Figure 4.8 (F)).
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Figure 4.8: Equilibria for different tunings a = a0 + mb of the antigenic
stimulations, with a0 = 1/2.4. From A to F the slope m increases. Black
lines: concentration of T cells, Red lines: concentration of Tregs. Solid
lines indicate stable equilibria and dashed lines indicate unstable equilibria.
(A) (m = 0) we see the hysteresis similar to the one observed in [11]; (B)
(m = 0.164428) we see the appearance of a saddle node point; (C) (m =
0.165) the point increases to a loop limited by two folds; (D) (m = 1) the
loop is bigger; (E) (m = 1.64298) the loop touches the hysteresis threshold
bH in a transcritical bifurcation; (F) (m = 2) the loop has merged with
the hysteresis. Further increases of the slope will not make qualitative
differences in the figure.
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If we consider that in the “normal” state of the immune system there is a

positive correlation between the antigen thresholds a and b as in Figure 4.8 (F),

the slope m can be related to autoimmunity, since a reduction of the slope will

decrease the antigenic threshold bH of T cells. In particular when the slope

m = mX there is a discontinuity in bH with slopes below mX creating thresholds

bH 400 times lower than the thresholds bH for slopes above mX .

4.3.3 Fast and slow variation of antigenic stimulation

The antigenic stimulation of T cells and Tregs is likely to change with time

either rapidly, eg due to an infection with the consequent immune response as an

outcome, or slowly, caused by the natural modifications of the organism with age

and with the T cells being kept in control by the Tregs. We model these situations

by considering that the antigenic stimulation b of T cells varies between b0 < bL

and b∞ > bH in an interval of time. To compute the value of b, we choose the

following log-sigmoid function of time:

log b(t) = log b0 +
log b∞ − log b0

1 + e−(t−tM )/τ
,

with b0 = 0.01, b∞ = 10 and tM = 100. This function passes through the median

b =
√

b0b∞ = 0.316 . . . at a time tM = 100 days. The derivative of this function

is inversely proportional to the parameter τ , meaning that the steepness factor τ

is related to the typical time of increase of b, with higher values of the steepness

factor τ being related to slow variations of b. We also consider that the antigen

stimulation a of Tregs varies with the antigen stimulation b of T cells in the linear

relation: a(b) = a0 + mb, with a0 = 1/2.4 and slope m = 2, as in Figure 4.8 (F).

In the model with asymmetric death rates with a slope m above the value of
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Figure 4.9: Effect of different rates of increase of b. The level of antigenic
stimulation b of T cells varies between 0.01 and 10 in a log-sigmoid function
of time with steepness factor τ . The antigenic stimulation a of Tregs is
a(b) = 1/2.4 + 2b. Black dashes: total concentration of T cells (T + T ∗)
Red line: total concentration of Tregs (R + R∗). Blue dash-dots: antigenic
stimulation b of T cells (presented as b/100 to fit in the window). Vertical
grey dots: median time of the variation (100 days). (A) Fast variations
of the antigenic stimulation (τ = 10 days) give an immune response; (B)
For slow variations of the antigenic stimulation (τ = 100 days) the T cells
remain controlled. For intermediate rates of variation either there is an
immune response ((C) τ = 28 days) or a controlled state ((D) τ = 29
days).
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the transcritical bifurcation m > mX = 1.64 . . ., we observe that a fast variation

of the antigenic stimulation triggers an immune response (see Figure 4.9 (A)),

i.e. the concentration T + T ∗ of T cells is high, near the capacity value Tcap,

with a transient increase in the concentration R + R∗ of Tregs. On the other

hand, in a slow variation of the antigenic stimulation (see Figure 4.9 (B)), the

concentration T + T ∗ of T cells has a temporary small increase and the increase

in the concentration R + R∗ of Tregs is able to sustain a controlled state, thus

resulting in a subclinical behaviour that enhances the protection of the tissue

against autoimmunity. We observe that there is a threshold value of the steepness

factor (τ0 ≈ 28.5 days) such that an immune response arises for lower values of

the steepness factor and that a controlled state is maintained for higher steepness

factors (see Figures 4.9 (C) and (D)).

4.3.4 Dynamics of bystander proliferation

The asymmetry maintains the basic features of the model, namely, the existence

of a controlled stable steady state (with low concentration of T cells) and the

existence of an immune response stable steady state (with high concentration

of T cells), depending on the antigenic stimulation b of T cells and the initial

conditions. The thresholds bL and bH of antigenic stimulation of T cells, are

similar to the ones presented in Subsection 4.1.2.

The simulations of the bystander proliferation have differences between the

immune response model and the model presented in this Section. In the simula-

tions of a bystander proliferation, we considered two lines of T cells Tb, T ∗
b and

Tc, T ∗
c that have, respectively, pathogen stimulation b and autoimmune antigen

stimulation c. We study this model considering two cases: a) the symmetric

case, as in [11]; b) the asymmetric case, as in [13]. The model consists of a set of
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ordinary differential equations (see [11, 13] for further details) and is employed

to study the dynamics, with a compartment for each T cell population (inactive

Tregs R, active Tregs R∗, non secreting T cells Tb and Tc, secreting activated T

cells T ∗
b and T ∗

c ) and interleukine 2 density I:

dR

dt
= (ερI − βN − dR)R + k̂(R∗ − aR) + Rinput,

dR∗

dt
= (ερI − βN − dR∗)R∗ − k̂(R∗ − aR),

dTb

dt
= (ρI − βN − dT )Tb + k(T ∗

b − bTb+γR∗T ∗
b ) + Tinput,

dT ∗
b

dt
= (ρI − βN − dT ∗)T ∗

b − k(T ∗
b − bTb+γR∗T ∗

b ),

dTc

dt
= (ρI − βN − dT )Tc + k(T ∗

c − bTc+γR∗T ∗
c ) + Tinput,

dT ∗
c

dt
= (ρI − βN − dT ∗)T ∗

c − k(T ∗
c − bTc+γR∗T ∗

c ),

dI

dt
= σ(T ∗

b + T ∗
c − (αN + δ)I).

with N = R + R∗ + Tb + T ∗
b + Tc + T ∗

c . We chose the following values for

the parameters Rinput = Tinput = 100 cells/ml/day, dR = dT = 0.1 per day,

dR∗ = dT ∗ = 0.01 or 0.1 per day and the values of the other parameters are equal

to the ones presented in Table 4.1. The important aspects of this model are a

mechanism to sustain a population of Tregs, secretion inhibition of T cells with

a rate that correlates with Treg population size, and growth and competition for

IL-2 with a higher growth rate of T cells relative to Tregs.

We compare the dynamics of the bystander proliferation between the model

with symmetric death rates and the model with asymmetric death rates. The

asymmetry reflects that the difference between the growth and death rates can be

higher for the active T cells and the active Tregs than for the inactive T cells and



158 Immune Response Models

inactive Tregs. The asymmetry in the difference between the growth and death

rates brings up the relevance of the antigenic stimulation of Tregs in the control

of the local Treg population size. This asymmetry can be due to the presence of

memory T cells and memory regulatory T cells. We observe that the asymmetry

in the model provokes slightly faster growth rate of T cells, in particular for high

antigenic stimulations b of T cells due to the lower average death rate of T cells.

In the case of the cross reactive direct stimulation, the results are analogous

to the immune response model [11]: the final state of the model is either a

controlled state or an immune response state, the last one being achieved if the

stimulation of the autoimmune antigen b is between bL and bH and the duration of

the immune response is of sufficient duration (about 5 days in the simulations in

[11]). The simulations of the bystander proliferation present differences between

the symmetric case and the asymmetric case. In our simulations, we consider

a tissue with initial controlled state of both T cells lines and we simulate a

pathogen infection as a step increase in b from 0 to 1000 between days 0 and

7 (other choices of suitable pathogen dynamics give analogous results). If the

autoimmune stimulation of T cells was too low (c < cL) the autoimmune T cells

could not sustain autoimmunity after pathogen clearance and Tregs would be

able to regain control. On the other hand, if the autoimmune stimulation of T

cells was too high (c > cH) it would be impossible to have an initial controlled

autoimmune state. In the simulations in Figure 4.10, we choose the autoimmune

antigenic stimulation c = 0.1 to be a constant value between the thresholds cL

and cH of antigen stimulation. In the three simulations presented in Figure 4.10,

we observe that the concentrations of the autoimmune line of T cells Tc, T ∗
c

increases between days 0 and 7, because, during this period of time, there is an

increase of the concentration of I cytokine secreted by the line of T cells Tb, T ∗
b
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that respond to the pathogen. There is also a transient increase in the population

of Tregs due to the I cytokine followed by suppression of Tregs due to the Fas-

FasL mediated apoptosis. In the end of the pathogen exposure (after 7 days)

the secreting autoimmune T cells T ∗
c generate enough I cytokine to sustain the

population of autoimmune T cells Tc, T ∗
c in high concentrations, thus developing

an autoimmune response.
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Figure 4.10: Bystander proliferation for different models. (A) The symme-
tric case: the T cells not responding to the pathogen have equal concen-
tration to the T cells responding to the pathogen; (B) Only the secreting
T cells T ∗ die slower: the T cells not responding to the pathogen have
lower concentration than the T cells responding to the pathogen; (C) The
asymmetric case: the T cells not responding to the pathogen have lower con-
centration than the T cells responding to the pathogen and take more time
than in case B to achieve an immune response. Black dots: concentration of
T cells responding to the pathogen (Tb + T ∗

b ); Green dashes: concentration
of T cells not responding to the pathogen (Tc +T ∗

c ); Red line: concentration
of Tregs (R + R∗).

The onset of autoimmunity depends both of the duration of the pathogen

exposure and of the model considered. In the symmetric case with two lines of T

cells (with dR∗ = dT ∗ = 0.1 per day), we observe that the autoimmune response

stabilizes around 10 weeks after the pathogen exposure (see Figure 4.10 (A)). In

the asymmetric case, with lower death rate of secreting T cells and active Tregs

(dR∗ = dT ∗ = 0.01 per day), the autoimmunity arises approximately 8 weeks after
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the pathogen exposure (see Figure 4.10 (C)). We also consider an intermediate

choice of death rates (see Figure 4.10 (B)), where the asymmetry of the death

rates is present only for the T cells (dR∗ = 0.1 per day and dT ∗ = 0.01 per

day). In this case, the autoimmunity appears after about 6 weeks.The comparison

of the Tregs concentrations, presented in Figures 4.10 (B) and (C), show that

the asymmetry in the growth and death rates between the active and inactive

regulatory T cells have implications in the concentration of the regulatory T

cells after the pathogen removal. As we can see, in Figures 4.10 (B) and (C), the

concentration of the regulatory T cells is higher in the presence of the asymmetry.

In the case of an autoimmune response of T cells Tc, T ∗
c , we observed that the

concentration of both lines of T cells are always equal in the symmetric case

where Tb +T ∗
b = Tc +T ∗

c (see Figure 4.10 (A)), because the growth rates and the

death rates of the two types of T cells are equal. However, in the asymmetric case

(see Figure 4.10 (C)), the line of T cells Tb, T ∗
b that responds to the pathogen

stimulation b has higher concentration than the other line of T cells Tc, T ∗
c during

the infection period (between 0 and 7 days). This is due to the lower average

death rate of the line of T cells that respond to the pathogen Tb, T ∗
b . For the same

reason, when we consider the asymmetry of the death rates only for the T cells

(see Figure 4.10 (B)), the concentration of the line of T cells Tb, T ∗
b that responds

to the pathogen is also higher than the other concentration of the other line of T

cells Tc, T ∗
c during the infection period. After the infection period, the T cells Tb,

T ∗
b decrease to the initial homeostatic levels. However, the autoimmune response

for the T cells Tc, T ∗
c appear because the antigenic stimulation c is between cL

and cH and, also, because the IL-2 cytokine concentration is high enough to move

their state, through the hysteresis unstable manifold, to the basin of attraction

of the autoimmune response equilibrium state.
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4.4 Conclusions

In this Chapter, we examined mechanisms of Treg control of immune responses

through regulation of cytokine dependent T cell proliferation. In the model in

[11], Tregs have two effects on cytokine levels: firstly they directly inhibit cy-

tokine secretion; and secondly they adsorb (and thus compete for) proliferative

cytokines. Both of these have an impact on T cell growth. Secretion inhibition

is shown to act as a growth modulator through adjustment of a quorum thre-

shold associated with cytokine growth dynamics. The second effect was minimal

in the simulations because the Treg population was always a minor population.

However, increasing the homeostatic level of Tregs would increase the impact of

this competition and reduce immune response growth rates, thereby extending

immune response times.

The threshold mechanism discussed here is extremely robust to model de-

tails, being effectively a model of activation and escape. Proliferation driven

by a secreted cytokine is naturally population size (quorum) dependent [18] and

“quorum sensing” imposes a population consensus on immune responses which

are only initiated if a sufficiently high number of T cells are locally activated. A

locally maintained population of Tregs raise this quorum threshold in the local tis-

sue. Thus, immune responses are inhibited unless the number of activated T cells

is sufficiently large when the immune response escapes inhibition; such escape is

dependent on the higher efficiency with which conventional T cells (responders)

can utilise IL-2 compared to Tregs.

The bistability presented here is, in fact, a common feature of all the current

Treg models [42]. To retain a control Treg population we had to include an

homeostatic mechanism such as a J cytokine or an input flux Rinput (as in Section

4.3), eg from the thymus.
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Treg induced secretion inhibition can protect different tissues from immune

responses to varying degrees, by adjusting (possibly through evolutionary sele-

ction) the size and activity of the local Treg population. In Section 4.3, when

we considered an asymmetry in the death rates, the size and activity of the local

Treg population are controlled by the antigenic stimulation a of Tregs, by the

inflow Rinput of Tregs and by the asymmetry in the death rates of Tregs. Fur-

thermore, the asymmetry in the death rates of T cells, caused for example by the

presence of memory cells, is an improvement to the model, since high antigenic

stimulations b of T cells provoke a faster increase of the concentration of T cells in

the modified model. These mechanisms allow tissues that are frequently exposed

to antigen, eg the gut, to have the balance more in favour of inhibition, while

other tissues may have no local Treg population. Under pathogen invasion Treg

control can be broken and an immune response ensue. After pathogen clearance,

T cells downsize and differentiate to memory whilst Tregs ideally return to pre

immune response levels through homeostatic regulation. However, since regula-

tion is non specific, an immune response, and the associated proliferative cytokine

production can induce bystander proliferation of autoimmune T cells (and Tregs),

whilst enhanced levels of costimulation can abrogate inhibition which undermines

control of autoimmunity. The existence of an asymmetry in the death rates of T

cells is an improvement of the immune response model in the simulation of the

bystander proliferation because it allows the T cells stimulated by the pathogen

to have higher concentrations than the other lines of T cells. Because of the hys-

teresis implicit in the dynamics, the high proliferation of these bystanders during

the immune response may lead to their escape from Treg control and thereby

establish chronic autoimmunity.

We also considered (see [13]) that the antigenic stimulation a of Tregs is pos-
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itively correlated to the antigenic stimulation b of T cells. When we considered

a linear relation a = a0 + mb, between the antigenic stimulations a and b, we

observed a transcritical bifurcation at a slope m = mX that can be related to

the appearance of autoimmunity at low self antigenic stimulation b of T cells for

lower slopes m < mX . For higher slopes m > mX , we can still see a partial

effect, dependent of the rate of increase of the antigenic stimulation b of T cells

with results similar to other authors [44] in a structurally different model. We

observed that for slow increases of the antigenic stimulation b the Tregs are able

to maintain control but for fast increases of b an immune response is triggered.

Thus our model can explain the fact that autoimmunity can be associated with

a prior pathogen exposure. Whilst bystander proliferation could lead to autoim-

munity we found that cross reacting T cells were more prone to escape (escape at

lower b). The load threshold behavior observed in adoptive transfer experiments

[69] is also explained by this quorum growth mechanism, whilst we predict a cy-

tokine (principally IL-2) dependence of this threshold and thus its modulation

under alteration of the IL-2 environment. The reverse switch from autoimmune

to controlled state can be achieved if the autoimmune T cell population can be

lowered sufficiently, or Treg density increased. For example, immune suppression

that targets conventional T cells but not Tregs could lead to a switch. A possible

target is suppression of IL-2 secretion, provided chronic autoimmune states are

IL-2 dependent. However, because of the hysteresis in this system high levels of

suppression are needed, whilst the observation of delayed escape and autoimmu-

nity indicates that temporal dynamics must also be considered.
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Portugal. ISBN: 972-99841-0-7 (2005).
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