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Abstract— Our everyday, common sense ability to discern the
intentions of others’ from their motions is fundamental for a
successful cooperation in joint action tasks. In this paper we
address in a modeling study the question of how the ability to
understand complex goal-directed action sequences may develop
during learning and practice. The model architecture reflects
recent neurophysiological findings that suggest the existence
of chains of mirror neurons associated with specific goals.
These chains may be activated by external events to simulate
the consequences of observed actions. Using the mathematical
framework of dynamical neural fields to model the dynamics of
different neural populations representing goals, action means
and contextual cues, we show that such chains may develop
based on a local, Hebbian learning rule. We validate the
functionality of the learned model in a joint action task in
which an observer robot infers the intention of a partner to
chose a complementary action sequence.

Index Terms— intention understanding, social development,
dynamic field model, mirror neurons, joint action in au-
tonomous robots

I. INTRODUCTION

Many of our social activities during daily life rely on our
ability to predict the consequences of other’s behavior. We
continuously interpret actions of our partners in terms of their
intentions to adequately adjust our own actions. In adults, this
form of social cognition includes the attribution of higher
mental states like desires and beliefs. For younger children
it is commonly believed that the goal inference process is
restricted to the motor domain. Already preverbal children
show the remarkable capacity of attributing goals to complex
object-directed sequences like reaching-grasping-placing. As
shown in imitation studies with adults as model, preverbal
children are able to act on a goal that they had to infer since
the end state of the sequence was hidden from view or the
model ‘accidentally’ failed to place the object at a desired
location (e.g., [1], [2]). In this paper, we focus on this lower
level of understanding motor intention which, however, may
be seen as a precursor for a higher mind reading capacity
[3].

Many of the contemporary theories of action understanding
rely on the notion that the observer uses his or her own motor
repertoire to replicate the observed action and its effect. The

discovery of the mirror neurons in premotor cortex (area F5)
and parietal cortex (PF/PFG complex) of macaque provided
the first neurophyisological evidence for the existence of
such a matching system. Mirror neurons fire both when the
monkey performs a goal-directed action such as grasping an
object and when it observes another individual performing
a similar action [3]. Using two learned reaching-grasping-
placing sequences with specific goals (eating or placing),
Fogassi and colleagues ( [4], [5]) have recently described
activity patterns of mirror neurons in PF/PFG consistent with
a model that postulates a chain between neurons coding sub-
sequent motor acts. Crucial for an intention reading capacity,
individual neurons encode identical motor acts dependent
upon the ultimate goal of the sequence in which the act is
embedded. Depending on the specific chain of mirror neurons
that becomes activated by external events (e.g., an observed
motor act) and contextual cues (e.g., object properties), the
observer may thus predict what, most likely, the observed
agent is going to do [5].

In this paper we address in a modeling study the funda-
mental question how the neural representations necessary for
understanding complex action sequences may autonomously
develop. In particular, we focus on the learning of action
chains which become associated with goal representations
and contextual cues during practice. The study complements
and extends our previous work in the context of imitation and
observational learning in which we have primarily focused on
establishing a goal-directed mapping from action observation
onto action execution (mirror properties; [6], [7]). We use
the framework of dynamic neural fields to represent the
activity of neural populations encoding different motor acts
and goals. The synaptic links between any two populations
in the distributed network are established using a neuro-
plausible, Hebbian learning dynamics. This learning rule also
ensures that populations encoding motor acts split during
practice into specific goal-directed subpopulations. Develop-
ment thus manifests as a change within a complex dynamical
system [8] which includes the emergence of new task specific
representations.

Although the neurophysiological findings have to a large
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extent influenced the structure of the dynamic model, we do
not intend here to explain details of the neural data. Instead,
we validate the functionality of the model in a joint action
task using a robot simulation environment.

The paper is structured as follows: In Sections II and
III we discuss the concepts, underlying assumptions and
mathematical details of the field model. The modeling results
are presented in Section IV. We finish the paper with
a critical discussion of modeling assumptions and results
(Section V).

II. MODEL CONCEPTS

Our research group builds autonomous robots which in-
teract in the context of a joint construction task in a natural
and intelligent way with another agent, human or robot [9].
Using the dynamic field model as part of the robot control
architecture, our ultimate goal is to endow the robots with a
human-like intention reading capacity as a basis for nonver-
bal communication skills. To illustrate the ‘developmental
program’ during the learning phase and the functionality
of the mature system after learning we have chosen here
a simple object directed reaching-grasping-placing scenario.
The observing robot R1 has to select a complementary action
sequence in dependence of the inferred action goal of the
other agent R2. For instance, partner R2 may grasp an object
of type O1 to place it in front of R1 with the intention to hand
it over or, alternatively, may grasp the same object with the
intention to directly plug it in as part of the complex object
to be assembled by the team (see Fig. 1). To distinguish

Fig. 1. On the left, two robots that have to cooperatively construct a toy
robot base are shown. As a simple example to illustrate the functionality
of the goal inference model, we have chosen the scenario illustrated on the
right. Relevant are the objects labeled by O1. The observing robot R1 has
to select a complementary object-directed action sequence in dependence of
the inferred action goal of R2.

these two goals we call them in the following ‘Grasping for
Handing over (GfH)’ and ‘Grasping for Plugging (GfP)’. In
the example, the selection of a particular chain is possible due
to an additional contextual cue, the distribution of type O1
objects in the work-spaces of the two robots. If R2 is going
to grasp O1 and no such object is within the reach of the
partner, R2 will most likely start the handing over process.

Fig. 2 sketches the cognitive architecture for the observing
robot R1 which is inspired by our current knowledge about
the neuro-cognitive principles underlying the reasoning and

decision processes in humans and other primates. A detailed
discussion of the different layers with respect to the mirror
circuit and prefrontal areas may be found in [6]. The central
idea is that neuronal populations in the action observation
layer (AOL) and the action simulation layer (ASL) encode
motor primitives defined as whole object oriented motor
acts such as reaching or grasping. Motor primitives do not
encode the fine details of movements. They thus provide
a sufficiently abstract level of description that allows for a
matching between action observation and action execution
across differences in embodiment, environmental constraints
or motor skills. The existence of tool-use mirror neurons
[10] can be seen as a direct physiological evidence for the
existence of such a matching system in monkeys. Tool-use
neurons fire both when the monkey grasps an object and when
it observes a grasping action performed by the experimenter
with an unknown tool. Using the DNF framework, we have
recently shown [6] how the association to a movement not
strictly in the motor repertoire of the observer may evolve
during learning.

The neural populations in the goal layer (GL) become
associated with the respective chains in ASL during practice.
They provide input to the action execution layer (AEL)
which also contains goal-directed chains. The input from GL
biases R1’s decision about a complementary motor behavior.
Finally, layer OML represents memorized information about
the location of objects in the workspaces of the two agents.

Fig. 2. Architecture for goal inference and selection of a complemen-
tary goal-directed motor response for the joint action task. The “Action
Observation Layer” (AOL) encodes a visual description of the objet-directed
motion of the partner (e.g., reaching, grasping, placing). The “Action
simulation layer” (ASL) maps the perceived motor acts onto specific goal-
directed action chains which have developed during learning and practice.
The “Object Memory Layer” (OML) provides the contextual information
about the objects in the workspace of each agent. The “Goal Layer” (GL)
represents the inferred action goal of the partner. The “Action Execution
Layer” (AEL) selects the appropriate goal-directed motor response based
on 1) the inferred intention, and 2) the distribution of the objects in the
workspace of the two robots. As part of a robot control architecture, this
cognitive module gets input from the vision system. It is linked to the motor
control system that provides the sequence of postures for the arm/hand/body
to perform the selected goal-directed action (for details see [9]).

III. MODEL DETAILS

A. Dynamic neural field (DNF) model

To model the dynamics of the different neural populations
we use as a mathematical framework a discrete version of



a dynamic neural field [11]. DNFs are ideally suited to
represent two distinct but functionally related properties of
neural populations in parieto-frontal areas: time integration
of input signals and decision making [12]. For our motor
sequence example this means, that for instance a grasping
population as part of the GfH chain first integrates sensory
and other evidence. This manifests in a continuous increase
of population activity. When a certain activation threshold is
reached, the population response becomes self-stabilized due
to the increasing influence of excitatory interactions. At the
same time, this representation engages in competition with
the GfP grasping population due to lateral inhibition.

Each dynamic field represents a population of 2N neurons
which splits into an excitatory and an inhibitory subpopula-
tion, each of dimension N . The activation of an excitatory
and an inhibitory neuron i at time t, ui(t) and vi(t), is
governed by the following coupled system of differential
equations (for model details see [13]):

τu
d

dt
ui(t) = −ui(t) + h + Ii(t)

+ g(ui(t))




N∑
j=1

wu
ij f(uj(t)) − vi(t))


 (1)

τv
d

dt
vi(t) = −vi(t) + g(vi(t))




N∑
j=1

wv
ij f(uj(t))




where the constants τu , τv and h < 0 define the time
scales and the resting level of the dynamics, respectively. The
firing rate f(.) and the shunting term g(.) for the recurrent
excitation are taken as non-linear functions of sigmoid shape.
The interaction strength between any two neurons within
the two subpopulation is defined by fixed synaptic weight
functions, wu

ij , and wv
ij , which decrease as a function of

the distance between the neurons. We have chosen Gaussian
profiles with the specific choice σu < σv and Au > Av for
the standard deviations and the amplitudes, respectively. This
choice guarantees that the inhibition dominates over larger
distances. The term Ii(t) represents the summed input at time
t to the excitatory neuron i (see below).

Within a certain range of field parameters, the excitatory
population develops in response to an input above threshold
strength, AI > ATH , the localized, transient activity pattern
shown in Fig. 3. This transient behavior is the result of
the recurrent excitation process which is counterbalanced by
the local inhibitory feedback. It is important to stress that
the inhibition may be tuned to guarantee an arbitrary slow
decrease of the excitation. We use the extreme case of a self-
stabilized, stationary peak to implement a working memory
function (representations in OML and GL) [9].

B. Hebbian learning

We adopt a Hebbian perspective for the development of
intention understanding [14] with a focus on establishing the
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Fig. 3. Panel A: A localized transient activity pattern in a neural field
consisting of N = 161 neurons is shown. The external input defines the
location of the pattern, the recurrent interaction parameters determine its
width, that is, the number of neurons that become suprathreshold. Panel
B: The time course of the maximally activated neuron in the population
is plotted. Time t = 0 defines the onset of the external input. When the
activation reaches the threshold u = 0, the input integration period is
over and the recurrent interaction processes start to dominate the population
dynamics.

link between action means, contextual cues and goals. The
learning process starts under the assumption that 1) all neces-
sary motor primitives are already within the motor repertoire
of the observer, and 2) that the congruent mappings of an
action matching system have been established in previous
experiments [6]. The Hebbian learning rule for increasing the
synaptic efficacy, sij , between a ‘presynaptic’ neuron j and
‘postsynaptic’ neuron i belonging to different populations is
given by (for a mathematical overview see [15]):

τs
d

dt
sij(t) = h(ui(t)) [αf(uj(t)) f(ui(t)) − sij(t)]−βsij(t)

(2)
with a time scale τs � τu much larger compared to the time
scale of the field dynamics. All weights passively decay with
a slow rate defined by β > 0. In addition, the first term
on the right-hand side of (2) describes the usual Hebbian
learning with scaling parameter α balanced by a memory
decay. Both are shunted by a sigmoidal function h(ui) with
threshold uh > uf . For a sufficiently activated postsynaptic
neuron ui, the decay or growth of the weight to a presynaptic
neuron uj appears to be proportional to the factor h(ui).
The accelerated weight decay in case of a silent uj is the
responsible mechanism for the development of task specific
subpopulations.

Once the learning period is over and the learned connec-
tions are mature, neuron i gets from a population k which
is activated above threshold the time varying input Ik

i (t) =∑N
j=1 sijf(uj(t)). The total input to i is computed by sum-

ming over all connected populations, Ii(t) =
∑

k γk Ik
i (t),



where γk are weighting parameters to control how much
each partial input contributes to the activation of the unit.
For the integration property of the neural populations it is
important that the total input is scaled to the threshold ATH .
This is achieved in the present simulations for simplicity
by choosing adequate weight parameters γk (in principle, a
weight normalization term for the leaning rule could be used
[15]). As a result, during action observation the propagation
of activity in a chain is possible only if at least two informa-
tion sources (e.g., preceding motor act and contextual cue)
provide coherent input.

IV. RESULTS

For establishing the chains, we adopt a learning by obser-
vation paradigm [16] in which a teacher demonstrates the two
sequences, each composed of three motor primitives (Fig. 2).
Through learned mappings mappings [6], the observed motor
primitives represented in layer AOL activate step by step
the corresponding neural populations in the action simulation
layer (ASL). To allow for Hebbian learning, the neural popu-
lation responses encoding subsequent primitives must overlap
in time. The data from the monkey experiment shows that this
is indeed the case. Neurons classified as reaching, grasping or
placing units show suprathreshold activity that lasts several
100 milliseconds [4]. In the model network with its strong
synaptic excitatory reverberations, such time courses can be
reproduced by adjusting the time scales of the dynamics
accordingly (in a 75-100ms range). The time course of a
chain composed of three primitives is illustrated in Fig. 4 by
showing the temporal profile of the maximally activated neu-
ron in each population. During action observation, the chains

Fig. 4. The time courses of the transient neural population responses of the
three motor primitives (reaching-grasping-plugging) forming a goal-directed
chain are shown. During action observation, the chain can be triggered by
partial visual information. It is maintained through the ‘horizontal’ synaptic
connections and the integration of contextual cues.

may be triggered even if only partial visual information is
available. Once the reaching population becomes active, for
instance because the observer witnesses a hand approaching
an object, the activity propagates to all synaptically coupled
populations. However, only a population that appears to be
already preshaped by additional information sources defining
a particular chain will reach a suprathreshold activation level.
Crucial for using the chain in a simulation mode for intention

reading is the link to the goal or rewarded end state. In
the field model, the two different goals of our construction
example are represented by self-sustained activity bumps
(working memory) of two competing populations in layer
GL. Using the Hebbian rule, synaptic links are established
between one of the goal representations (GfP or GfH), which
is held in working memory for a specific learning block,
and the transient motor representations in ASL. In Fig. 5
two snapshots of the learning process with alternating goal
blocks are shown. In each snapshot, the top panel represents
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Fig. 5. The two snapshots illustrate the developing of goal-specific grasping
neurons in the DNF model. Snapshot A represents the state before and
Snapshot B the state after the learning period. On top, the maximal activity
of the grasping population in a GfP trial is shown, on bottom the weight
profiles from the maximally excited GfP (left) and GfH (right) neuron to the
grasping population are plotted. Note that the influence of the initially weak
input from the GfP population manifests in a slight shift of the population
response to the left relative to the central line, the response in a GfH trial
appears slightly shifted to the right (not shown). The interplay between
the learning and the field dynamics continuously increases this shift during
practice, leading to a nearly complete separation of the weight profiles and
the population responses.

the activity of the grasping population. In the bottom panel,
the two profiles represent the strength of the connections
between the maximally excited neuron in the goal layer and
the grasping population for the GfP population (left) and the
GfH population (right). Initially, the synaptic connections
are weak and the two distributions are centered over the
population which is activated by external input (from ASL).
However, due to a small spatial bias in the projections, the
grasping population that becomes suprathreshold in a GfP
trial does not coincide exactly with the active population in
a GfH trial. The Hebbian learning rule leads to a continuous
growth of the spatial bias since it penalizes the connections to
grasping neurons which were initially stimulated by both goal
representations. As a result of the learning, subpopulations



of grasping neurons develop which are linked to a specific
goal. Numerical tests with different initial conditions and
block sizes show that the learning effect is robust as long
as the initial weight distributions from GL do not completely
overlap.

Associations between neural populations in ASL and pop-
ulations representing contextual cues (in OML) are also
established during practice using the Hebbian rule. This task
knowledge is assumed to preshape the elements of the chain,
expressing some expectation about possible action sequences.
The impact on the intention reading capacity is illustrated in
Fig. 6 and Fig. 7 in the context of the construction task.
In both videos, R1 observes the hand of R2 approaching
an object of type O1 (which is relevant according to the
construction plan known to the agents). In this simple ex-
ample, the contextual cue is the location of O1 objects in
the workspace of the two robots. The location of each object
is represented by a self-sustained activity bump in a neural
field (OML layer, not shown) parameterized by the distance
relative to R1. If all objects of type O1 are in the workspace
of R2, the contextual cue supports the ‘GfH’ hypothesis.
If at least one O1 object is in the workspace of R1, the
‘GfP’ hypothesis is supported. As shown by the activity
pattern in the Goal Layer (GL), R1 interprets via the internal
simulation mechanism the identical motor act displayed by
R2 as belonging to different goal-directed sequences. The
goal representation then biases through synaptic links the
selection of complementary object-directed chains in AEL.

V. DISCUSSION AND OUTLOOK

Intention understanding is considered a fundamental cogni-
tive skill for all species living in social groups. It is currently
an important topic of interdisciplinary investigation within
the cognitive sciences and the domain of social robotics (for
recent overviews see [17], [18]). We believe that adopting a
developmental perspective may be especially enlightening by
providing new insights about the plausibility of requirements
and mechanisms for intention understanding discussed in
the literature. The DNF model presented a neuro-cognitive
inspired account of how the capacity to identify others’ motor
intentions from their motions might develop through a direct
interaction with another agent. Our simulations showed that
the neural representations implementing key mechanisms like
motor simulation and cue integration may emerge as the re-
sult of real-time interactions of local populations without the
need to refer to a central developmental program. There are,
however, two important assumptions we have made in our
model account. First, to develop a goal-directed chain during
practice through Hebbian learning, the neural population in
the goal layer (GL) must be activated above threshold. What
external input might trigger this population? We suggest here
that the initial motivation to get a reward is the driving factor

Fig. 6. Robot R1 observes partner R2 reaching for an object of type O1
(t0-t1). All O1 objects are located in the workspace of partner R2. R1 thus
infers that ‘grasping the object for handing over (GfH)’ is the current action
goal of R2. This goal is represented in layer GL by a self-stabilized activity
bump. As a result, R1 selects a complementary action sequence represented
in layer AEL (‘reaching towards the hand of R2-grasping-plugging’, t2-t5).

for the learning agent (e.g., a monkey). A repeated execution
of an action sequences in attempts to achieve that goal then
strengthens the associations to the GL population. Second, it
is assumed that the chains are established under the guidance
of a teacher who shows the sequence. In the context of
robotics and human development, a learning by observation
approach is in general seen as an efficient means to reduce
the dimensionality of the space in which a solution for a
sensorimotor task has to be found [16]. One might speculate
that the learning under the guidance of the teacher takes place
in two steps. Initially, the focus is on establishing the links
between chain elements to allow for a fluent execution of
a particular action sequence like reaching-grasping-placing.
Later during learning when it becomes clear that similar
action sequences may have a different outcome (in terms of
a reward), the focus shifts towards establishing the links to
the goal and the contextual cues.

An important question that we have not addressed in
this paper concerns how the abstract motor primitives (e.g.,
reaching, grasping) in layers ASL and AOL as a basis for
action matching and goal inference may develop. Recent
progress in the robotics domain suggest that agents may



Fig. 7. Again, robot R1 observes R2 reaching for an object of type O1 (t0-
t1). However, R1 has now also an O1 object in its workspace. R1 thus infers
that the robot R1 most likely will grasp the object to directly plug it in (GfP)
on its side of the construction. A ‘GfP’ action sequence directed towards
object O1 in its own workspace represents the appropriate complementary
behavior of R2 (t1-t3).

autonomously learn and classify invariant sensorimotor be-
haviors by actively exploring the world though their bodies
(e.g., [19], [20]). This approach is in particular appealing
because it supports the idea of a co-development between
sensorimotor and imitative capacities. In future work, we plan
to explore in some detail the interplay between unsupervised
and reinforcement learning techniques for developing the
basic neural field representations.

To achieve the full complexity of a human-like intention
reading capacity it is clear that the motor simulation circuit
must depend on a host of different factors like sensory evi-
dence and contextual information. The DNF model provides a
Hebbian perspective on how such network may develop. Most
importantly, the learning dynamics explains the existence of
subpopulations that are linked to specific end states or goals.

As illustrated in the construction task example, the ASL-
GL-AEL circuit implements the idea that an observer may
infer and adopt goals of others’ in known task settings
rather effortlessly. Once triggered by external inputs, the self-
organizing properties of the circuit with its learned connec-
tions automatically lead to a selection of an adequate com-
plementary behavior. Such an automatic processing clearly
favors a fluent execution of joint action tasks. Currently, we
are implementing and testing for the complex construction
scenario with a relative large number of possible action se-
quences (Fig. 1) the capacity for automatic goal inference and
action selection. The integration of additional information
sources appears to be crucial for both subtasks.
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