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Cheese whey, the main dairy by-product, is increasingly recognized as a source of many bioactive valuable
compounds. Nevertheless, the most abundant component in whey is lactose (ca. 5% w/v), which represents a
significant environmental problem. Due to the large lactose surplus generated, its conversion to bio-ethanol
has long been considered as a possible solution forwhey bioremediation. In this review, fermentation of lactose
to ethanol is discussed, focusing on wild lactose-fermenting yeasts, particularly Kluyveromyces marxianus, and
recombinant Saccharomyces cerevisiae strains. The early efforts in the screening and characterization of the
fermentation properties ofwild lactose-consuming yeasts are reviewed. Furthermore, emphasis is given on the
latter advances in engineering S. cerevisiae strains for efficient whey-to-ethanol bioprocesses. Examples of
industrial implementation are briefly discussed, illustrating the viability of whey-to-ethanol systems. Current
developments on strain engineering together with the growing market for biofuels will likely boost the
industrial interest in such processes.
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1. Introduction

Cheese whey is a by-product of dairy industries, particularly the
watery portion that is formed during the coagulation of milk casein
in cheese making or in casein manufacture. Whey is produced in
large amounts and has a high polluting load, therefore representing
a significant environmental problem. On the other hand, however,
whey retainsmuch of themilk nutrients, including functional proteins
and peptides, lipids, lactose, minerals and vitamins and therefore has
a vast potential as a source of added value compounds, challenging
the industry to facewhey surplus as a resource and not only as awaste
problem.

The utilization of whey has been a challenge since man started
making cheese. As cheese production increased, the volume of whey
also grewandmany cheese factorieswere built nearwaterways so that
most of the whey was diverted to these streams or rivers (Kosikowski,
1979). Modern times brought the awareness of the polluting problem
that whey represents and the consequent regulations prohibiting its
dumping into waterways and even into municipal sewage systems,
whose conventional treatments are not appropriate to sufficiently
reduce whey polluting load (Kosikowski, 1979).

Whey represents about 85–95% of themilk volume and retains 55%
of milk nutrients. Among the most abundant of these nutrients are
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lactose (4.5–5%w/v), soluble proteins (0.6–0.8%w/v), lipids (0.4–0.5%
w/v) and mineral salts (8–10% of dried extract). Whey also contains
appreciable quantities of other components, such as lactic (0.05%w/v)
and citric acids, non-protein nitrogen compounds (urea and uric acid)
and B group vitamins (Siso, 1996). There are two main varieties of
whey, according to the procedure used for casein precipitation: acid
whey (pHb5), resulting from the production of fresh or soft cheeses
(such as cream and cottage cheese), and sweet whey (pH 6–7),
resulting from hard (ripened) cheeses (Kosikowski, 1979; Siso, 1996;
Yang and Silva, 1995; Zall, 1984). The composition of different types of
whey is variable; approximate figures for the main components can
be found in the literature (see e.g. Kosikowski, 1979; Pesta et al., 2007;
Yang and Silva, 1995).

Cheese whey represents an important environmental problem
because of the high volumes produced and its high organic matter
content. As a general rule of thumb, tomake 1 kg of cheese about 9L of
whey are generated (Kosikowski, 1979). Theworldwheyproduction is
over 160 million tonnes per year (estimated as 9-fold the cheese
production), showing a 1–2% annual growth rate (OECD-FAO, 2008;
Smithers, 2008). Whey exhibits a biochemical oxygen demand (BOD)
of 30–50 g L−1 and a chemical oxygen demand (COD) of 60–80 g L−1.
Lactose is largely responsible for the high BOD and COD. Protein
recovery reduces the CODofwhey only by about 10 g L−1 (Domingues
et al., 1999a; Siso, 1996).
2. Whey utilization/valorisation

Earliest ways of whey disposal included piping into rivers, lakes
or the ocean, funnelling into caves, spreading over fields and feeding
into ruminants. Another option would be to discharge the whey into
lagoons for oxidation or into the municipal sewage system, but the
high BOD and COD of whey usually leads to an overload of the sys-
tem (Kosikowski, 1979; Smithers, 2008). Disposing of whey by these
means provides no valuable product, and is costly and labour de-
manding for the cheese manufacturer, who generally bears all the
direct costs of handling and transport. Therefore, in spite of the fact
that removal of whey from the premises releases pressure on the
cheese manufacturing plant (Kosikowski, 1979), these solutions are
not satisfactory. In order to develop integrated solutions for the cheese
whey problem, it must be considered as a resource and not only as a
waste effluent, in view of its large potential as a source of added value
products.

Siso (1996) reported that about 50% of total world cheese whey
production is treated and transformed into various food products. This
percentage will likely increase, due to continued research efforts in
the field of whey utilization together with the pressure exerted over
cheese and casein producers by aggravated legislations concerning
effluent disposal.

A large fraction of the whey that is processed is dried to produce
cheese whey powders (Kosikowski, 1979; Yang and Silva, 1995), there-
fore maintaining the quality of fresh whey for a longer period of time,
facilitating manipulation and transport (Siso, 1996). Whey powder is
mostly used for animal feeding but smaller quantities may be also used
in human foods, such as ice-creams, baked goods, cakes, sauces, milk
derivatives, etc (Siso, 1996).

The first step in most procedures for cheese whey valorisation
consists in the recovery of the protein fraction.Whey proteins represent
about 20% of the milk proteins, having a high nutritional value as well
as reported health benefits and therapeutic potential (Beaulieu et al.,
2006; Smithers, 2008; Yalçin, 2006). Separation of whey proteins is
typically achieved by ultrafiltration or diafiltration to produce whey
protein concentrates (WPC), which have many applications in the food
industry (Kosikowski, 1979; Siso, 1996; Smithers, 2008; Zall, 1984).
Whey proteins have also non-food uses, mainly in cosmetics and phar-
maceutical products (Audic et al., 2003).
During the processing of whey for the production of WPC, high
volumes of a lactose-rich stream, the permeate, are also obtained. The
permeate remains a major pollutant since it retains the lactose, which
representsmore than 70% of total whey solids and is largely responsible
for the whey polluting load. Therefore, the permeate creates disposal
problems, in terms of volumes produced and polluting load, almost
equal to the disposal of raw whey (Zall, 1984).

Lactose is the sugar present in the milk of most mammals. It is a
disaccharide formed by galactose and glucose and is chemically defined
as O-β-D-galactopyranosyl-(1-4)-β-D-glucose, C12H22O11 (Adam et al.,
2004; Gänzle et al., 2008; Yang and Silva, 1995). The solubility and
sweetness of lactose is low compared to other sugars, namely its hy-
drolysis products glucose and galactose, as well as fructose and sucrose
(Gänzle et al., 2008; Zadow, 1984). Most of the lactose produced is
recovered from whey or whey permeate by a process involving crys-
tallisation (for details see Yang and Silva, 1995; Gänzle et al., 2008).
The major uses for lactose include food ingredient, ingredient in in-
fant formula, filler or coating agent for tablets in the pharmaceutical
industry and raw material for the production of added value lactose
derivatives (such as lactulose, lactitol, lactobionic acid, lactosyl urea,
galacto-oligosaccharides and lactosucrose) (Audic et al., 2003; Gänzle
et al., 2008; Yang and Silva, 1995; Zadow, 1984). Hydrolysed lactose
solutionspossess greater sweeteningpower than lactose andhave food-
related uses, particularly in the confectionery and ice-cream industries
replacing sucrose or starch syrup (Siso, 1996; Zadow, 1984). The tech-
nology to produce hydrolysed lactose syrup is well developed and is
used, for instance, to produce lactose-hydrolysed dairy products for
lactose-intolerant individuals (Gänzle et al., 2008). Chemical hydrolysis
at low pH (b1.5) and high temperature (up to 150 °C) is possible, but
enzymatic hydrolysis is usually the method of choice, with enzymes
from Aspergillus and Kluyveromyces species being the most commonly
used (Gänzle et al., 2008; Yang and Silva, 1995; Zadow, 1984).

Another major application for the lactose in whey or permeate
involves its use as a substrate for the production of valuable compounds
by fermentation. The classical examples are ethanol (see below) and
single cell protein (SCP) production in yeast-based bioprocesses, al-
though biotechnologists have proposed a multitude of alternative bio-
products (Audic et al., 2003;Pesta et al., 2007; Siso, 1996;Yang andSilva,
1995; Zadow, 1984). Among those bio-products are: biogas (methane),
organic acids (acetic, propionic, lactic, citric, gluconic, itaconic, and
gibberelic), amino acids (glutamic, lysine, and threonine), vitamins
(B12 and B2, or cobalamins and riboflavin, respectively), polysacchar-
ides (xanthan gum, dextran, phosphomannan, pullulan, and gellan), oils
(lipids), enzymes (β-galactosidase and polygalactorunase) and other
compounds (fructose-diphosphate, 2,3-butanediol, calcium magne-
sium acetate, ammonium lactate, butanol, and glycerol). Lactose can
beuseddirectly by lactose-consumingmicroorganisms or, alternatively,
pre-hydrolysed lactose solutions may be used as substrate by lactose-
negative microorganisms. Large whey surplus together with the need
for cheap and largely available substrates and, above all, the rapid
advances in microbial biotechnology are likely to prompt further
exploitation of whey lactose as fermentation feedstock to obtain value-
added products.
3. Fermentation of lactose to ethanol

Alcoholic fermentation is an interesting alternative for the bio-
remediation of the polluting permeate that remains after separation
of the whey proteins. The fermentation of whey lactose to ethanol,
particularly using yeasts, has been frequently referred in the liter-
ature, since at least the 1940s (see e.g. Rogosa et al., 1947; Webb
and Whittier, 1948; Whittier, 1944 and references therein). Although
the yeasts that assimilate lactose aerobically are widespread, those
that ferment lactose are rather rare (Fukuhara, 2006), including e.g.
Kluyveromyces lactis, K. marxianus, and Candida pseudotropicalis.
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The conversion of the lactose in cheese whey or whey permeate
into fuel ethanol is hardly economically competitivewith the currently
established processes, using cane sugar and cornstarch as substrates,
orwith emerging second generation technologies using lignocellulosic
biomass as raw material. However, being a waste product represents
an advantage of whey over food-related fermentation feedstocks, such
as corn, for ethanol production. Moreover, the availability of diverse
solutions for whey bioremediation is valuable, so that each dairy
company can evaluate, according to its own specificities, the best
way to deal with the environmental problem created by whey sur-
plus. Finally, whey ethanol is potable, and therefore can find proper
markets, e.g. in food and beverages, pharmaceutical and cosmetic
industries.

It is noteworthy that the amounts of lactose available are rather
significant. As a simple exercise, if we take into account an annual
world production of 160 million tonnes of whey (OECD-FAO, 2008)
with 5% lactose this means 8 million tonnes of lactose. Some authors
have estimated that, over the past 50 years, half of the worldwide
whey production has not been transformed into sub-products but
disposed of as waste effluent (Becerra et al., 2001a; Siso, 1996); for
instance, lactose surplus (i.e. the lactose not used for whey products)
in the United States during 2006 was estimated to be above 55%
of total lactose in the whey produced (Ling, 2008). Therefore, the
amount of lactose available for ethanol production may be as high as
4 million tonnes per year, which, considering a conversion efficiency
of 85%, could yield about 2.3 million m3 of ethanol. This is roughly
3.5% of the total world production of ethanol in 2008, which was
around 65 million m3 (RFA, 2009).

Direct fermentation of whey or whey permeate to ethanol is
generally not economically feasible because the low lactose content
results in low ethanol titre (2–3% v/v), making the distillation process
too expensive. Thus, it is important to start the fermentationwith high
concentration of lactose, which can be achieved by concentrating the
whey, e.g. by ultrafiltration and/or reverse osmosis processes, in order
to obtain high ethanol titre at the end of fermentation. Alternatively,
the sugar concentration can be increased by mixing the native whey
with high-sugar condensed materials such as molasses, although in
such sugar mixtures the yeast may exhibit catabolite repression and
not be able to consume lactose (Oda and Nakamura, 2009). Besides,
fermentation must be fast to maximise the ethanol productivity of the
process. Nevertheless, in the design of a process for ethanol produc-
tion from whey a compromise must be made between maximisation
of ethanol titre/productivity and minimisation of residual sugar con-
centration in the effluent, since the purpose of the process is usually
also waste treatment.

During the last 30 years, many authors have addressed the produc-
tion of ethanol from lactose, mostly referring the yeasts Kluyveromyces
fragilis, K. marxianus and C. pseudotropicalis. Indeed, in themost recent
edition of The Yeasts, a taxonomic study (Kurtzman and Fell, 1998)
these are all reported as synonyms of K. marxianus (Lachance, 1998).
K. fragilis and K. marxianus have been considered separate species for
a long time, but K. fragilis is now included in the K. marxianus species
(Fonseca et al., 2008; Lachance, 1998). C. pseudotropicalis (synonym
of Candida kefyr) is the anamorph (asexual) form of K. marxianus
(Lachance, 1998). Nevertheless, we will hereafter maintain the dis-
tinction, using the designation originally given in each report. Besides
scientific reports, there are a fewcases of industrial plants that produce
ethanol from whey or permeate, mostly using Kluyveromyces yeasts.
The use of S. cerevisiae for lactose fermentation has also attractedmuch
attention. The initial strategies involved the fermentation of pre-
hydrolysed lactose solutions, i.e. mixtures of glucose and galactose.
Furthermore, the construction of lactose-consuming S. cerevisiae
strains has been attempted by several strategies, such as protoplast
fusion, expression of heterologous ß-galactosidases secreted to the
extracellularmediumor simultaneous expression of the permease and
ß-galactosidase of K. lactis.
One important difference between Kluyveromyces species and S.
cerevisiae is glucose repression (also known as catabolite repression;
Gancedo, 1998) of galactose utilization. Some mechanisms of glucose
repression of the GAL genes are shared by S. cerevisiae and K. lactis but
there are also fundamental differences (for an extensive review see
Rubio-Texeira, 2005). In fact, the expression of the GAL/LAC genes
is not repressed by glucose in all K. lactis strains, and the extent of
catabolite repression in glucose-repressible strains is less pronounced
than in S. cerevisiae (Rubio-Texeira, 2005). This is expected to be also
the case in related species, such as K. marxianus, which are mostly
adapted to environments containing lactose and galactose. The char-
acteristics of the GAL genes promoters likely contribute to the less
pronounced glucose repression of galactose utilization in K. lactis
compared to S. cerevisiae. First, there are several binding sites for the
glucose-triggered transcriptional repressor Mig1p in the S. cerevisiae
GAL promoters, while in K. lactis there is only one corresponding
binding site (in the GAL1 promoter) (Rubio-Texeira, 2005). Moreover,
in K. lactis the expression of the GAL4 gene is autoregulated, since
its promoter contains a binding site to its own gene product, Gal4p,
which encodes a transcriptional activator involved in the regulation
of the GAL genes. Conversely, the S. cerevisiae GAL4 promoter does not
have any Gal4p binding site (Rubio-Texeira, 2005). Increased dosages
of the activator Gal4p in K. lactis may alleviate glucose repression.

3.1. Kluyveromyces spp.

K. lactis is one of the most studied yeast species and has become a
model system for studies on molecular physiology of so-called “non-
conventional yeasts”, in particular comparative studieswith S. cerevisiae
(Breunig et al., 2000). The interest around K. lactis, namely regarding its
lactose metabolism, was initially motivated by academic questions
while biotechnological interest came much later (Fukuhara, 2006).
K. lactis is not commonly used for ethanol production, although it
has been exploited for other biotechnological applications such as the
production of heterologous proteins (for a review see van Ooyen
et al., 2006) namely using cheese whey as culture media (Maullu et al.,
1999). The ability of this yeast to metabolise lactose results from
the presence of a lactose permease (encoded by the LAC12 gene) and a
β-galactosidase (LAC4 gene) (Rubio-Texeira, 2006). β-galactosidase
hydrolyses lactose into glucose and galactose. Intracellular glucose
can enter glycolysis while galactose follows the Leloir pathway. The
metabolism of lactose and galactose are closely related. The GAL/LAC
systemofK. lactishasbeen studied indetail (for reviews seeBreunig et al.,
2000; Rubio-Texeira, 2005; Schaffrath and Breunig, 2000), particularly in
comparison with the model GAL/MEL regulon of S. cerevisiae.

Although K. lactis is considered the model organism in the
Kluyveromyces genus, K. marxianus has received much attention re-
garding its biotechnological potential, motivated by some advantages
that it has when compared to K. lactis (Ribeiro et al., 2007; Fonseca
et al., 2008). K. marxianus isolates have originated from an enormous
variety of habitats, accounting for the species broad metabolic diver-
sity and consequent wide range of biotechnological applications
(Fonsecaet al., 2008). Although accumulatedknowledgeonK.marxianus
is much smaller and spread over many different strains, as opposed
to K. lactis, a considerable number of studies addressing biochemical,
metabolic and physiological aspects ofK.marxianus canbe already found
in the literature (for a review see Fonseca et al., 2008).

There are numerous reports of lactose/whey alcoholic fermenta-
tion using Kluyveromyces yeasts. The vast majority of such reports
mention the species K. marxianus and K. fragilis, which are currently
synonyms (see above).

Many authors have reported inhibitory effects and associated
problems in the fermentation of concentrated lactose/whey media,
particularly slow fermentations and high residual sugar when the
initial lactose concentration is increased above 100 to 150 g L−1, or in
some cases above 200 g L−1 (Dale et al., 1994; Gawel and Kosikowski,
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1978; Grubb and Mawson, 1993; Janssens et al., 1983; Kamini and
Gunasekaran, 1987; Ozmihci and Kargi, 2007c, d, e; Silveira et al.,
2005; Vienne and von Stockar, 1985; Zafar et al., 2005). These
problems have been commonly attributed to osmotic sensitivity
(due to the high lactose concentrations) and low ethanol tolerance
(Grubb and Mawson, 1993; Janssens et al., 1983; Vienne and von
Stockar, 1985; Zafar et al., 2005), as well as inhibition by high salts
concentration (Grubb and Mawson, 1993). The extent of such effects
seems to be strain-dependent, although the fermentation conditions,
in particular oxygen and other nutrients availability, may as well play
a key role in this regard. The implementation of fed-batch fermen-
tation systems may help circumvent the substrate (lactose and salts)
inhibition problems (Ozmihci and Kargi, 2007d), while ethanol inhi-
bition may be alleviated by nutritional supplementation of the medium
(Janssens et al., 1983). Alternatively, strain development programmes
may generate robust yeast strains with enhanced tolerance towards
osmotic and/or ethanol stresses. Such programmes may involve the
selection of naturally stress-tolerant isolates and/or metabolic engi-
neering for constructing strains with improved tolerance.

Limitation in the whey nutrient content has been a concern,
especially when fermenting high concentrations of lactose. Janssens
et al. (1983) reported a strong improvement in the fermentation
ability of K. fragilis when concentrated whey (200 g L−1 lactose)
already supplemented with 0.5% bacto-peptone was further supple-
mented with ergosterol and linoleic acid in Tween 80. Such lipid
addition resulted in a decrease in fermentation time from over 90 h to
less than 60 h. The exogenous lipids were taken up by the yeast and
probably incorporated in the cell membrane, which is in accordance
with the importance of sterols and unsaturated fatty acids for yeast
fermentative performance and ethanol tolerance (Aguilera et al.,
2006; Casey and Ingledew, 1986; Guimarães et al., 2006; You et al.,
2003). Other supplementations tested include ammonium sulphate,
urea or peptone (Mahmoud and Kosikowski, 1982), yeast extract,
vitamins and minerals (Vienne and von Stockar, 1985) and NH4Cl and
KH2PO4 salts (Kargi and Ozmihci, 2006).

The oxygen availability is another key factor affecting yeast per-
formance during fermentation. The oxygen supply must be sufficient to
meet the requirement for the biosynthesis of membrane lipids (sterols
and unsaturated fatty acids),without causing excessive yeast growth that
may reduce the ethanol yield. Silveira et al. (2005) investigated the effect
of oxygen level in the fermentation of whey permeate (with lactose
concentrations ranging between 1 and 240 g L−1) by K. marxianus.
Low oxygen levels favoured fermentative metabolism, leading to higher
ethanol volumetric productivities inhypoxic, followedbyanoxic and then
aerobic conditions. The maximum ethanol concentrations produced and
the ethanol yields on lactose were higher in anoxic and hypoxic con-
ditions than in aerobic conditions. Other previous studies have also
addressed the influence of oxygen on the patterns of energy metabolism
of K. marxianus cultivated in lactose (Castrillo et al., 1996; Castrillo and
Ugalde, 1993). Similarly, the distribution between respiratory and fer-
mentative metabolism in K. lactis has also been intensively studied
particularly in respect to the effect of oxygen availability (Breunig et al.,
2000; Goffrini et al., 2002; Siso et al., 1996; Snoek and Steensma, 2006).

One significant advantage of some K. marxianus strains consists in
their ability to grow and ferment at elevated temperatures (N40 °C), a
property that enables cost savings (mainly due to reduced cooling cost)
in ethanol production bioprocesses (Fonseca et al., 2008). Ther-
motolerant K. marxianus strains have been reported to be capable of
growing aerobically at 52 °C on lactose and whey permeate (Banat and
Marchant, 1995). One of such strains (IMB3) was shown to produce
ethanol from lactose media at 45 °C (Brady et al., 1994, 1995; Brady
et al., 1997; Kourkoutas et al., 2002a). Recently, Nonklang et al. (2008)
reported a thermotolerant K. marxianus strain that produced significant
amounts of ethanol at 45 °C from glucose but not from lactose media.

Most studies of lactose/whey fermentation with Kluyveromyces
spp. have been done in batch systems (Bothast et al., 1986; Castrillo
et al., 1996; Gawel and Kosikowski, 1978; Grubb and Mawson, 1993;
Janssens et al., 1983; Kargi and Ozmihci, 2006; Kourkoutas et al.,
2002a; Longhi et al., 2004; Ozmihci and Kargi, 2007a, e; Silveira et al.,
2005; Zafar and Owais, 2006; Zafar et al., 2005). Nevertheless,
continuous operation systems have also been widely exploited using
different bioreactor designs and, in most cases, using yeast immobi-
lization strategies for obtaining high cell-densities (Cheryan and
Mehaia, 1983; Gianetto et al., 1986; Hahn-Hägerdal, 1985; Janssens
et al., 1984; Kleine et al., 1995; Linko et al., 1981; Ozmihci and Kargi,
2007b, c, 2008; Teixeira et al., 1990). Some authors have as well
reported fed-batch fermentation systems (Ferrari et al., 1994; Grba
et al., 2002; Ozmihci and Kargi, 2007d). Table 1 outlines a compilation
of the ethanol volumetric productivities and maximum ethanol titres
calculated from the data shown in some of the studies on lactose/whey
fermentation by Kluyveromyces yeasts.

The development of kinetic models to describe fermentation of
lactose/whey byKluyveromyces spp. has received considerable attention
(Castrillo and Ugalde, 1993; Longhi et al., 2004; Ozmihci and Kargi,
2007b, e; Wang and Bajpai, 1997a, b; Zafar et al., 2005; Zertuche
and Zall, 1985). Such mathematical models are essential tools for the
optimization and industrial implementation of fermentation systems.

Improvements in lactose fermentation by using Kluyveromyces
yeasts in co-culture with lactose-negative microorganisms have been
reported, particularly with S. cerevisiae (Guo et al., 2010) and with the
ethanologenic bacteria Zymomonas mobilis (Gunasekaran and Kamini,
1991; Kamini and Gunasekaran, 1987, 1989).

Besides potable ethanol, the production of alcoholic beverages
from whey has also been pointed as an alternative (Holsinger et al.,
1974), including whey wines (Kosikowski, 1979; Kosikowski and
Wzorek, 1977), low alcohol content drinks (Kourkoutas et al., 2002a;
Kourkoutas et al., 2002b) and distilled drinks (Dragone et al., 2009).

3.2. C. pseudotropicalis (C. kefyr)

Some studies have selected C. pseudotropicalis strains as the most
efficient microorganisms for the conversion of lactose/whey to ethanol
among lactose-fermenting yeasts (Ghaly and El-Taweel, 1995b;
Izaguirre and Castillo, 1982; Szczodrak et al., 1997). Similarly to
reported for Kluyveromyces spp., C. pseudotropicalis strains are inhibited
by high lactose concentrations and ethanol (Ghaly and El-Taweel,
1995a; Moulin et al., 1980, 1981; Szczodrak et al., 1997). Ghaly and El-
Taweel selected C. pseudotropicalis ATCC 8619 among nine lactose-
fermenting yeasts (Ghaly and El-Taweel, 1995b). These authors have
investigated several aspects of whey fermentations using this strain,
namely the effect of nutrient (ammonium sulphate, dipotassium hy-
drogen phosphate and yeast extract) supplementation (Ghaly and El-
Taweel, 1995b) and the effect of increasing lactose concentration (50 to
200 g L−1) and micro-aeration (0.05 to 0.15 v.v.m.) in batch fermenta-
tions (Ghaly and El-Taweel, 1995a). Furthermore, they have tested the
strain in a continuous fermentation system with feed lactose concen-
trations ranging from 50 to 150 g L−1 and retention times varying
between 18 and 42 h (Ghaly and El-Taweel, 1997a), using the data to
develop a kinetic model (Ghaly and El-Taweel, 1997b). C. pseudotropi-
calis strains have also been used in other systems for ethanol production
from lactose/whey, including extractive fermentation (Jones et al.,
1993) and coupled fermentation–pervaporation processes (Shabtai and
Mandel, 1993). The ethanol volumetric productivities and maximum
ethanol titres obtained in selected studies on lactose/whey fermentation
by C. pseudotropicalis are shown in Table 1.

3.3. Saccharomyces cerevisiae

S. cerevisiae is usually the first choice for industrial processes
involving alcoholic fermentation. The reasons for this preference
include: (1) its good fermentative capacity and ethanol tolerance,
allowing to produce up to 20% (v/v) ethanol (Antoni et al., 2007; Cot



Table 1
Studies on ethanol production from lactose/whey media by Kluyveromyces spp. and Candida pseudotropicalis.

Organism Media Bioreactor/operation type Ethanol
productivity
(g·L·h−1)

Ethanol
titre
(g·L−1)

Reference

Kluyveromyces fragilis Concentrated whey permeate (24% lactose) Batch (static 3 L bottles capped
by air locks filled with glycerol)

0.2 80 Gawel and Kosikowski (1978)

K. fragilis Concentrated whey permeate (24% lactose)
with reduced ash

14 L Bioreactor/Batch 0.6 72 Mahmoud and Kosikowski
(1982)

K. fragilis Rich media (peptone, yeast extract,
malt extract)

Membrane recycle bioreactor
system (very high cell density)

Cheryan and Mehaia (1983)

5% lactose Batch 3.0 23
5% lactose Continuous 65 10
15% lactose Continuous 70 70
15% lactose Continuous 240 40

K. fragilis Deproteinised whey powder+0.5% peptone Batch (1 L stirred flasks fitted
with water traps)

Janssens et al. (1983)

(15% lactose, no lipid supplements) 2.0 71
(20% lactose, medium supplemented with
ergosterol, linoleic acid and Tween80)

1.4 86

K. fragilis Deproteinised whey powder+0.5% peptone
(10% lactose)

6 L Bioreactor/Continuous
process with cell recycling

7.1 47 Janssens et al. (1984)

K. fragilis immobilized
in calcium alginate

Concentrated whey permeate (15% lactose) Packed-bed column/Continuous 1.1 13 Hahn-Hägerdal (1985)

K. fragilis Yeast extract/Peptone/Lactose (YPL) 0.3 L Bioreactor/Fed-batch 1.5 80 Farahnak et al. (1986)
K. fragilis immobilized
in charcoal pellets

Concentrated whey solution (15% lactose) Tubular reactor/Continuous 17.2 18 Gianetto et al. (1986)

Kluyveromyces marxianus Semi-synthetic medium 1.2 L Air-lift bioreactor
(external loop)/Continuous

Teixeira et al. (1990)

(5.7% lactose) 24.4 29
(9.4% lactose) 15.2 45

K. fragilis, free cells Complete medium (20% lactose) Batch 0.74 53 Gunasekaran and Kamini
(1991)

K. fragilis immobilized
in calcium alginate

Complete medium (20% lactose) Batch 0.88 63

Mix of K. fragilis and Z. mobilis
immobilized in calcium alginate

Complete medium (20% lactose) Batch 1.0 72

K. fragilis Semi-synthetic medium (20% lactose) 20 L Bioreactor/Batch 2.1 72 Ryu et al. (1991)
K. fragilis Concentrated whey permeate (10% lactose) Fed-batch 3.3 64 Ferrari et al. (1994)
K. fragilis immobilized in
plant material

Deproteinised whey (5.5% lactose) Fluidized-bed reactor/Continuous 14.5 20 Kleine et al. (1995)

K. marxianus Deproteinised whey+yeast extract and salts
(6.5% lactose)

5 L Bioreactor/Batch 0.52 26 Rosenberg et al. (1995)

K. marxianus Deproteinised whey+yeast extract and salts
(10% lactose)

2 L Bioreactor/Batch 3.1 43 Grba et al. (2002)

2 L Bioreactor/Fed-batch 4.9 59
K. marxianus Whey permeate solution (17% lactose) Batch (1 L stirred flasks) 1.0–1.5 76–80 Silveira et al. (2005)

Hypoxic and anoxic conditions
K. marxianus Concentrated whey powder solution

(15% lactose)
Shake-flasks 0.4 80 Kargi and Ozmihci (2006)

K. marxianus Concentrated whey powder solution
(10% lactose)

5 L Bioreactor/Continuous 0.74 32 Ozmihci and Kargi (2007b)

K. marxianus Concentrated whey powder solution
(10–12.5% lactose)

5 L Bioreactor/Continuous 0.54 29 Ozmihci and Kargi (2007c)

K. marxianus Concentrated whey powder solution
(12.5% lactose)

5 L Bioreactor/Repeated
Fed-batch operation

5.3 63 Ozmihci and Kargi (2007d)

K. marxianus Concentrated whey powder solution
(7.5% lactose)

Shake-flasks 0.55 40 Ozmihci and Kargi (2007e)

K. marxianus immobilized
in olive pits

Whey powder solution (5% lactose) Packed-bed column/Continuous 0.4 20 Ozmihci and Kargi (2008)

Mix of K. marxianus and S. cerevisiae
immobilized in calcium alginate

Concentrated whey powder solution
(10% lactose)

Shake-flasks
(in an anaerobic shaker)

0.88 42 Guo et al., 2010

Candida pseudotropicalis Cheese whey+reagent grade lactose
(10–20% lactose)

5 L Bioreactor/Batch 0.7–1.0 40–45 Ghaly and El-Taweel (1995a)

C. pseudotropicalis Cheese whey+yeast extract+lactose
(to 15%)

5 L Bioreactor/Continuous 1.4 58 Ghaly and El-Taweel
(1997a,b)

C. pseudotropicalis Semi-synthetic medium (12% lactose) Shake-flasks 1.2 58 Szczodrak et al. (1997)
Deproteinized whey (10% lactose) Shake-flasks 0.85 41

379P.M.R. Guimarães et al. / Biotechnology Advances 28 (2010) 375–384
et al., 2007); (2) its GRAS (generally regarded as safe) status; (3) its
capacity to grow rapidly under anaerobic conditions, which helps
circumventing the oxygenation problems inherent to large-volume
industrial fermentations (Snoek and Steensma, 2007); (4) the ex-
tensive industrial and scientific knowledge accumulated that makes
it one of the best studied organisms; (5) the possibility to use its
biomass as animal feed (co-product), which is important for industrial
process economics (Bai et al., 2008). However, wild S. cerevisiae
strains are unable to metabolise lactose. Nevertheless, S. cerevisiae
can utilize galactose, which is taken up by a permease encoded by the
gene GAL2 (Nehlin et al., 1989). Once inside the cell, catabolism of
galactose proceeds through the Leloir pathway.

Thus, the first applications of S. cerevisiae in whey fermentations
involved the pre-hydrolysis of lactose and further fermentation of
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the resulting mixture of glucose and galactose. There are two main
drawbacks associated with such strategy. On the one hand, it re-
quires a lactose hydrolysis step, most often an enzymatic process
usingß-galactosidase. On theother hand, due to the catabolite repression
phenomenon (Gancedo, 1998), S. cerevisiae consumes glucose preferen-
tially to galactose, resulting, in most cases, in prolonged fermentations
with a diauxic lag after glucose exhaustion and before galactose fer-
mentation, which is, in general, rather slow (Mehaia and Cheryan, 1990;
O'Leary et al., 1977). In an attempt to circumvent this later problem,
Bailey et al. (1982) used 2-deoxyglucose as a selection agent to iso-
late catabolite repression-resistant mutants of an industrial S. cerevisiae
strain, which were capable of utilizing glucose and galactose simulta-
neously. One of those mutants (strain SR), fermented completely a
mixture of 10% glucose plus 10% galactose in less than 37 h, producing
about 90 g L−1 of ethanol (Table 2). This mutant was also tested in a
continuous fermentation systemwith cell recycling, attaining an ethanol
productivity of 13.6 g L−1h−1 from feed medium containing an equi-
molar mixture of glucose and galactose (15% total sugar) under con-
ditions permitting a residual sugar concentration below 1% (Terrell et al.,
1984) (Table 2). Recently, Oda and Nakamura (2009) have also isolated
2-deoxyglucose-resistant mutants of K. marxianus. One of thosemutants
(KD-15) was able to produce ethanol from a mixture of beet molasses
(containing sucrose) and cheese whey, proving to be insensitive to ca-
tabolite repression in contrast to the parental strain (NBRC 1963).

Some authors have proposed the use of a biocatalyst consisting of
ß-galactosidase co-immobilized with S. cerevisiae cells as an alternative
for whey fermentations (Hahn-Hägerdal, 1985; Roukas and Lazarides,
1991). Hahn-Hägerdal (1985) reported that S. cerevisiae co-immobilized
with ß-galactosidase in calcium alginate yielded higher ethanol titre
Table 2
Studies on ethanol production from lactose/whey media by Saccharomyces cerevisiae.

Organism Media Bio

S. cerevisiae (catabolite
repression-resistant mutant)

Rich medium containing glucose/galactose
mixtures (equivalent to 20% lactose hydrolysate)

Bat
fitt

S. cerevisiae (catabolite
repression-resistant mutant)

Rich medium containing glucose/galactose
mixtures (equivalent to 15% lactose hydrolysate)

6 L
pro

S. cerevisiae co-immobilised
with ß-galactosidase

Concentrated whey permeate (15% lactose) Pac

S. cerevisiae–K.fragilis hybrid
(protoplast fusion)

Yeast extract/Peptone/Lactose (YPL) 0.3

S. cerevisiae–K.fragilis hybrid
(protoplast fusion)

Semi-synthetic medium (20% lactose) 20

Autolytic S. cerevisiae
expressing E. coli lacZ

Yeast Nitrogen Base/Lactose Sha

S. cerevisiae secreting
A.niger β-galactosidase

YPL; synthetic lactose medium Sha

Autolytic S. cerevisiae
expressing E. coli lacZ

YPL+whey 2 L

S. cerevisiae plus permeabilized
K. marxianus

Deproteinised whey+yeast extract and
salts (6.5% lactose)

5 L

S. cerevisiae expressing
K. lactis LAC4 and LAC12

Synthetic lactose (2.2%) medium 2 L

S. cerevisiae expressing
K. lactis LAC4 and LAC12

Semi-synthetic lactose (5%) medium Sha

6 L
S. cerevisiae expressing
K. lactis LAC4 and LAC12

Cheese whey permeate

(5% lactose) Sha
(10% lactose) 2 L
(5% lactose) 6 L

S. cerevisiae secreting
A.niger β-galactosidase

Semi-synthetic lactose (5%) medium 2 L

S. cerevisiae secreting
A.niger β-galactosidase

Semi-synthetic lactose (5%) medium 6 L

S. cerevisiae expressing
K. lactis LAC4 and LAC12

Concentrated whey powder solution
(15% lactose)

2 L

S. cerevisiae expressing
K. lactis LAC4 and LAC12

Buffered defined mineral medium
(15% lactose)

Sha
(52 g L−1) and productivity (4.5 g L−1h−1) in continuous concentrated
whey (15% substrate) fermentation, as compared to immobilized K.
fragilis cells (ethanol titre of 13 g L−1 and productivity of 1.1 g L−1h−1)
(Tables 1 and 2). A similar biocatalyst has been applied in a hybrid
system coupling whey fermentation with a pervaporation module for
ethanol separation (Lewandowska and Kujawski, 2007; Staniszewski
et al., 2009). Rosenberg et al. (1995) used permeabilized K. marxianus
cells as the source of ß-galactosidase for simultaneous hydrolysis of
lactose in concentratedwheyand fermentationby S. cerevisiae, obtaining
enhanced ethanol productivity as compared todirect fermentationusing
K. marxianus (see Tables 1 and 2).

One of the first approaches to create Lac+ (lactose-consuming)
S. cerevisiae consisted in the generation of hybrid strains with
Kluyveromyces spp. by protoplast fusion. Taya et al. (1984) obtained a
stable hybrid between polyploid strains of saké yeast (S. cerevisiae) and
K. lactis. The fusant was able to ferment lactose, producing more ethanol
and at higher rate than the K. lactis parental strain. Farahnak et al. (1986)
obtained fusants between S. cerevisiae and K. fragilis, one of which was
capable of producing about 13% (v/v) ethanol in YP medium to which
lactose was fed periodically, while the parent K. fragilis strain produced
only about 10% (v/v) ethanol (Tables 1 and 2). Ryu et al. (1991) also
constructed a S. cerevisiae–K. fragilis fusant whose lactose fermenta-
tion performance was better than the K. fragilis parental strain (Tables 1
and 2). Moreover, the ethanol tolerance of the fusant was increased as
compared to K. fragilis, whichwas attributed to a higher unsaturated fatty
acids content, particularly linoleic acid (Ryu et al., 1991). More recently,
protoplasts fusion was also used to produce hybrids of S. cerevisiae and
K. lactis that proved able to ferment lactose in sweet and salted whey
(Tahoun et al., 1999, 2002).
reactor/operation type Ethanol
productivity
(g·L·h−1)

Ethanol
titre
(g·L−1)

Reference

ch (0.5 L stirred flasks
ed with water traps)

2.3 90 Bailey et al. (1982)

Bioreactor/Continuous
cess with cell recycling

13.6 70 Terrell et al. (1984)

ked-bed column/Continuous 4.5 52 Hahn-Hägerdal (1985)

L Bioreactor/Fed-batch 1.3 105 Farahnak et al. (1986)

L Bioreactor/Batch 2.4 82 Ryu et al. (1991)

ke-flasks 0.1–0.2 18 Porro et al. (1992b)

ke-flasks; 2 L Bioreactor/Batch 0.14–0.6 30 Ramakrishnan and
Hartley (1993)

Bioreactor/Batch/Fed-batch 1.0 9 Compagno et al. (1995)

Bioreactor/Batch 1.0 30 Rosenberg et al. (1995)

Bioreactor/Batch 0.3 4 Rubio-Texeira et al. (1998)

ke-flasks 0.45 16 Domingues et al. (1999a)

Air-lift bioreactor/Continuous 11.0 20
Domingues et al. (2001)

ke-flasks 0.68 21
Bioreactor/Batch 1.8 53
Air-lift bioreactor/Continuous 10.0 20
Bioreactor/Batch 1.0 25 Domingues et al. (2002)

Air-lift bioreactor/Continuous 9.0 20 Domingues et al. (2005)

Bioreactor/Batch 0.46 55 Guimarães et al. (2008a)

ke-flasks 1.5–2.0 63 Guimarães et al. (2008c)
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The possibility of gene transfer using recombinant DNA technology
opened new opportunities to enlarge the spectrum of sugars that can
be metabolised by S. cerevisiae. Efforts were therefore made to endow
S. cerevisiae strains with the ability to ferment lactose. One of the
strategies consisted in the construction of recombinant S. cerevisiae
strains that secrete β-galactosidase to the medium. This approach
allows production of the enzyme, which may be recovered from
the cultivation broth, along with lactose fermentation. The extracel-
lular β-galactosidase from A. niger (gene lacA) has been particularly
exploited in this respect (Kumar et al., 1992; Ramakrishnan and
Hartley, 1993), namely by our research group (Domingues et al.,
2005; Domingues et al., 2004; Domingues et al., 2000a; Domingues
et al., 2002; Oliveira et al., 2007). We have constructed flocculent S.
cerevisiae strains that express the gene lacA from episomal plasmids
(Domingues et al., 2000a; Domingues et al., 2002) or in which the
gene was integrated in the genome (Oliveira et al., 2007). Together
with the secretion of high amounts of β-galactosidase, these strains
produced ethanol from lactose with close to theoretical yields in batch
(Domingues et al., 2002) and continuous (Domingues et al., 2005)
fermentations (Table 2). S. cerevisiae expressing and secreting K. lactis
β-galactosidase have also been reported (Becerra et al., 2001b;
Becerra et al., 2001c). In addition, strategies based on the release of
intracellular heterologous β-galactosidase (e.g. from E. coli or K. lactis)
by other means than secretion have been designed. One of those
strategies consisted in the transformation of S. cerevisiae with a
multicopy expression vector bearing both the β-galactosidase gene
from E. coli (LacZ) and the S. cerevisiae GAL4 gene (Compagno et al.,
1995; Porro et al., 1992b). The overproduction of Gal4p caused lysis
of a fraction of the cells, resulting in the release of β-galactosidase
into the medium (Porro et al., 1992b). The authors have further
characterized this GAL4-induced cell lysis phenomenon, showing
that lysis was preceded by a loss of the plasma membrane integrity
and occurred in a specific subpopulation of cells (the parent cells),
independently of the genealogical age, growth phase conditions and
cell cycle progression (Martegani et al., 1993). Other approaches used
to achieve controlled release of β-galactosidase to themedium include
the use of thermosensitive autolytic mutants (Becerra et al., 1997;
Becerra et al., 2004) and cell permeabilization with toluene or ethanol
(Compagno et al., 1993). A strain secreting E. coli β-galactosidase to
the periplasmic space was also reported (Porro et al., 1992a). The
main disadvantage of these extracellular hydrolysis approaches is the
potential catabolite repression problem associatedwith the utilization
of glucose–galactose mixtures as aforementioned. Interestingly, the
strain constructed by Porro et al. (1992b) did not display diauxic
growth. These authors have attributed the ability of the strain to
consume simultaneously glucose and galactose to the overproduction
of Gal4p, since this regulatory protein is also involved in the glucose
repression of the GAL genes (see above) and their preliminary ex-
periments suggested that high overexpression of GAL4 caused a dere-
pressed phenotype (Porro et al., 1992b).

The alternative strategy involves the simultaneous expression in
S. cerevisiae of a lactose permease and an intracellular β-galactosidase.
The Kluyveromyces systems, in particular LAC12 and LAC4 genes of K.
lactis, are a logical choice due to the phylogenetic proximity between
the two species. Sreekrishna and Dickson (1985) were the first to
construct Lac+ S. cerevisiae strains by transfer of the LAC12 and LAC4
genes of K. lactis, but the transformants obtained grew slowly in
lactose (doubling time in lactose minimal media of 6.7 h; Sreekrishna
and Dickson, 1985). Rubio-Texeira et al. (1998) engineered a fast-
growing Lac+ diploid S. cerevisiae strain expressing the K. lactis LAC12
and LAC4 genes. However, in lactose medium, the recombinant strain
obtained exhibited a respiro-fermentative metabolism similar to that
of K. lactis, with high biomass yield but low ethanol production
(Rubio-Texeira et al., 1998) (Table 2).

In our laboratory, a flocculent S. cerevisiae Lac+ strain expressing
LAC12 and LAC4 was constructed (Domingues et al., 1999b). The
original recombinant (NCYC869-A3/T1, or simply T1) grew slowly in
lactose (doubling time in lactose minimal media of 5 h), with low
ethanol yield (Domingues et al., 1999b). However, after an adaptation
period, where T1 was kept in liquid lactose medium, refreshed peri-
odically, an increase in growth rate and in ethanol specific production
rate in lactose was observed. That adapted strain was successfully
used in long-term continuous lactose fermentations in air-lift
bioreactor (Domingues et al., 1999a; Domingues et al., 2001) resulting
in high ethanol productivities from lactose (Table 2). The hydrody-
namics and rheology of the flocculated yeast in the bioreactor were
studied (Klein et al., 2005). Furthermore, a kinetic model describing
lactose fermentation was constructed using data obtained in batch
cultivations (Juraščík et al., 2006). Unexpectedly, the strain lost its
improved phenotype after storage at −80 °C: when the culture was
re-grown from −80 °C stocks the slow growth in lactose was again
observed. Thus, the adaptation period was needed even for an already
adapted culture of T1 that had been kept at−80 °C (Domingues et al.,
1999b). A stable evolved strain that derived from T1 by a long-term
evolutionary engineering experiment was further obtained and
named T1-E (Guimarães et al., 2008a). This evolved strain fermented
lactose faster with higher ethanol yield than the original recombinant
(non-adapted T1), also displaying improved flocculation. Physiolog-
ical andmolecular differences between T1 and T1-E were investigated
(Guimarães et al., 2008a), particularly using transcriptomic analysis
(Guimarães et al., 2008b), enlightening some of the underlying
mechanisms involved in the evolutionary adaptation of the recom-
binant to lactose fermentation. Specifically, twomolecular events that
targeted the LAC construct in the evolved strain were identified: a
large (1593 bp) deletion in the intergenic region between LAC4 and
LAC12 and a decrease of the plasmid copy number by about 10-fold
compared to that in the original recombinant T1. In K. lactis, the
unusually large intergenic region between LAC4 and LAC12 works as
the promoter for the divergent transcription of both the LAC genes
(Gödecke et al., 1991). Taken together, the experimental results
suggested that the intact promoter (endogenous K. lactis promoter)
was unable to mediate induction by lactose of the transcription of
LAC4 and LAC12 in the original recombinant T1, whereas the deletion
identified established transcriptional induction of both genes in the
evolved recombinant T1-E. It was therefore proposed that tuning of
the expression of the heterologous LAC genes in the evolved
recombinant was accomplished by interplay between the decreased
copy number of both genes and different levels of transcriptional
induction for LAC4 and LAC12, resulting from the changed promoter
structure (Guimarães et al., 2008a). Besides keeping an improved
stable lactose fermentation and highly flocculent phenotype, strain
T1-E was able to efficiently ferment high concentrations of lactose
to ethanol. In batch fermentations, it produced a maximum of 8%
(v/v) ethanol from mineral medium with 150 g L−1 lactose, with a
productivity of 1.5–2.0 g L−1h−1 (Guimarães et al., 2008c) (Table 2).
It was also able to ferment concentrated cheese whey (150 g L−1

lactose) producing 7% (v/v) ethanol, but the fermentation was much
slower and consequently productivity was low (0.46 g L−1L−1)
(Guimarães et al., 2008a) (Table 2). Nevertheless, we have observed
that supplementation of the whey with nutrient sources may im-
prove this productivity (unpublished results). The highly flocculent
phenotype of the strain makes it particularly interesting for appli-
cation in high cell density fermentations, which in general result in
enhanced process productivity. In continuous systems, particularly
with properly designed air-lift bioreactors, the flocculated biomass
can be easily accumulated in the bioreactor without the need of
immobilisation in a support (Domingues et al., 2000b). In addition,
there are a number of other important advantages for the industrial
application of flocculating yeasts, namely easy cell recycling for
repeated-batch operation and simplification of the downstream
processing, since flocculated cells may be easily separated from the
fermentation broth by sedimentation at the end of fermentation, as
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well as improved ethanol tolerance and cell viability (Zhao and Bai,
2009).

3.4. Industrial production of ethanol from whey

There are a few established industrial processes to produce ethanol
from whey, which has been done in some countries, namely Ireland,
New Zealand, United States and Denmark (Lyons and Cunningham,
1980; Pesta et al., 2007; Siso, 1996).

Carbery Milk Products (currently designated Carbery Group) from
Cork, Ireland, started the operation of an industrial-scale whey-to-
ethanol plant in 1978. The operation was intended for the production
of potable ethanol, but since 2005, the company has also been
supplying fuel ethanol to a petrol company in Ireland for E85 and E5
blends (Doyle, 2005; Ling, 2008). The pioneer Carbery process was
later adopted by plants in New Zealand and the United States (Ling,
2008). Currently, the Carbery plant operates with eleven cylindro-
conical fermentation vessels, using compressed air for agitation and
aeration. The whey permeate is fermented in batch mode for 12 to
20 h, depending on the initial concentration and yeast activity. The
yeast is recovered at the end of fermentation and reused a number of
times before it is discarded. Ethanol titres at the end of fermentation
are typically in the range 2.5–4.2% (v/v). Following fermentation, a
continuous distillation process is used. It is noteworthy that potable
ethanol and fuel ethanol have different quality requirements and
therefore there may be some differences in the production process
(for short descriptions of the Carbery process see Pesta et al., 2007;
Ling, 2008). Carbery produces about 11 thousand tonnes of ethanol
per year (Doyle, 2005). Up to 2005, the main markets were beverages,
pharmaceutical and industrial (printing inks, etc.) (Doyle, 2009).

In New Zealand, Anchor Ethanol, a subsidiary of the dairy Fonterra
Cooperative Group, operates three whey-to-ethanol plants producing
around 17 million litres of ethanol per year (Thiele, 2005). Anchor
produces eight different ethanol grades, from potable ethanol for
beverages to anhydrous alcohol for fuels (Thiele, 2005). The main
markets have been pharmaceutical, cosmetics, industrial solvents
(including inks) as well as food and beverages, with a substantial
proportion of the production being exported (Hamilton, 1998; Thiele,
2005). Since 2007, Anchor has also been supplying fuel ethanol to a
petrol company in New Zealand for E10 blend (Ling, 2008). The
feedstock is deproteinatedwhey fromcaseinmanufacture or totalmilk
protein production (Hamilton, 1998), which is concentrated from 4%
to 8% lactose by reverse osmosis prior to fermentation (Gibson, 2006).
The concentrate is fermented for about 24 h using Kluyveromyces spp.,
attaining an ethanol titre of about 4%, followed by distillation and
water removal to different ethanol grades (Gibson, 2006).

In the United States, the Milbrew process was developed in 1972
to produce single-cell protein and ethanol from whey using K. fragilis
(Detroy and Julian, 1982; Lyons and Cunningham, 1980; Pesta et al.,
2007). The ethanol yield could be manipulated by changing the fer-
mentation conditions, such as the aeration rate (Lyons andCunningham,
1980). At least two other industrial-scale plants have been owned and
operated by dairy cooperatives in the United States to produce ethanol
from whey (Ling, 2008).

In Denmark, the Dansk Gaerings process was developed in the
1970s for the production of ethanol from whey permeate in a con-
tinuous system (Lyons and Cunningham, 1980; Pesta et al., 2007).

Recently, the dairy group Theo Müller announced the construction
of a facility in its Leppersdorf plant (Germany) aiming to produce
10 million litres per year of fuel bio-ethanol from whey by-products
(Müller, 2009).

4. Conclusions

Cheese whey is increasingly recognized has a source of added value
products, instead of just a waste stream with a high polluting load. In
particular, bioactive whey proteins and peptides are gradually finding
more applications not only in food products (including functional foods)
but also in thepharmaceuticalfield. The lactose-rich streamthat remains
after separation of proteins and other interesting bioactive components
is still a major environmental concern and solutions for its valorisation
are a need. Since there is a large surplus of lactose, its conversion to bulk
commodities such as bio-ethanol needs to be considered as a possible
solution, which indeed has been done for many years by dairies in
Ireland and New Zealand. Despite some examples of industrial im-
plementation, the fermentation technologymust be further improved in
order to enhance the attractiveness of whey-to-ethanol bioprocesses.
Specifically, although there has been a long research and development
effort in this field, there is still the need to developmicrobial strains that
ferment lactose to ethanol with very high efficiency. The engineering of
yeasts, particularly recombinant S. cerevisiae strains, for such lactose
fermentationprocesses has achieved promising results, which neednow
to be scaled-up to provide evidence of industrial significance. Flocculent
lactose-fermenting yeast strains can be used to design continuous high
cell density fermentation processes with high ethanol productivity.
Besides, the better strains obtained so far may be further improved by
using the metabolic engineering and systems biology toolboxes that
are becoming increasingly widespread. Moreover, such state-of-the-art
tools may be used to exploit alternative research lines, for instance for
enhancing the ethanol tolerance and lactose-to-ethanol conversion
yields of wild lactose-fermenting microorganisms, such as K. marxianus.

Acknowledgements

Thefinancial support of Fundação para a Ciência e a Tecnologia (FCT),
Portugal (project ProBioethanol PTDC/BIO/66151/2006) is acknowl-
edged. P. M. R. Guimarães acknowledges support from FCT, Portugal
(grants SFRH/BD/13463/2003 and SFRH/BPD/44328/2008).

References

Adam AC, Rubio-Texeira M, Polaina J. Lactose: the milk sugar from a biotechnological
perspective. Crit Rev Food Sci Nutr 2004;44:553–7.

Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC. Relationship between ethanol
tolerance, H+-ATPase activity and the lipid composition of the plasma membrane
in different wine yeast strains. Int J Food Microbiol 2006;110:34–42.

Antoni D, Zverlov VV, Schwarz WH. Biofuels from microbes. Appl Microbiol Biotechnol
2007;77:23–35.

Audic JL, Chaufer B, Daufin G. Non-food applications of milk components and dairy co-
products: a review. Lait 2003;83:417–38.

Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar
and starch feedstocks. Biotechnol Adv 2008;26:89-105.

Bailey RB, Benitez T, Woodward A. Saccharomyces cerevisiae mutants resistant to
catabolite repression: use in cheese whey hydrolysate fermentation. Appl Environ
Microbiol 1982;44:631–9.

Banat IM, Marchant R. Characterization and potential industrial applications of five
novel, thermotolerant, fermentative, yeast strains. World J Microbiol Biotechnol
1995;11:304–6.

Beaulieu J, Dupont C, Lemieux P. Whey proteins and peptides: beneficial effects on
immune health. Therapy 2006;3:69–78.

Becerra M, Rodriguez-Belmonte E, Esperanza Cerdan M, Gonzalez Siso MI. Engineered
autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production
of heterologous proteins in lactose media. J Biotechnol 2004;109:131–7.

Becerra M, Cerdan E, Siso MIG. Heterologous Kluyveromyces lactis β-galactosidase
production and release by Saccharomyces cerevisiae osmotic-remedial thermo-
sensitive autolytic mutants. Biochim Biophys Acta 1997;1335:235–41.

Becerra M, Baroli B, Fadda AM, Mendez JB, Siso MIG. Lactose bioconversion by calcium-
alginate immobilization of Kluyveromyces lactis cells. Enzyme Microbiol Technol
2001a;29:506–12.

BecerraM, PradoSD, CerdánE, SisoMIG.HeterologousKluyveromyces lactisβ-galactosidase
secretion by Saccharomyces cerevisiae super-secreting mutants. Biotechnol Lett
2001b;23:33–40.

Becerra M, Prado SD, Siso MI, Cerdan ME. New secretory strategies for Kluyveromyces
lactis β-galactosidase. Protein Eng 2001c;14:379–86.

Bothast RJ, Kurtzman CP, Saltarelli MD, Slininger PJ. Ethanol production by 107 strains
of yeasts on 5, 10, and 20% lactose. Biotechnol Lett 1986;8:593–6.

Brady D,Marchant R, McHale L, McHale AP. Production of ethanol by the thermotolerant
yeast Kluyveromyces marxianus IMB3 during growth on lactose-containing media.
Biotechnol Lett 1994;16:737–40.

Brady D, Marchant R, Mchale L, Mchale AP. The effects of Mn2+ on ethanol production
by Kluyveromyces marxianus IMB3 during growth on lactose-containing media at
45 °C. Biotechnol Lett 1995;17:233–6.



383P.M.R. Guimarães et al. / Biotechnology Advances 28 (2010) 375–384
Brady D, Nigam P, Marchant R, Singh D, McHale AP. The effect of Mn2+ on ethanol
production from lactose using Kluyveromyces marxianus IMB3 immobilized in
magnetically responsive matrices. Bioprocess Eng 1997;17:31–4.

Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero I, et al.
Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microbiol
Technol 2000;26:771–80.

Casey GP, IngledewWMM. Ethanol tolerance in yeasts. CRC Crit RevMicrobiol 1986;13:
219–80.

Castrillo JI, UgaldeUO. Patternsof energymetabolismandgrowth kineticsofKluyveromyces
marxianus in whey chemostat culture. Appl Microbiol Biotechnol 1993;40:386–93.

Castrillo JI, Kaliterna J, Weusthuis RA, van Dijken JP, Pronk JT. High-cell-density
cultivation of yeasts on disaccharides in oxygen-limited batch cultures. Biotechnol
Bioeng 1996;49:621–8.

Cheryan M, Mehaia MA. A high-performance membrane bioreactor for continuous
fermentation of lactose to ethanol. Biotechnol Lett 1983;5:519–24.

Compagno C, Tura A, Ranzi BM, Martegani E. Bioconversion of lactose whey to fructose
diphosphate with recombinant Saccharomyces cerevisiae cells. Biotechnol Bioeng
1993;42:398–400.

Compagno C, Porro D, Smeraldi C, Ranzi BM. Fermentation of whey and starch by
transformed Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 1995;43:822–5.

Cot M, Loret MO, Francois J, Benbadis L. Physiological behaviour of Saccharomyces
cerevisiae in aerated fed-batch fermentation for high level production of bioethanol.
FEMS Yeast Res 2007;7:22–32.

Dale MC, Eagger A, Okos MR. Osmotic inhibition of free and immobilized Kluyveromyces
marxianus anaerobic growth and ethanol productivity in whey permeate
concentrate. Process Biochem 1994;29:535–44.

Detroy RW, Julian G. Biomass conversion: fermentation chemicals and fuels. Crit Rev
Microbiol 1982;10:203–28.

Domingues L, Dantas MM, Lima N, Teixeira JA. Continuous ethanol fermentation of
lactose by a recombinant flocculating Saccharomyces cerevisiae strain. Biotechnol
Bioeng 1999a;64:692–7.

Domingues L, Teixeira JA, Lima N. Construction of a flocculent Saccharomyces cerevisiae
fermenting lactose. Appl Microbiol Biotechnol 1999b;51:621–6.

Domingues L, Onnela ML, Teixeira JA, Lima N, Penttila M. Construction of a flocculent
brewer's yeast strain secreting Aspergillus niger β-galactosidase. Appl Microbiol
Biotechnol 2000a;54:97-103.

Domingues L, Vicente AA, Lima N, Teixeira JA. Applications of yeast flocculation in
biotechnological processes. Biotechnol Bioprocess Eng 2000b;5:288–305.

Domingues L, LimaN, Teixeira JA. Alcohol production from cheesewhey permeate using
genetically modified flocculent yeast cells. Biotechnol Bioeng 2001;72:507–14.

Domingues L, Teixeira JA, Penttila M, Lima N. Construction of a flocculent Saccharomyces
cerevisiae strain secreting high levels of Aspergillus niger β-galactosidase. Appl
Microbiol Biotechnol 2002;58:645–50.

Domingues L, Oliveira C, Castro I, Lima N, Teixeira JA. Production of β-galactosidase
from recombinant Saccharomyces cerevisiae grown on lactose. J Chem Technol
Biotechnol 2004;79:809–15.

Domingues L, Lima N, Teixeira JA. Aspergillus niger β-galactosidase production by yeast
in a continuous high cell density reactor. Process Biochem 2005;40:1151–4.

Doyle A. Another step in biofuel supply. Irish Farmers Journal Interactive. 2005 (available
online bhttp://www.farmersjournal.ie/2005/1008/farmmanagement/crops/index.
shtmlN last visited: 1st June 2009).

Dragone G, Mussatto SI, Oliveira JM, Teixeira JA. Characterisation of volatile compounds
in an alcoholic beverage produced by whey fermentation. Food Chem 2009;112:
929–35.

Farahnak F, Seki T, Ryu DD, Ogrydziak D. Construction of lactose-assimilating and high
ethanol producing yeasts by protoplast fusion. Appl Environ Microbiol 1986;51:
362–7.

FerrariMD, Loperena L, Varela H. Ethanol production from concentratedwhey permeate
using a fed-batch culture of Kluyveromyces fragilis. Biotechnol Lett 1994;16:205–10.

Fonseca GG, Heinzle E, Wittmann C, Gombert AK. The yeast Kluyveromyces marxianus
and its biotechnological potential. Appl Microbiol Biotechnol 2008;79:339–54.

Fukuhara H. Kluyveromyces lactis—a retrospective. FEMS Yeast Res 2006;6:323–4.
Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev 1998;62:

334–61.
GänzleMG,HaaseG, JelenP. Lactose: crystallization, hydrolysis andvalue-addedderivatives.

Int Dairy J 2008;18:685–94.
Gawel J, Kosikowski FV. Improving alcohol fermentation in concentrated ultrafiltration

permeates of cottage cheese whey. J Food Sci 1978;43:1717–9.
Ghaly AE, El-Taweel AA. Effect of micro-aeration on the growth of Candida pseudotropicalis

andproduction of ethanol during batch fermentation of cheesewhey. Bioresour Technol
1995a;52:203–17.

Ghaly AE, El-Taweel AA. Effect of nutrient supplements addition on ethanol production
from cheesewheyusingCandida pseudotropicalisunder batch condition.Appl Biochem
Biotechnol 1995b;53:107–31.

Ghaly AE, El-Taweel AA. Continuous ethanol production from cheese whey fermenta-
tion by Candida pseudotropicalis. Energy Sources A Recover Util Environ 1997a;19:
1043–63.

Ghaly AE, El-Taweel AA. Kinetic modelling of continuous production of ethanol from
cheese whey. Biomass Bioenergy 1997b;12:461–72.

Gianetto A, Berruti F, Glick BR, Kempton AG. The production of ethanol from lactose in a
tubular reactor by immobilized cells of Kluyveromyces fragilis. Appl Microbiol
Biotechnol 1986;24:277–81.

Gibson A. Ethanol from whey. Sustainable Energy Conference, 26–27 July, Palmerston
North, New Zealand. 2006 (available online bhttp://energy.massey.ac.nz/Confer-
ence%202006/Ethanol%20from%20Whey%20-%20A%20Gibson.pdfN last visited:
2nd June 2009).
Gödecke A, Zachariae W, Arvanitidis A, Breunig KD. Coregulation of the Kluyveromyces
lactis lactose permease and β-galactosidase genes is achieved by interaction of
multiple LAC9 binding sites in a 2.6 kbp divergent promoter. Nucleic Acids Res
1991;19:5351–8.

Goffrini P, Ferrero I, Donnini C. Respiration-dependent utilization of sugars in yeasts: a
determinant role for sugar transporters. J Bacteriol 2002;184:427–32.

Grba S, Stehlik-Tomas V, Stanzer D, Vahcic N, Skrlin A. Selection of yeast strain
Kluyveromycesmarxianus for alcohol andbiomass production onwhey. ChemBiochem
Eng Q 2002;16:13–6.

Grubb CF, Mawson AJ. Effects of elevated solute concentrations on the fermentation of
lactose by Kluyveromyces marxianus Y-113. Biotechnol Lett 1993;15:621–6.

Guimarães PMR, Virtanen H, Londesborough J. Direct evidence that maltose transport
activity is affected by the lipid composition of brewer's yeast. J Inst Brew 2006;112:
203–9.

Guimarães PMR, François J, Parrou JL, Teixeira JA, Domingues L. Adaptive evolution of a
lactose-consuming Saccharomyces cerevisiae recombinant. Appl Environ Microbiol
2008a;74:1748–56.

Guimarães PMR, Le Berre V, Sokol S, François J, Teixeira JA, Domingues L. Comparative
transcriptome analysis between original and evolved recombinant lactose-
consuming Saccharomyces cerevisiae strains. Biotechnol J 2008b;3:1591–7.

Guimarães PMR, Teixeira JA, Domingues L. Fermentation of high concentrations of
lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Biotechnol
Lett 2008c;30:1953–8.

Gunasekaran P, Kamini NR. High ethanol productivity from lactose by immobilized cells
of Kluyveromyces fragilis and Zymomonas mobilis. World J Microbiol Biotechnol
1991;7:551–6.

Guo X, Zhou J, Xiao D. Improved ethanol production by mixed immobilized cells of
Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder
solution fermentation. Appl Biochem Biotechnol 2010;160:532–8.

Hahn-Hägerdal B. Comparison between immobilized Kluyveromyces fragilis and Saccharo-
myces cerevisiae coimmobilized with β-galactosidase, with respect to continuous
ethanol production from concentrated whey permeate. Biotechnol Bioeng 1985;27:
914–6.

Hamilton R. The manufacture of ethanol from whey. Chemical Processes in New
Zealand: New Zealand Institute of Chemistry; 1998 (available online bhttp://www.
nzic.org.nz/ChemProcesses/dairy/3H.pdfN last visited: 2nd June 2009).

Holsinger VH, Posati LP, de Vilbiss ED. Whey beverages: a review. J Dairy Sci 1974;57:
849–59.

Izaguirre ME, Castillo FJ. Selection of lactose-fermenting yeast for ethanol production
from whey. Biotechnol Lett 1982;4:257–62.

Janssens JH, Burris N, Woodward A, Bailey RB. Lipid-enhanced ethanol production by
Kluyveromyces fragilis. Appl Environ Microbiol 1983;45:598–602.

Janssens JH, Bernard A, Bailey RB. Ethanol from whey—continuous fermentation with
cell recycle. Biotechnol Bioeng 1984;26:1–5.

JonesTD,Havard JM,Daugulis AJ. Ethanol production from lactoseby extractive fermentation.
Biotechnol Lett 1993;15:871–6.

Juraščík M, Guimarães P, Klein J, Domingues L, Teixeira J, Markoš J. Kinetics of lactose
fermentation using a recombinant Saccharomyces cerevisiae strain. Biotechnol
Bioeng 2006;94:1147–54.

Kamini NR, Gunasekaran P. Simultaneous ethanol production from lactose by Kluyver-
omyces fragilis and Zymomonas mobilis. Curr Microbiol 1987;16:153–7.

Kamini NR, Gunasekaran P. Ethanol production from lactose by coculture of Kluyveromyces
fragilis and Zymomonas mobilis. J Ferment Bioeng 1989;68:305–9.

Kargi F, Ozmihci S. Utilization of cheese whey powder (CWP) for ethanol fermenta-
tions: effects of operating parameters. Enzyme Microb Technol 2006;38:711–8.

Klein J, Maia J, Vicente AA, Domingues L, Teixeira JA, Juraščík M. Relationships between
hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-
density airlift bioreactor. Biotechnol Bioeng 2005;89:393–9.

Kleine R, Achenbach S, Thoss S. Whey disposal by deproteinization and fermentation.
Acta Biotechnol 1995;15:139–48.

Kosikowski FV. Whey utilization and whey products. J Dairy Sci 1979;62:1149–60.
Kosikowski FV, Wzorek W. Whey wine from concentrates of reconstituted acid whey

powder. J Dairy Sci 1977;60:1982–6.
Kourkoutas Y, Dimitropoulou S, Kanellaki M,Marchant R, Nigam P, Banat IM, et al. High-

temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3
yeast immobilized on delignified cellulosic material. Bioresour Technol 2002a;82:
177–81.

Kourkoutas Y, Psarianos C, Koutinas AA, Kanellaki M, Banat IM, Marchant R. Continuous
whey fermentation using kefir yeast immobilized on delignified cellulosic material.
J Agric Food Chem 2002b;50:2543–7.

Kumar V, Ramakrishnan S, Teeri TT, Knowles JKC, Hartley BS. Saccharomyces cerevisiae cells
secreting an Aspergillus niger β-galactosidase grow on whey permeate. Biotechnology
1992;10:82–5.

Kurtzman CP, Fell JW, editors. The yeasts, a taxonomic study. Amsterdam: Elsevier; 1998.
Lachance MA. Kluyveromyces van der Walt emend. van der Walt. In: Kurtzman CP, Fell

JW, editors. The yeasts, a taxonomic study. Amsterdam: Elsevier; 1998. p. 227–47.
Lewandowska M, Kujawski W. Ethanol production from lactose in a fermentation/

pervaporation system. J Food Eng 2007;79:430–7.
Ling KC. Whey to ethanol: a biofuel role for dairy cooperatives? Washington DC: USDA

Rural Development; 2008 (available online bhttp://www.rurdev.usda.gov/RBS/
pub/RR214.pdfN last visited: 1st June 2009).

Linko YY, Jalanka H, Linko P. Ethanol production from whey with immobilized living
yeast. Biotechnol Lett 1981;3:263–8.

Longhi LGS, Luvizetto DJ, Ferreira LS, Rech R, Ayub MAZ, Secchi AR. A growth kinetic
model of Kluyveromyces marxianus cultures on cheese whey as substrate. J Ind
Microbiol Biotechnol 2004;31:35–40.

http://www.farmersjournal.ie/2005/1008/farmmanagement/crops/index.shtml
http://www.farmersjournal.ie/2005/1008/farmmanagement/crops/index.shtml
http://energy.massey.ac.nz/Conference%202006/Ethanol%20from%20Whey%20-%20A%20Gibson.pdf
http://energy.massey.ac.nz/Conference%202006/Ethanol%20from%20Whey%20-%20A%20Gibson.pdf
http://www.nzic.org.nz/ChemProcesses/dairy/3H.pdf
http://www.nzic.org.nz/ChemProcesses/dairy/3H.pdf
http://www.rurdev.usda.gov/RBS/pub/RR214.pdf
http://www.rurdev.usda.gov/RBS/pub/RR214.pdf


384 P.M.R. Guimarães et al. / Biotechnology Advances 28 (2010) 375–384
Lyons TP, Cunningham JD. Fuel alcohol from whey. Am Dairy Rev 1980;42:42A-E.
MahmoudMM,Kosikowski FV.Alcohol andsingle cell proteinproductionbyKluyveromyces

in concentrated whey permeates with reduced ash. J Dairy Sci 1982;65:2082–7.
Martegani E, Brambilla L, Porro D, Ranzi BM, Alberghina L. Alteration of cell population

structure due to cell lysis in Saccharomyces cerevisiae cells overexpressing the GAL4
gene. Yeast 1993;9:575–82.

Maullu C, Lampis G, Desogus A, Ingianni A, Rossolini GM, Pompei R. High-level production
of heterologous protein by engineered yeasts grown in cottage cheese whey. Appl
Environ Microbiol 1999;65:2745–7.

Mehaia MA, Cheryan M. Ethanol from hydrolyzed whey permeate using Saccharomyces
cerevisiae in a membrane recycle bioreactor. Bioprocess Eng 1990;5:57–61.

Moulin G, Boze H, Galzy P. Inhibition of alcoholic fermentation by substrate and
ethanol. Biotechnol Bioeng 1980;22:2375–81.

Moulin G, Boze H, Galzy P. A comparative study of the inhibitory effect of ethanol and
substrates on the fermentation rate of parent and a respiratory-deficient mutant.
Biotechnol Lett 1981;3:351–6.

Müller. Theo Müller Group: Company Portrait. Aretsried, http://www.muellergroup.
com/fileadmin/website/Die_Gruppe/Unternehmensportrait_UTM_Stand_
2009_engl.pdf, last visited: 2nd June, 2009.

Nehlin JO,CarlbergM,RonneH.Yeast galactosepermease is related toyeast andmammalian
glucose transporters. Gene 1989;85:313–9.

Nonklang S, Abdel-Banat BMA, Cha-Aim K, Moonjai N, Hoshida H, Limtong S, et al. High-
temperature ethanol fermentation and transformation with linear DNA in the
thermotolerant yeast Kluyveromyces marxianusDMKU3-1042. Appl EnvironMicrobiol
2008;74:7514–21.

Oda Y, Nakamura K. Production of ethanol from the mixture of beet molasses and
cheese whey by a 2-deoxyglucose-resistant mutant of Kluyveromyces marxianus.
FEMS Yeast Res 2009;9:742–8.

OECD-FAO. OECD-FAO Agricultural Outlook 2008–2017 Highlights. Paris: Organisation
for Economic Co-operation and Development—Food and Agriculture Organization
of the United Nations, 2008 (available online bhttp://www.agri-outlook.org/
dataoecd/54/15/40715381.pdfN last visited: 1st June 2009).

O'Leary VS, Green R, Sullivan BC, Holsinger VH. Alcohol production by selected yeast
strains in lactase-hydrolyzed acid whey. Biotechnol Bioeng 1977;19:1019–35.

Oliveira C, Teixeira JA, Lima N, Da Silva NA, Domingues L. Development of stable flocculent
Saccharomyces cerevisiae strain for continuous Aspergillus niger β-galactosidase
production. J Biosci Bioeng 2007;103:318–24.

Ozmihci S, Kargi F. Comparison of yeast strains for batch ethanol fermentation of
cheese-whey powder (CWP) solution. Lett Appl Microbiol 2007a;44:602–6.

Ozmihci S, Kargi F. Continuous ethanol fermentation of cheese whey powder solution:
effects of hydraulic residence time. Bioprocess Biosyst Eng 2007b;30:79–86.

Ozmihci S, Kargi F. Effects of feed sugar concentration on continuous ethanol fermentation
of cheesewhey powder solution (CWP). EnzymeMicrobiol Technol 2007c;41:876–80.

Ozmihci S, Kargi F. Ethanol fermentation of cheese whey powder solution by repeated
fed-batch operation. Enzyme Microbiol Technol 2007d;41:169–74.

Ozmihci S, Kargi F. Kinetics of batch ethanol fermentation of cheese-whey powder
(CWP) solution as function of substrate and yeast concentrations. Bioresour Technol
2007e;98:2978–84.

Ozmihci S, Kargi F. Ethanol production from cheese whey powder solution in a packed
column bioreactor at different hydraulic residence times. Biochem Eng J 2008;42:
180–5.

Pesta G, Meyer-Pittroff R, Russ W. Utilization of whey. In: Oreopoulou V, Russ W,
editors. Utilization of by-products and treatment of waste in the food industry.
Springer; 2007.

Porro D, Martegani E, Ranzi BM, Alberghina L. Development of high cell density cultures
of engineered Saccharomyces cerevisiae cells able to grow on lactose. Biotechnol
Lett 1992a;14:1085–8.

Porro D, Martegani E, Ranzi BM, Alberghina L. Lactose/whey utilization and ethanol
production by transformed Saccharomyces cerevisiae cells. Biotechnol Bioeng
1992b;39:799–805.

Ramakrishnan S, Hartley BS. Fermentation of lactose by yeast cells secreting
recombinant fungal lactase. Appl Environ Microbiol 1993;59:4230–5.

RFA. Renewable Fuels Association: Statistics. Washington DC, http://www.ethanolrfa.
org/industry/statistics/, last visited: 2nd April, 2009.

Ribeiro O, Gombert AK, Teixeira JA, Domingues L. Application of the Cre-loxP system for
multiple gene disruption in the yeast Kluyveromyces marxianus. J Biotechnol 2007;131:
20–6.

Rogosa M, Browne HH, Whittier EO. Ethyl alcohol from whey. J Dairy Sci 1947;30:
263–9.

RosenbergM, TomaskaM, Kanuch J, Sturdik E. Improved ethanol production fromwhey
with Saccharomyces cerevisiae using permeabilized cells of Kluyveromyces marx-
ianus. Acta Biotechnol 1995;15:387–90.

Roukas T, Lazarides HN. Ethanol production from deproteinized whey by β-galactosidase
coimmobilized cells of Saccharomyces cerevisiae. J Ind Microbiol 1991;7:15–8.

Rubio-Texeira M. A comparative analysis of the GAL genetic switch between not-so-
distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast
Res 2005;5:1115–28.

Rubio-Texeira M. Endless versatility in the biotechnological applications of Kluyver-
omyces LAC genes. Biotechnol Adv 2006;24:212–25.

Rubio-TexeiraM, Castrillo JI, AdamAC, UgaldeUO, Polaina J. Highly efficient assimilation
of lactose by a metabolically engineered strain of Saccharomyces cerevisiae. Yeast
1998;14:827–37.
Ryu YW, Jang HW, Lee HS. Enhancement of ethanol tolerance of lactose assimilating
yeast strain by protoplast fusion. J Microbiol Biotechnol 1991;1:151–6.

Schaffrath R, Breunig KD. Genetics andmolecular physiology of the yeast Kluyveromyces
lactis. Fungal Genet Biol 2000;30:173–90.

Shabtai Y, Mandel C. Control of ethanol production and monitoring of membrane
performance by mass-spectrometric gas analysis in the coupled fermentation–
pervaporation of whey permeate. Appl Microbiol Biotechnol 1993;40:470–6.

SilveiraWB, Passos F, Mantovani HC, Passos FML. Ethanol production from cheese whey
permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive
metabolism as a function of lactose concentration and oxygen levels. Enzyme
Microbiol Technol 2005;36:930–6.

Siso MIG. The biotechnological utilization of cheese whey: a review. BioresTechnol
1996;57:1-11.

Siso MIG, Ramil E, Cerdan ME, Freire Picos MA. Respirofermentative metabolism in
Kluyveromyces lactis: ethanol production and the Crabtree effect. EnzymeMicrobiol
Technol 1996;18:585–91.

Smithers GW. Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 2008;18:
695–704.

Snoek IS, Steensma HY. Why does Kluyveromyces lactis not grow under anaerobic
conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae
with the Kluyveromyces lactis genome. FEMS Yeast Res 2006;6:393–403.

Snoek IS, Steensma HY. Factors involved in anaerobic growth of Saccharomyces cerevisiae.
Yeast 2007;24:1-10.

Sreekrishna K, Dickson RC. Construction of strains of Saccharomyces cerevisiae that grow
on lactose. Proc Natl Acad Sci U S A 1985;82:7909–13.

Staniszewski M, Kujawski W, Lewandowska M. Semi-continuous ethanol production in
bioreactor from whey with co-immobilized enzyme and yeast cells followed by
pervaporative recovery of product—Kinetic model predictions considering glucose
repression. J Food Eng 2009;91:240–9.

Szczodrak J, SzewczukD, Rogalski J, Fiedurek J. Selection of yeast strain and fermentation
conditions for high-yield ethanol production from lactose and concentrated whey.
Acta Biotechnol 1997;17:51–61.

Tahoun MK, El-Nemr TM, Shata OH. Ethanol from lactose in salted cheese whey by
recombinant Saccharomyces cerevisiae. Z Lebensm.-Unters-Forsch A Eur Food Res
Technol 1999;208:60–4.

Tahoun MK, El-Nemr TM, Shata OH. A recombinant Saccharomyces cerevisiae strain for
efficient conversion of lactose in salted and unsalted cheese whey into ethanol.
Nahrung 2002;46:321–6.

TayaM, Honda H, Kobayashi T. Lactose-utilizing hybrid strain derived from Saccharomyces
cerevisiae and Kluyveromyces lactis by protoplast fusion. Agric Biol Chem 1984;48:
2239–43.

Teixeira JA, Mota M, Goma G. Continuous ethanol production by a flocculating strain of
Kluyveromyces marxianus: bioreactor performance. Bioprocess Eng 1990;5:123–7.

Terrell SL, Bernard A, Bailey RB. Ethanol from whey: continuous fermentation with a
catabolite repression-resistant Saccharomyces cerevisiae mutant. Appl Environ Micro-
biol 1984;48:577–80.

Thiele JH. Estimate of the energy potential for fuel ethanol from putrescible waste in
New Zealand. Dunedin: Waste Solutions Ltd; 2005 (available online bhttp://www.
bioenergy.org.nz/documents/liquidbiofuels/energy-potential-for-fuel-ethanol-
from-putrescible-waste-in-nz-report-05.pdfN last visited: 2nd June 2009).

van Ooyen AJ, Dekker P, Huang M, Olsthoorn MM, Jacobs DI, Colussi PA, et al.
Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res
2006;6:381–92.

Vienne P, von Stockar U. An investigation of ethanol inhibition and other limitations
occurring during the fermentation of concentrated whey permeate by Kluyver-
omyces fragilis. Biotechnol Lett 1985;7:521–6.

Wang CJ, Bajpai RK. A mathematical model of ethanol fermentation from cheese whey 1.
Model development andparameter estimation.Appl BiochemBiotechnol 1997a;63–5:
495–509.

Wang CJ, Bajpai RK. A mathematical model of ethanol fermentation from cheese whey
2. Simulation and comparison with experimental data. Appl Biochem Biotechnol
1997b;63–5:511–25.

Webb BH, Whittier EO. The utilization of whey: a review. J Dairy Sci 1948;31:139–64.
Whittier EO. Lactose and its utilization: a review. J Dairy Sci 1944;7:505–37.
Yalçin AS. Emerging therapeutic potential of whey proteins and peptides. Curr Pharm

Des 2006;12:1637–43.
Yang ST, Silva EM. Novel products and new technologies for use of a familiar carbohydrate,

milk lactose. J Dairy Sci 1995;78:2541–62.
You KM, Rosenfield CL, Knipple DC. Ethanol tolerance in the yeast Saccharomyces cerevisiae

is dependent on cellular oleic acid content. Appl EnvironMicrobiol 2003;69:1499–503.
Zadow JG. Lactose—properties and uses. J Dairy Sci 1984;67:2654–79.
Zafar S, Owais M. Ethanol production from crude whey by Kluyveromyces marxianus.

Biochem Eng J 2006;27:295–8.
Zafar S, Owais M, Salleemuddin M, Husain S. Batch kinetics and modelling of ethanolic

fermentation of whey. Int J Food Sci Technol 2005;40:597–604.
Zall RR. Trends in whey fractionation and utilization, a global perspective. J Dairy Sci

1984;67:2621–9.
Zertuche L, Zall RR. Optimizing alcohol production fromwhey using computer technology.

Biotechnol Bioeng 1985;27:547–54.
Zhao XQ, Bai FW. Yeast flocculation: new story in fuel ethanol production. Biotechnol

Adv 2009;27:849–56.

http://www.muellergroup.com/fileadmin/website/Die_Gruppe/Unternehmensportrait_UTM_Stand_2009_engl.pdf
http://www.muellergroup.com/fileadmin/website/Die_Gruppe/Unternehmensportrait_UTM_Stand_2009_engl.pdf
http://www.muellergroup.com/fileadmin/website/Die_Gruppe/Unternehmensportrait_UTM_Stand_2009_engl.pdf
http://www.agri-outlook.org/dataoecd/54/15/40715381.pdf
http://www.agri-outlook.org/dataoecd/54/15/40715381.pdf
http://www.ethanolrfa.org/industry/statistics/
http://www.ethanolrfa.org/industry/statistics/
http://www.bioenergy.org.nz/documents/liquidbiofuels/energy-potential-for-fuel-ethanol-from-putrescible-waste-in-nz-report-05.pdf
http://www.bioenergy.org.nz/documents/liquidbiofuels/energy-potential-for-fuel-ethanol-from-putrescible-waste-in-nz-report-05.pdf
http://www.bioenergy.org.nz/documents/liquidbiofuels/energy-potential-for-fuel-ethanol-from-putrescible-waste-in-nz-report-05.pdf

	Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valori.....
	Introduction
	Whey utilization/valorisation
	Fermentation of lactose to ethanol
	Kluyveromyces spp.
	C. pseudotropicalis (C. kefyr)
	Saccharomyces cerevisiae
	Industrial production of ethanol from whey

	Conclusions
	Acknowledgements
	References




